Skip to main content

Technologies for Detecting Metals in Single Cells

  • Chapter
  • First Online:
Metallomics and the Cell

Part of the book series: Metal Ions in Life Sciences ((MILS,volume 12))

Abstract

In order to fully understand the metallomics of an organism, it is essential to know how much metal is present in each cell and, ideally, to know both the spatial and chemical distributions of each metal (i.e., where within the cell is a metal found, and in what chemical form). No single technique provides all of this information. This chapter reviews the various methods that can be used and the strengths and weaknesses of each.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EDS:

electron dispersive spectroscopy

EELS:

electron energy loss spectroscopy

EPMA:

electron probe microanalysis

ESI:

electrospray ionization

FRET:

Förster resonance energy transfer

ICP:

inductively coupled plasma

IR:

infrared

MS:

mass spectrometry

MALDI:

matrix-assisted laser desorption/ionization

MRI:

magnetic resonance imaging

PIXE:

proton induced X-ray emission (sometimes particle instead of proton)

SE:

secondary electron

SIMS:

secondary ion mass spectrometry

SXRF:

synchrotron induced X-ray fluorescence

TOF:

time-of-flight

XANES:

X-ray absorption near edge structure

XAS:

X-ray absorption spectroscopy

XFM:

X-ray fluorescence microscopy

XRF:

X-ray fluorescence

References

  1. A. I. Vogel, A Text-Book of Macro and Semimicro Qualitative Inorganic Analysis, Longmans, Green, London, New York, 1954, pp. xv, 663 p.

    Google Scholar 

  2. R. McRae, P. Bagchi, S. Sumalekshmy, C. J. Fahrni, Chem. Rev. 2009, 109, 4780–4827.

    Article  CAS  PubMed  Google Scholar 

  3. J. L. Nielsen, P. H. Nielsen, in Environ. Microbiol., Vol. 397 of Methods in Enzymology, Ed J. R. Leadbetter, Elsevier Academic Press, Inc., San Diego, CA, 2005, pp. 237–256.

    Google Scholar 

  4. B. F. Brehm-Stecher, E. A. Johnson, Microbiol. Mol. Biol. Rev. 2004, 68, 538–559.

    Article  CAS  PubMed  Google Scholar 

  5. A. Amantonico, P. L. Urban, R. Zenobi, Anal. Bioanal. Chem. 2010, 398, 2493–2504.

    Article  CAS  PubMed  Google Scholar 

  6. A. Oikawa, K. Saito, Plant J. 2012, 70, 30–38.

    Article  CAS  PubMed  Google Scholar 

  7. H. Plattner, L. Bachmann, International Review of Cytology-a Survey of Cell Biology 1982, 79, 237–304.

    Article  CAS  Google Scholar 

  8. K. Zierold, J. Microscopy 1991, 161, 357–366.

    Article  CAS  Google Scholar 

  9. S. G. Boxer, M. L. Kraft, P. K. Weber, Annu. Rev. Biophys. 2009, 38, 53–74.

    Article  CAS  PubMed  Google Scholar 

  10. P. Nemes, A. Vertes, TRAC-Trends. Anal. Chem. 2012, 34, 22–34.

    Article  CAS  Google Scholar 

  11. Z. Y. Qin, J. A. Caruso, B. Lai, A. Matusch, J. S. Becker, Metallomics 2011, 3, 28–37.

    Article  CAS  PubMed  Google Scholar 

  12. J. S. Hammond, in Imaging Mass Spectrometry: Protocols for Mass Microscopy, Ed M. Setou, Springer, 2010, pp. 235–257.

