Skip to main content

Advertisement

Log in

MicroRNAs: tiny targets for engineering CHO cell phenotypes?

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The ability of microRNAs to influence gene expression is now recognized as a fundamental layer of regulation within the cell. MicroRNAs have a major impact on most biological processes and have generated considerable interest as potential biomarkers as well as therapeutic or engineering targets. In this review we provide a brief overview of their biogenesis, genomic organization and mode of action, followed by a description of the methods and approaches to studying their expression. We go on to consider some of the approaches to utilizing them as tools and their potential application in the bioprocessing area, with particular emphasis on Chinese hamster ovary cell engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  CAS  PubMed  Google Scholar 

  • Baldi L, Hacker DL, Adam M, Wurm FM (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett 29:677–684

    Article  CAS  PubMed  Google Scholar 

  • Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC (2007) Mammalian mirtron genes. Mol Cell 28:328–336

    Article  CAS  PubMed  Google Scholar 

  • Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nuclease. Mol Cell Biol 21:289–297

    Article  CAS  PubMed  Google Scholar 

  • Birzele F, Schaub J, Rust W, Clemens C, Baum P, Kaufmann H, Weith A, Schulz TW, Hildebrandt T (2010) Into the unknown: expression profiling without genome sequence information in CHO by next generation sequencing. Nucleic Acids Res 38:3999–4010

    Article  CAS  PubMed  Google Scholar 

  • Bortolin-Cavaillé ML, Dance M, Weber M, Cavaillé J (2009) C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res 37:3464–3473

    Article  PubMed  Google Scholar 

  • Bourguignon LY, Spevak CC, Wong G, Xia W, Gilad E (2009) Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker Nanog and the Production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells. J Biol Chem 284:26533–26546

    Article  CAS  PubMed  Google Scholar 

  • Chan MC, Hilyard AC, Wu C, Davis BN, Hill NS, Lal A, Lieberman J, Lagna G, Hata A (2010) Molecular basis for antagonism between PDGF and the TGF beta family of signalling pathways by control of miR-24 expression. EMBO J 29:559–573

    Article  CAS  PubMed  Google Scholar 

  • Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Granger AJ, Vanbrocklin MW, Payne WS, Hunt H, Zhang H, Dodgson JB, Holmen SL (2007) Inhibition of avian leukosis virus replication by vector-based RNA interference. Virology 365:464–472

    Article  CAS  PubMed  Google Scholar 

  • Creighton CJ, Fountain MD, Yu Z, Nagaraja AK, Zhu H, Khan M, Olokpa E, Zariff A, Gunaratne PH, Matzuk MM, Anderson ML (2010) Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res 70:1906–1915

    Article  CAS  PubMed  Google Scholar 

  • Dang CV (2010) Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 70:859–862

    Article  CAS  PubMed  Google Scholar 

  • Deiters A (2010) Small molecule modifiers of the microRNA and RNA interference pathway. AAPS J 12:51–60

    Article  CAS  PubMed  Google Scholar 

  • Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, Thomas-Tikhonenko A (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38:1060–1065

    Article  CAS  PubMed  Google Scholar 

  • Dong Q, Meng P, Wang T, Qin W, Qin W, Wang F, Yuan J, Chen Z, Yang A, Wang H (2010) MicroRNA Let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2. Plos One 5:e10147

    Article  PubMed  Google Scholar 

  • Doolan P, Meleady P, Barron N, Henry M, Gallagher R, Gammell P, Melville M, Sinacore M, McCarthy K, Leonard M, Charlebois T, Clynes M (2010) Microarray and proteomics expression profiling identifies several candidates, including the valosin-containing protein (VCP), involved in regulating high cellular growth rate in production CHO cell lines. Biotechnol Bioeng 106:42–56

    CAS  PubMed  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    Article  CAS  PubMed  Google Scholar 

  • Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009) Deadenylation is a widespread effect of miRNA regulation. RNA 15:21–32

