Skip to main content
Log in

Pharmacokinetics and mechanism of action of detoxifying low-molecular-weight thiols

  • Original Papers
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Summary

A number of thiol compounds have been studied with reference to their selective protective action against urotoxic side-effects of oxazaphosphorine cytostatics. The uroprotective capacity is determined exclusively by the pharmacokinetic behavior of the compound. When given PO, all compounds tested were absorbable from the gut. Both thiols and disulfides are rapidly eliminated from the blood, but during their short half-life a number of unknown chemical reactions probably take place to maintain a physiological redox equilibrium.

Elimination from the blood plasma occurs via two fundamentally different mechanisms: by distribution throughout the tissue and intracellular uptake or, alternatively, by rapid renal excretion. Most of the compounds tested belong to the first group: N-acetylcysteine, carboxycysteine, disulfiram and its metabolite DDTC, glutathione, WR 2721, etc. Few compounds are quantitatively excreted through the urine: mesna, dimesna, and DA 12. Only these compounds were suitable for selective regional detoxification and for the prevention of oxazaphosphorine-induced urotoxic lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertino JR (1979) Toward improved selectivity in cancer chemotherapy: The Richard and Hinda Rosenthal foundation award lecture. Cancer Res 39:293–304

    Google Scholar 

  • Brock N (1980) Konzeption und Wirkmechanismus von Uromitexan (Mesna), In: Burkert H, Nagel GA (eds) Neue Erfahrungen mit Oxazaphosphorinen unter besonderer Berücksichtigung des Uroprotektors Uromitexan, Karger, Basel München Paris London New York Sydney, pp 1–11 (Beiträge zur Onkologie, vol 5)

    Google Scholar 

  • Brock N, Hohorst JH (1977) The problem of specificity and selectivity of alkylating cytostatics: studies on N-2-chloroethyl-amidooxazaphosphorines. Z Krebsforsch 88:185–215

    Google Scholar 

  • Brock N, Pohl J (1983) Detoxification as a principle to increase the drug's therapeutic range in cancer chemotherapy. Proceedings of the 13th Intern Congress of Chemotherapy Vienna, Main Lecture 5, pp 1/39–1/54

  • Brock N, Stekar J (1982) Verhütung urotoxischer Wirkungen von Cyclophosphamid und Ifosfamid durch Dimesna. Arzneimittelforsch 32:486–487

    Google Scholar 

  • Brock N, Stekar J, Pohl J, Scheef W (1979a) Antidot gegen urotoxische Wirkungen der Oxazaphosphorin-Derivate Cyclophosphamid, Ifosfamid und Trofosfamid. Naturwissenschaften 66:60–61

    Google Scholar 

  • Brock N, Stekar J, Pohl J, Niemeyer U, Scheffler G (1979b) Acrolein, the causative factor of urotoxic side-effects of cyclophosphamide ifosfamide, trofosfamide und sufosfamide. Arzneimittelforsch 29:659–661

    Google Scholar 

  • Brock N, Pohl J, Stekar J (1981a) Studies on the urotoxicity of oxazaphosphorine cytostatics and its prevention. I. Experimental studies on the urotoxicity of alkylating compounds. Eur J Cancer 17:596–607

    Google Scholar 

  • Brock N, Pohl J, Stekar J (1981b) Studies on the urotoxicity of oxazaphosphorine cytostatics and its prevention. 2. Comparative study on the uroprotective efficacy of thiols and other sulfur compounds. Eur J Cancer Clin Oncol 17:1155–1163

    Google Scholar 

  • Brock N, Habs M, Pohl J, Schmähl D, Stekar J (1982a) Mesna (Natrium-2-mercaptoethan-sulfonat). Prophylaxe der akuten urotoxischen Nebenwirkungen sowie der kanzerogenen Spätfolgen von Cyclophosphamid und Ifosfamid. Therapiewoche 32:4977–4996

    Google Scholar 

  • Brock N, Pohl J, Stekar J, Scheef W (1982b) Studies on the urotoxicity of oxazaphosphorine cytostatics and its prevention. III. Profile of action of sodium 2-mercaptoethane sulfonate (Mesna). Eur J Cancer Clin Oncol 18:1377–1387

    Google Scholar 

  • Burkert H (1983) Clinical overview of mesna. Cancer Treat Rep 10 [Suppl A]:175–181

    Google Scholar 

  • Connors TA (1966) Protection against the toxicity of alkylating agents by thiols: the mechanism of protection and its relevance to cancer chemotherapy. Eur J Cancer 2:293–305

    Google Scholar 

  • Druckrey H (1957) Grundlagen der toxikologischen Methodik. Arzneimittelforsch 7:449–456

    Google Scholar 

  • Druckrey H (1961) Chemotherapie des Krebses. Med Klinik 56:1421–1430

    Google Scholar 

  • Druckrey H, Raabe S (1952) Organspezifische Chemotherapie des Krebses (Prostatakarzinom). Klin Wochenschr 30:882–884

    Google Scholar 

  • Druckrey H, Steinhoff D, Nakayama M, Preussmann R, Anger K (1963) Experimentelle Beiträge zum Dosis-Problem in der Krebschemotherapie und zur Wirkungsweise von Endoxan. Dtsch med Wochenchr 88:651–663; 715–721

