Skip to main content

MicroRNAs for Enhancement of CHO Cell Proliferation and Stability: Insights from Neuroblastoma Studies

  • Chapter
  • First Online:
MicroRNAs as Tools in Biopharmaceutical Production
  • 776 Accesses

Abstract

The large-scale production of protein demands cell lines that have high proliferative potential and minimal tendencies to undergo apoptosis or senescence. Efforts in biotechnology have emphasized improving the genetic characteristics of CHO cells to enhance protein production. Many of the features of cell lines that are desirable for biotechnology enterprises, however, are the subject of anti-cancer research. Anti-cancer therapy attempts to decrease cell proliferation rates and increase the potential for cell differentiation and apoptosis to occur. Thus, it is possible for biotechnology oriented research to gain considerable insight from therapeutic targets identified in cancer related studies. Mature microRNAs (miRNA) are 19–22 nt RNA sequences that negatively regulate gene expression at a post-transcriptional level which are emerging as potential therapeutic targets for neoplasia. MiRNAs are significantly involved with cell proliferation, apoptosis, differentiation, senescence, cell migration and invasion in the context of both normal developmental processes and in malignant diseases. They can both promote or retard all of these cellular phenotypes, dependent on cellular context. The purpose of this chapter is to review the phenotypic effects of miRNAs in cancer, using the childhood tumor neuroblastoma as a model, with a view towards understanding how manipulation of miRNAs in CHO cells might improve the phenotypic features of the lines for biotechnology purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adair GM, Stallings RL, Siciliano MJ (1984) Chromosomal rearrangements and gene expression in CHO cells: mapping of alleles for eight enzyme loci on CHO chromosomes Z3, Z4, Z5, and Z7. Somat Cell Mol Genet 10:283–295

    Article  PubMed  CAS  Google Scholar 

  • Adair GM, Stallings RL, Nairn RS, Siciliano MJ (1983) High-frequency structural gene deletion as the basis for functional hemizygosity of the adenine phosphoribosyltransferase locus in Chinese hamster ovary cells. Proc Natl Acad Sci USA 80:5961–5964

    Article  PubMed  CAS  Google Scholar 

  • Baek D, Villen J, Shin C, Camargo FD, Gygi SP , Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  PubMed  CAS  Google Scholar 

  • Barron N, Sanchez N, Kelly P, Clynes M (2011) MicroRNAs: tiny targets for engineering CHO cell phenotypes? Biotechnol Lett 33:11–21

    Article  PubMed  CAS  Google Scholar 

  • Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, Samanta M, Weissman S, Gerstein M, Snyder M (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306:2242–2246

    Article  PubMed  CAS  Google Scholar 

  • Beveridge NJ, Tooney PA, Carroll AP, Tran N, Cairns MJ (2009) Down-regulation of miR-17 family expression in response to retinoic acid induced neuronal differentiation. Cell Signal 21:1837–1845

    Article  PubMed  CAS  Google Scholar 

  • Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, Macdougald OA, Cho KR, Fearon ER (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17:1298–1307

    Article  PubMed  CAS  Google Scholar 

  • Bray I, Bryan K, Prenter S, Buckley PG, Foley NH, Murphy DM, Alcock L, Mestdagh P, Vandesompele J, Speleman F, London WB, Mcgrady PW, Higgins DG, O'Meara A, O'Sullivan M, Stallings RL (2009) Widespread dysregulation of MiRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival. PLoS One 4:e7850

    Article  PubMed  Google Scholar 

  • Bray I, Tivnan A, Bryan K, Foley NH, Watters KM, Tracey L, Davidoff AM, Stallings RL (2011) MicroRNA-542–5p as a novel tumor suppressor in neuroblastoma. Cancer Lett 303:56–64

    Article  PubMed  CAS  Google Scholar 

  • Calin GA, Liu CG, Ferracin M, Hyslop T, Spizzo R, Sevignani C, Fabbri M, Cimmino A, Lee EJ, Wojcik SE, Shimizu M, Tili E, Rossi S, Taccioli C, Pichiorri F, Liu X, Zupo S, Herlea V, Gramantieri L, Lanza G, Alder H, Rassenti L, Volinia S, Schmittgen TD, Kipps TJ, Negrini M, Croce CM (2007) Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12:215–229