    Article  CAS  PubMed  Google Scholar 

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  CAS  PubMed  Google Scholar 

  • Fontana L, Pelosi E, Greco P, Racanicchi S, Testa U, Liuzzi F, Croce CM, Brunetti E, Grignani F, Peschle C (2007) MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9:775–787

    Article  CAS  PubMed  Google Scholar 

  • Ford LP (2006) Using synthetic miRNA mimics for diverting cell fate: a possibility of miRNA-based therapeutics? Leuk Res 30:511–513

    Article  CAS  PubMed  Google Scholar 

  • Gammell P, Barron N, Kumar N, Clynes M (2007) Initial identification of low temperature and culture stage induction of miRNA expression in suspension CHO-K1 cells. J Biotechnol 130:213–218

    Article  CAS  PubMed  Google Scholar 

  • Gao P, Tchernyshyov I, Chang T, Lee Y, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:100–762

    Google Scholar 

  • Greber D, Fussenegger M (2007) Multi-gene engineering: simultaneous expression and knockdown of six genes off a single platform. Biotechnol Bioeng 96:821–834

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  CAS  PubMed  Google Scholar 

  • Hashimi ST, Fulcher JA, Chang MH, Gov L, Wang S, Lee B (2009) MicroRNA profiling identifies miRNA-34a and miRNA-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood 114:404–414

    Article  CAS  PubMed  Google Scholar 

  • Hennessy E, Clynes M, Jeppesen PB, O’Driscoll L (2010) Identification of microRNAs with a role in glucose stimulated insulin secretion by expression profiling of MIN6 cells. Biochem Biophys Res Commun 396:457–462

    Article  CAS  PubMed  Google Scholar 

  • Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17:193–199

    Article  CAS  PubMed  Google Scholar 

  • Herranz H, Cohen SM (2010) MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev 24:1339–1344

    Article  CAS  PubMed  Google Scholar 

  • Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838

    Article  CAS  PubMed  Google Scholar 

  • Hutvágner G, Simard MJ, Mello CC, Zamore PD (2004) Sequence-specific inhibition of small RNA function. PLoS Biol 2:E98

    Article  PubMed  Google Scholar 

  • Imam JS, Buddavarapu K, Lee-Chang JS, Ganapathy S, Camosy C, Chen Y, Rao MK (2010) MicroRNA-185 suppresses tumor growth and progression by targeting the Six1 oncogene in human cancers. Oncogene 29:4971–4979

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki S, Kawamata T, Tomari Y (2009) Drosophila argonaute1 and argonaute2 employ distinct mechanisms for translational repression. Mol Cell 34:58–67

    Article  CAS  PubMed  Google Scholar 

  • Kapinas K, Kessler CB, Ricks T, Gronowicz G, Delany AM (2010) miR-29 modulates WNT signaling in human osteoblasts through a positive feedback loop. J Biol Chem 285:25221–25231

    Article  CAS  PubMed  Google Scholar 

  • Karginov FV, Conaco C, Xuan Z, Schmidt BH, Parker JS, Mandel G, Hannon GJ (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci USA 104:19291–19296

    Article  CAS  PubMed  Google Scholar 

  • Kefas B, Godlewski J, Comeau L, Li YQ, Abounader R, Hawkinson M, Lee JW, Fine H, Chiocca EA, Lawler S, Purow B (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68:3566–3572

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  PubMed  Google Scholar 

  • Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O’Day E, Chowdhury D, Dykxhoorn DM, Tsai P, Hofmann O et al (2009) miR-24 inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to seedless 3′UTR MicroRNA recognition Elements. Mol Cell 35:610–625

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    Article  CAS  PubMed  Google Scholar 

  • Lee ST, Chu K, Oh HJ, Im WS, Lim JY, Kim SK, Park CK, Jung KH, Lee SK, Kim M, Roh JK. (2010). Let-7 microRNA inhibits the proliferation of human glioblastoma cells. J Neurooncol. doi:10.1007/s11060-010-0286-6