    Google Scholar 

  • Ershler WB, Hacker MP, Newman RA, Stewart JA, Garnelli RL, Krakoff IH (1983) Effect of disulfiram on cyclophosphamide toxicity: A clinical trial. Cancer Treat Rep 67:1145–1147

    Google Scholar 

  • Goldin A, Mantel N, Greenhouse SW, Venditti JH, Humphrey SR (1954) Effect of delayed administration of citrovorum factor on the antileukemic effectiveness of aminopterin in mice. Cancer Res 14:43–48

    Google Scholar 

  • Hacker MP, Ershler WB, Newman RA, Garnelli RL (1982) Effect of disulfiram (tetraethylthiuram disulfide) and diethyldithiocarbamate on the bladder toxicity and antitumor activity of cyclophosphamide in mice. Cancer Res 42:4490–4494

    Google Scholar 

  • Holoye PY, Duelge J, Hansen RM, Ritch PS, Anderson T (1983) Prophylaxis of ifosfamide toxicity with oral acetylcysteine. Semin Oncol 10 [Suppl 1]:66–71

    Google Scholar 

  • Ishidate M, Sakurai Y, Yoshida T, Satoh H, Matsui E, Imamura H (1953) Studies on the toxicity of “nitromin”. Interference of cysteine upon “nitromin” toxicity. Gann 44:386

    Google Scholar 

  • Jocelyn PC (1972) Biochemistry of the SH group. Academic Press, London New York

    Google Scholar 

  • Kline I, Woodman RJ, Venditti JM (1972) Protection with N-acetylcysteine (NAC) against isophosphamide (Isoph. NSC-109724) host toxicity and enhancement of therapy in early murine leukemia L1210. Proc Am Assoc Cancer Res 13:29

    Google Scholar 

  • Link H, Neef V, Niethammer D, Wilms K (1981) Prophylaxis of haemorrhagic cystitis due to cyclophosphamide-conditioning for bone marrow transplantation. Blut 43:329–330

    Google Scholar 

  • Loehrer PJ, Williams SD, Einhorn LH (1983) N-Acetylcytsteine and ifosfamide in the treatment of unresectable pancreatic adenocarcinoma and refractory testicular cancer. Semin Oncol 10 [Suppl 1]:72–75

    Google Scholar 

  • Morgan LR, Donley PJ, Harrison EF, Hunter HL (1982) The control of ifosfamide-induced hematuria with N-acetylcysteine in patients with advanced carcinoma of the lung. Semin Oncol 9 [Suppl 1]:71–74

    Google Scholar 

  • Ormstad K, Ohno Y (1984) N-Acetylcysteine and sodium 2-mercaptoethane sulfonate as sources of urinary thio groups in the rat. Cancer Res (in press)

  • Ormstad K, Uehara N (1982) Renal transport and disposition of sodium 2-mercaptoethane sulfonate (mesna) in the rat. FEBS Lett 150:354–358

    Google Scholar 

  • Ormstadt K, Orrenius S, Låstbom T, Uehara N, Pohl J, Stekar J, Brock N (1983) Pharmacokinetics and metabolism of sodium 2-mercaptoethane sulfonate (mesna) in the rat. Cancer Res 43:333–338

    Google Scholar 

  • Pohl J, Brock N, Schneider B, Wetzelsberger K (1981) Zur Pharmakokinetik von Uromitexan®. Methods Find Exp Clin Pharmacol 3 [Suppl. 1]:95S-101S

    Google Scholar 

  • Slavik M, Sayers JH (1983) Phase I clinical study of acetylcysteine's preventing ifosfamide-induced hematuria. Semin Oncol 10 [Suppl 1]:62–65

    Google Scholar 

  • Stekar J (1982) Photometrische Bestimmung von Mesna und Dimesna im Blutplasma und Urin. Ärztl Lab 28:187–191

    Google Scholar 

  • Thor H, Moldeus P, Orrenius S (1979) Effect of cysteine, N-acetylcysteine and methionine on glutathione biosynthesis and bromobenzene toxicity in isolated rat hepatocytes. Arch Biochem Biophys 192:405–413

    Google Scholar 

  • Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Application to mammalian blood and other tissues. Anal Biochem 27:502–522

    Google Scholar 

  • Vahlensieck N, Hoefer-Janker H, Brühl P, Scheef W (1974) Zur Pathogenese, Klinik und Prophylaxe der sogenannten Cyclophosphamid-Zystitis. Muench Med Wochenschr 116:1889–1894

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Hermann Druckrey on the occasion of his 80th birthday.

This work was conducted under a Swedish-German agreement on biotechnological cooperation and was funded by the Swedish National Board for Technical Development and by the German Federal Ministry of Research and Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brock, N., Hilgard, P., Pohl, J. et al. Pharmacokinetics and mechanism of action of detoxifying low-molecular-weight thiols. J Cancer Res Clin Oncol 108, 87–97 (1984). https://doi.org/10.1007/BF00390979

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00390979

Key words

Navigation