    Article  PubMed  CAS  Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Shalom-Feuerstein R, Riley J, Zhang SD, Tucci P, Agostini M, Aberdam D, Knight RA, Genchi G, Nicotera P, Melino G, Vasa-Nicotera M (2010) miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro. Biochem Biophys Res Commun 394:921–927

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Stallings RL (2007) Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res 67:976–983

    Article  PubMed  CAS  Google Scholar 

  • Ciani E, Severi S, Contestabile A, Bartesaghi R (2004) Nitric oxide negatively regulates proliferation and promotes neuronal differentiation through N-Myc downregulation. J Cell Sci 117:4727–4737

    Article  PubMed  CAS  Google Scholar 

  • Clarke C, Doolan P, Barron N, Meleady P, O'Sullivan F, Gammell P, Melville M, Leonard M, Clynes M (2011a) Large scale microarray profiling and coexpression network analysis of CHO cells identifies transcriptional modules associated with growth and productivity. J Biotechnol 155:350–359

    Google Scholar 

  • Clarke C, Doolan P, Barron N, Meleady P, O'Sullivan F, Gammell P, Melville M, Leonard M, Clynes M (2011b) Predicting cell-specific productivity from CHO gene expression. J Biotechnol 151:159–165

    Article  CAS  Google Scholar 

  • Cole KA, Attiyeh EF, Mosse YP, Laquaglia MJ, Diskin SJ, Brodeur GM, Maris JM (2008) A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6:735–742

    Article  PubMed  CAS  Google Scholar 

  • Crawford BD, Enger MD, Griffith BB, Griffith JK, Hanners JL, Longmire JL, Munk AC, Stallings RL, Tesmer JG, Walters RA et al (1985) Coordinate amplification of metallothionein I and II genes in cadmium-resistant Chinese hamster cells: implications for mechanisms regulating metallothionein gene expression. Mol Cell Biol 5:320–329

    PubMed  CAS  Google Scholar 

  • Das S, Foley N, Bryan K, Watters KM, Bray I, Murphy DM, Buckley PG, Stallings RL (2010) MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res 70:7874–7881

    Article  PubMed  CAS  Google Scholar 

  • Deaven LL, Petersen DF (1973) The chromosomes of CHO, an aneuploid Chinese hamster cell line: G-band, C-band, and autoradiographic analyses. Chromosoma 41:129–144

    Article  PubMed  CAS  Google Scholar 

  • Duursma AM, Kedde M, Schrier M, Le Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. RNA 14:872–877

    Article  PubMed  CAS  Google Scholar 

  • Ebert MS, Sharp PA (2010) Emerging roles for natural microRNA sponges. Curr Biol 20:R858–861

    Article  PubMed  CAS  Google Scholar 

  • Evangelisti C, Florian MC, Massimi I, Dominici C, Giannini G, Galardi S, Bue M C, Massalini S, McDowell HP, Messi E, Gulino A, Farace MG, Ciafre SA (2009) MiR-128 up-regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness. FASEB J 23:4276–4287

    Article  PubMed  CAS  Google Scholar 

  • Foley NH, Bray I, Watters KM, Das S, Bryan K, Bernas T, Prehn JH, Stallings RL (2011) MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ 18:1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Foley NH, Bray IM, Tivnan A, Bryan K, Murphy DM, Buckley PG, Ryan J, O'Meara A, O'Sullivan M, Stallings RL (2010) MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2. Mol Cancer 9:83

    Article  PubMed  Google Scholar 

  • Fontana L, Fiori ME, Albini S, Cifaldi L, Giovinazzi S, Forloni M, Boldrini R, Donfrancesco A, Federici V, Giacomini P, Peschle C, Fruci D (2008) Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS One 3:e2236

    Article  PubMed  Google Scholar 

  • Gu S, Jin L, Zhang F, Sarnow P, Kay MA (2009) Biological basis for restriction of microRNA targets to the 3¢ untranslated region in mammalian mRNAs. Nat Struct Mol Biol 16:144–150