    Google Scholar 

  13. B. Wu, J. S. Becker, Intl. J. Mass. Spect. 2011, 307, 112–122.

    Article  CAS  Google Scholar 

  14. S. L. Luxembourg, T. H. Mize, L. A. McDonnell, R. M. A. Heeren, Anal. Chem. 2004, 76, 5339–5344.

    Article  CAS  PubMed  Google Scholar 

  15. H. Ye, T. Greer, L. J. Li, Bioanalysis 2011, 3, 313–332.

    Article  CAS  PubMed  Google Scholar 

  16. J. S. Fletcher, J. C. Vickerman, N. Winograd, Curr. Opin. Chem. Biol. 2011, 15, 733–740.

    Article  CAS  PubMed  Google Scholar 

  17. J. S. Becker, A. Matusch, B. Wu, C. Palm, A. J. Becker, D. Salber, Intl. J. Mass. Spect. 2011, 307, 3–15.

    Article  CAS  Google Scholar 

  18. T. A. Zimmerman, E. B. Monroe, K. R. Tucker, S. S. Rubakhin, J. V. Sweedler, in Biophysical Tools for Biologists, Vol 2: In Vivo Techniques, Eds J. J. Correia. H. W. Detrich, Methods in Cell Biology, Elsevier Academic Press, Inc., San Diego, CA, 2008, Vol. 89, pp. 361–390.

    Google Scholar 

  19. C. Szakal, K. Narayan, J. Fu, J. Lefman, S. Subramaniam, Anal. Chem. 2011, 83, 1207–1213.

    Article  CAS  PubMed  Google Scholar 

  20. P. K. Weber, G. A. Graham, N. E. Teslich, W. M. Chan, S. Ghosal, T. J. Leighton, K. E. Wheeler, J. Microscopy 2010, 238, 189–199.

    Article  CAS  Google Scholar 

  21. A. Svatos, Anal. Chem. 2011, 83, 5037–5044.

    Article  CAS  PubMed  Google Scholar 

  22. P. L. Urban, T. Schmid, A. Amantonico, R. Zenobi, Anal. Chem. 2011, 83, 1843–1849.

    Article  CAS  PubMed  Google Scholar 

  23. A. Amantonico, P. L. Urban, S. R. Fagerer, R. M. Balabin, R. Zenobi, Anal. Chem. 2010, 82, 7394–7400.

    Article  CAS  PubMed  Google Scholar 

  24. H. Mizuno, N. Tsuyama, T. Harada, T. Masujima, J. Mass Spectrom. 2008, 43, 1692–1700.

    Article  CAS  PubMed  Google Scholar 

  25. B. Shrestha, J. M. Patt, A. Vertes, Anal. Chem. 2011, 83, 2947–2955.

    Article  CAS  PubMed  Google Scholar 

  26. N. Musat, H. Halm, B. Winterholler, P. Hoppe, S. Peduzzi, F. Hillion, F. Horreard, R. Amann, B. B. Jorgensen, M. M. M. Kuypers, Proc. Natl. Acad. Sci USA 2008, 105, 17861–17866.

    Article  CAS  Google Scholar 

  27. T. Li, T.-D. Wu, L. Mazeas, L. Toffin, J.-L. Guerquin-Kern, G. Leblon, T. Bouchez, Environ. Microbiol. 2008, 10, 580–588.

    Article  CAS  PubMed  Google Scholar 

  28. S. D. Tanner, D. R. Bandura, O. Ornatsky, V. I. Baranov, M. Nitz, M. A. Winnik, Pure Appl. Chem. 2008, 80, 2627–2641.

    CAS  Google Scholar 

  29. K. E. Smart, M. R. Kilburn, C. J. Salter, J. A. C. Smith, C. R. M. Grovenor, Intl. J. Mass. Spect. 2007, 260, 107–114.

    Article  CAS  Google Scholar 

  30. S. W. Hell, Science 2007, 316, 1153–1158.

    Article  CAS  PubMed  Google Scholar 

  31. T. Terai, T. Nagano, Curr. Opin. Chem. Biol. 2008, 12, 515–521.

    Article  CAS  PubMed  Google Scholar 

  32. D. W. Domaille, E. L. Que, C. J. Chang, Nature Chem. Biol. 2008, 4, 168–175.

    CAS  Google Scholar 

  33. P. J. Jiang, Z. J. Guo, Coord. Chem. Rev. 2004, 248, 205–229.

    Article  CAS  Google Scholar 

  34. M. Formica, V. Fusi, L. Giorgi, M. Micheloni, Coord. Chem. Rev. 2012, 256, 170–192.

    Article  CAS  Google Scholar 

  35. N. Boens, V. Leen, W. Dehaen, Chem. Soc. Rev. 2012, 41, 1130–1172.

    Article  CAS  PubMed  Google Scholar 

  36. D. O’Malley, in Biophysical Tools for Biologists, Vol 2: In Vivo Techniques, Eds. J. J. Correia, H. W. Detrich, Methods in Cell Biology, Elsevier Academic Press, Inc., San Diego, CA, Vol. 89, 2008, pp. 95.