    Article  PubMed  CAS  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  PubMed  CAS  Google Scholar 

  • He L, He X, Lim LP, De Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007a) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134

    Article  CAS  Google Scholar 

  • He X, He L, Hannon GJ (2007b) The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Res 67:11099–11101

    Article  CAS  Google Scholar 

  • Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J, Kim VN (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138:696–708

    Article  PubMed  CAS  Google Scholar 

  • Hermann A, Goyal R, Jeltsch A (2004) The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem 279:48350–48359

    Article  PubMed  CAS  Google Scholar 

  • Kedde M, Strasser MJ, Boldajipour B, Oude Vrielink JA, Slanchev K, Le Sage C, Nagel R, Voorhoeve PM, Van Duijse J, Orom UA, Lund AH, Perrakis A, Raz E, Agami R (2007) RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131:1273–1286

    Article  PubMed  CAS  Google Scholar 

  • Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56

    Article  PubMed  Google Scholar 

  • Le MT, Xie H, Zhou B, Chia PH, Rizk P, Um M, Udolph G, Yang H, Lim B, Lodish HF (2009) MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol 29:5290–5305

    Article  PubMed  CAS  Google Scholar 

  • Meseguer S, Mudduluru G, Escamilla JM, Allgayer H, Barettino D (2011) Micro-RNAs-10a and -10b contribute to retinoic acid-induced differentiation of neuroblastoma cells and target the alternative splicing regulatory factor SFRS1 (SF2/ASF). J Biol Chem 286:4150–4164.

    Google Scholar 

  • Mestdagh P, Bostrom AK, Impens F, Fredlund E, Van Peer G, De Antonellis P, Von Stedingk K, Ghesquiere B, Schulte S, Dews M, Thomas-Tikhonenko A, Schulte JH, Zollo M, Schramm A, Gevaert K, Axelson H, Speleman F, Vandesompele J (2010a) The miR-17–92 microRNA cluster regulates multiple components of the TGF-beta pathway in neuroblastoma. Mol Cell 40:762–773

    Article  CAS  Google Scholar 

  • Mestdagh P, Fredlund E, Pattyn F, Rihani A, Van Maerken T, Vermeulen J, Kumps C, Menten B, De Preter K, Schramm A, Schulte J, Noguera R, Schleiermacher G, Janoueix-Lerosey I, Laureys G, Powel R, Nittner D, Marine JC, Ringner M, Speleman F, Vandesompele J (2010b) An integrative genomics screen uncovers ncRNA T-UCR functions in neuroblastoma tumours. Oncogene 29:3583–3592

    Google Scholar 

  • O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  Google Scholar 

  • Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5¢UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471

    Article  PubMed  Google Scholar 

  • Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 105:1608–1613

    Article  PubMed  CAS  Google Scholar 

  • Puck TT, Cieciura SJ, Robinson A (1958) Genetics of somatic mammalian cells. III. Long-term cultivation of euploid cells from human and animal subjects. J Exp Med 108:945–956

    Article  PubMed  CAS  Google Scholar 

  • Ragusa M, Majorana A, Banelli B, Barbagallo D, Statello L, Casciano I, Guglielmino MR, Duro LR, Scalia M, Magro G, Di Pietro C, Romani M, Purrello M (2010) MIR152, MIR200B, and MIR338, human positional and functional neuroblastoma candidates, are involved in neuroblast differentiation and apoptosis. J Mol Med 88:1041–1053

    Article  PubMed  CAS  Google Scholar 

  • Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26:731–743

    Article  PubMed  CAS  Google Scholar 

  • Scaruffi P, Stigliani S, Moretti S, Coco S, De Vecchi C, Valdora F, Garaventa A, Bonassi S, Tonini GP (2009) Transcribed-Ultra Conserved Region expression is associated with outcome in high-risk neuroblastoma. BMC Cancer 9:441