    Google Scholar 

  37. K. M. Dean, Y. Qin, A. E. Palmer, Biochim. Biophys. Acta 2012, doi:10.1016/j.bbamcr.2012.1004.1001.

    Google Scholar 

  38. J. R. Lakowicz, Anal. Biochem. 2001, 298, 1–24.

    Article  CAS  PubMed  Google Scholar 

  39. Y. You, S. Lee, T. Kim, K. Ohkubo, W.-S. Chae, S. Fukuzumi, G.-J. Jhon, W. Nam, S. J. Lippard, J. Am. Chem. Soc. 2011, 133, 18328–18342.

    Article  CAS  PubMed  Google Scholar 

  40. A. Krezel, W. Maret, J. Biol. Inorg. Chem. 2006, 11, 1049–1062.

    Article  CAS  PubMed  Google Scholar 

  41. R. Y. Tsien, Nature 1981, 290, 527–528.

    Article  CAS  PubMed  Google Scholar 

  42. C. A. Fierke, R. B. Thompson, Biometals 2001, 14, 205–222.

    Article  CAS  PubMed  Google Scholar 

  43. D. Wang, T. K. Hurst, R. B. Thompson, C. A. Fierke, J. Biomed. Optics 2011, 16, http://dx.doi.org/10.1117/1.3613926.

    Google Scholar 

  44. E. M. W. M. van Dongen, L. M. Dekkers, K. Spijker, E. W. Meijer, L. W. J. Klomp, M. Merkx, J. Am. Chem. Soc. 2006, 128, 10754–10762.

    Article  PubMed  Google Scholar 

  45. P. J. Dittmer, J. G. Miranda, J. A. Gorski, A. E. Palmer, J. Biol. Chem. 2009, 284, 16289–16297.

    CAS  Google Scholar 

  46. W. Qiao, M. Mooney, A. J. Bird, D. R. Winge, D. J. Eide, Proc. Natl. Acad. Sci USA 2006, 103, 8674–8679.

    Article  CAS  Google Scholar 

  47. J. L. Vinkenborg, T. J. Nicolson, E. A. Bellomo, M. S. Koay, G. A. Rutter, M. Merkx, Nature Methods 2009, 6, 737–U710.

    Article  CAS  PubMed  Google Scholar 

  48. W. Denk, J. H. Strickler, W. W. Webb, Science 1990, 248, 73–76.

    Article  CAS  PubMed  Google Scholar 

  49. H. M. Kim, B. R. Cho, Acc. Chem. Res. 2009, 42, 863–872.

    Article  CAS  PubMed  Google Scholar 

  50. N. Johnsson, K. Johnsson, ACS Chem. Biol. 2007, 2, 31–38.

    CAS  Google Scholar 

  51. M. Cholewa, C. Dillon, P. Lay, D. Phillips, T. Talarico, B. Lai, D. X. Balaic, Z. Barnea, Z. Cai, G. B. Deacon, P. Ilinski, D. Legnini, S. Rainone, G. Shea-McCarthy, A. P. J. Stampfi, L. K. Webster, W. Yun, Nucl. Instrum. Methods. B. 2002, 198, 108–109.

    Article  CAS  Google Scholar 

  52. R. Ortega, G. Deves, A. Carmona, J. Royal Soc. Interface 2009, 6, S649–S658.

    Article  CAS  PubMed  Google Scholar 

  53. M. Ralle, S. Lutsenko, Biometals 2009, 22, 197–205.

    Article  CAS  PubMed  Google Scholar 

  54. P. Duhutrel, C. Bordat, T. D. Wu, M. Zagorec, J. L. Guerquin-Kern, M. C. Champomier-Verges, Appl. Environ. Microbiol. 2010, 76, 560–565.