    Article  PubMed  Google Scholar 

  • Schulte JH, Horn S, Otto T, Samans B, Heukamp LC, Eilers UC, Krause M, Astrahantseff K, Klein-Hitpass L, Buettner R, Schramm A, Christiansen H, Eilers M, Eggert A, Berwanger B (2008) MYCN regulates oncogenic MicroRNAs in neuroblastoma. Int J Cancer 122:699–704

    Article  PubMed  CAS  Google Scholar 

  • Siciliano MJ, Siciliano J, Humphrey RM (1978) Electrophoretic shift mutants in Chinese hamster ovary cells: evidence for genetic diploidy. Proc Natl Acad Sci USA 75:1919–1923

    Article  PubMed  CAS  Google Scholar 

  • Siminovitch L (1976) On the nature of hereditable variation in cultured somatic cells. Cell 7:1–11

    Article  PubMed  CAS  Google Scholar 

  • Stallings RL (2009) MicroRNA involvement in the pathogenesis of neuroblastoma: potential for microRNA mediated therapeutics. Curr Pharm Des 15:456–462

    Article  PubMed  CAS  Google Scholar 

  • Stallings RL, Adair GM, Lin JC, Siciliano MJ (1984a) Expression and regional assignment of Chinese hamster ESD and rRNA genes associated with translocations giving rise to chromosomes Z1 and Z6 in CHO cells. Cytogenet Cell Genet 38:132–137

    Article  CAS  Google Scholar 

  • Stallings RL, Adair GM, Siciliano J, Greenspan J, Siciliano MJ (1983) Genetic effects of chromosomal rearrangements in Chinese hamster ovary cells: expression and chromosomal assignment of TK, GALK, ACP1, ADA, and ITPA loci. Mol Cell Biol 3:1967–1974

    PubMed  CAS  Google Scholar 

  • Stallings RL, Foley NH, Bray IM, Das S, Buckley PG (2011) MicroRNA and DNA methylation alterations mediating retinoic acid induced neuroblastoma cell differentiation. Semin Cancer Biol 21:283–290

    Google Scholar 

  • Stallings RL, Foley NH, Bryan K, Buckley PG, Bray I (2010) Therapeutic targeting of miRNAs in neuroblastoma. Expert Opin Ther Targets 14:951–962

    Article  PubMed  CAS  Google Scholar 

  • Stallings RL, Munk AC, Longmire JL, Hildebrand CE, Crawford BD (1984b) Assignment of genes encoding metallothioneins I and II to Chinese hamster chromosome 3: evidence for the role of chromosome rearrangement in gene amplification. Mol Cell Biol 4:2932–2936

    CAS  Google Scholar 

  • Stallings RL, Siciliano MJ, Adair GM, Humphrey RM (1982) Structural and functional hemi- and dizygous Chinese hamster chromosome 2 gene loci in CHO cells. Somatic Cell Genet 8:413–422

    Article  PubMed  CAS  Google Scholar 

  • Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, Sun Z, Zheng X (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 582:1564–1568

    Article  PubMed  CAS  Google Scholar 

  • Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6:1586–1593

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    Article  PubMed  CAS  Google Scholar 

  • Wei JS, Song YK, Durinck S, Chen QR, Cheuk AT, Tsang P, Zhang Q, Thiele CJ, Slack A, Shohet J, Khan J (2008) The MYCN oncogene is a direct target of miR-34a. Oncogene 27:5204–5213

    Article  PubMed  CAS  Google Scholar 

  • Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26:5017–5022

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, Andersen MR, Neff N, Passarelli B, Koh W, Fan HC, Wang J, Gui Y, Lee KH, Betenbaugh MJ, Quake SR, Famili I, Palsson BO (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29:735–741

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Mariati Chusainow J, Yap MG (2010) DNA methylation contributes to loss in productivity of monoclonal antibody-producing CHO cell lines. J Biotechnol 147:180–185

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond L. Stallings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stallings, R. (2012). MicroRNAs for Enhancement of CHO Cell Proliferation and Stability: Insights from Neuroblastoma Studies. In: Barron, N. (eds) MicroRNAs as Tools in Biopharmaceutical Production. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5128-6_6

Download citation

Publish with us

Policies and ethics