    Article  CAS  PubMed  Google Scholar 

  55. R. Ortega, P. Cloetens, G. Deves, A. Carmona, S. Bohic, PLOS One 2007, 2.

    Google Scholar 

  56. E. Kosior, S. Bohic, H. Suhonen, R. Ortega, G. Deves, A. Carmona, F. Marchi, J. F. Guillet, P. Cloetens, J. Struct. Biol. 2012, 177, 239–247.

    CAS  Google Scholar 

  57. E. H. Bigio, T. Paunesku, M. Mishra, S. Vogt, B. Lai, J. Maser, G. E. Woloschak, “X-ray fluorescence spectroscopy in situ quantification of metals/elements in Alzheimer disease”, Proceedings of the 81st Annual Meeting of the American-Association-of-Neuropathologists, Arlington, VA, 2005, pp. 48.

    Google Scholar 

  58. T. Paunesku, S. Vogt, J. Maser, B. Lai, G. Woloschak, J. Cell. Biochem. 2006, 99, 1489–1502.

    CAS  Google Scholar 

  59. S. Vogt, B. Lai, L. Finney, B. Palmer, L. E. Wu, H. Harris, T. Paunesku, M. de Jonge, D. Legnini, J. Maser, D. Glesne, P. Lay, G. Woloschak, Microscop. Microanal. 2007, 13, 40–41.

    Google Scholar 

  60. A. M. Kim, M. L. Bernhardt, B. Y. Kong, R. W. Ahn, S. Vogt, T. K. Woodruff, T. V. O’Halloran, ACS Chem. Biol. 2011, 6, 716–723.

    CAS  Google Scholar 

  61. S. A. Kim, T. Punshon, A. Lanzirotti, L. Li, J. M. Alonso, J. R. Ecker, J. Kaplan, M. L. Guerinot, Science 2006, 314, 1295–1298.

    Article  CAS  PubMed  Google Scholar 

  62. S. Kehr, M. Malinouski, L. Finney, S. Vogt, V. M. Labunskyy, M. V. Kasaikina, B. A. Carlson, Y. Zhou, D. L. Hatfield, V. N. Gladyshev, J. Mol. Biol. 2009, 389, 808–818.

    CAS  Google Scholar 

  63. R. Ortega, C. Bresson, A. Fraysse, C. Sandre, G. Devès, C. Gombert, M. Tabarant, P. Bleuet, H. Seznec, A. Simionovici, P. Moretto, C. Moulin, Toxicol. Lett. 2009, 188, 26–32.

    Article  CAS  PubMed  Google Scholar 

  64. I. J. Pickering, E. Y. Sneeden, R. C. Prince, E. Block, H. H. Harris, G. Hirsch, G. N. George, Biochemistry 2009, 48, 6846–6853.

    Article  CAS  PubMed  Google Scholar 

  65. I. J. Pickering, R. C. Prince, D. E. Salt, G. N. George, Proc. Natl. Acad. Sci USA 2000, 97, 10717–10722.

    Article  CAS  Google Scholar 

  66. R. Ortega, B. Fayard, M. Salomé, G. Devès, J. Susini, Chem. Res. Toxicol. 2005, 18, 1512–1519.

    Article  CAS  PubMed  Google Scholar 

  67. T. Bacquart, G. Devès, A. Carmona, R. Tucoulou, S. Bohic, R. Ortega, Anal. Chem. 2007, 79, 7353–7359.

    Article  CAS  PubMed  Google Scholar 

  68. K. E. Smart, J. A. C. Smith, M. R. Kilburn, B. G. H. Martin, C. Hawes, C. R. M. Grovenor, Plant J. 2010, 63, 870–879.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

  Some of the measurements described in this chapter were supported by the National Institutes of Health, Grants GM-38047 and GM-70545. The XRF imaging work that was described was all measured at one or more national synchrotron laboratories, much of it at laboratories supported by the US Department of Energy Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Penner-Hahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Penner-Hahn, J.E. (2013). Technologies for Detecting Metals in Single Cells. In: Banci, L. (eds) Metallomics and the Cell. Metal Ions in Life Sciences, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5561-1_2

Download citation

Publish with us

Policies and ethics