  • Li X, Cassidy JJ, Reinke CA, Fischboeck S, Carthew RW (2009) A microRNA imparts robustness against environmental fluctuation during development. Cell 137:273–282

    Article  CAS  PubMed  Google Scholar 

  • Li L, Xu J, Yang D, Tan X, Wang H (2010a) Computational approaches for microRNA studies: a review. Mamm Genome 21:1–12

    Article  CAS  PubMed  Google Scholar 

  • Li J, Donath S, Li Y, Qin D, Prabhakar BS, Li P (2010b) miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 6:e1000795

    Article  PubMed  Google Scholar 

  • Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  CAS  PubMed  Google Scholar 

  • Liu CJ, Tsai MM, Hung PS, Kao SY, Liu TY, Wu KJ, Chiou SH, Lin SC, Chang KW (2010) miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res 70:1635–1644

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Xiao J, Lin H, Bai Y, Luo X, Wang Z, Yang B (2009) A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res 37:e24

    Article  PubMed  Google Scholar 

  • Lutter D, Marr C, Krumsiek J, Lang EW, Theis FJ (2010) Intronic microRNAs support their host genes by mediating synergistic and antagonistic regulatory effects. BMC Genomics 11:224

    Article  PubMed  Google Scholar 

  • Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, Parenti AR, Daidone MG, Bicciato S, Piccolo S (2010) A MicroRNA targeting dicer for metastasis control. Cell 141:1195–1207

    Article  CAS  PubMed  Google Scholar 

  • McManus MT, Petersen CP, Haines BB, Chen J, Sharp PA (2002) Gene silencing using micro-RNA designed hairpins. RNA 8:842–850

    Article  CAS  PubMed  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  CAS  PubMed  Google Scholar 

  • Mishra PJ, Humeniuk R, Mishra PJ, Longo-Sorbello GSA, Banerjee D, Bertino JR (2007) A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci USA 104:13513–13518

    Article  CAS  PubMed  Google Scholar 

  • Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, Eaves CJ, Marra MA (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621

    Article  CAS  PubMed  Google Scholar 

  • Müller D, Katinger H, Grillari J (2008) MicroRNAs as targets for engineering of CHO cell factories. Trends Biotechnol 26:359–365

    Article  PubMed  Google Scholar 

  • Muniyappa MK, Dowling P, Henry M, Meleady P, Doolan P, Gammell P, Clynes M, Barron N (2009) MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur J Cancer 45:3104–3118

    Article  CAS  PubMed  Google Scholar 

  • Orom UA, Lund AH (2007) Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods 43:162–165

    Article  CAS  PubMed  Google Scholar 

  • Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471

    Article  PubMed  Google Scholar 

  • Ovcharenko D, Kelnar K, Johnson C, Leng N, Brown D (2007) Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res 67:10782–10788

    Article  CAS  PubMed  Google Scholar 

  • Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  CAS  PubMed  Google Scholar 

  • Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Takehara T, Takehara T, Hikita H, Hikita H, Kodama T, Kodama T, Miyagi T, Miyagi T, Hosui A et al (2010) The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol 52:698–704

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Julie Li YS, Huang HD, Shyy JY, Chien S (2010) microRNA: a master regulator of cellular processes for bioengineering systems. Annu Rev Biomed Eng 12:1–27

    Article  CAS  PubMed  Google Scholar 

  • Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128

    Article  CAS  PubMed  Google Scholar 

  • Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan SR, Daley GQ (2010) Lin28: A microRNA regulator with a macro role. Cell 140:445–449

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Lu M, Miao J, Li T, Wang E, Cui Q (2009a) Cepred: predicting the co-expression patterns of the human intronic microRNAs with their host genes. PLoS One 4:e4421

    Article  PubMed  Google Scholar 

  • Wang P, Zou F, Zhang X, Li H, Dulak A, Tomko RJ Jr, Lazo JS, Wang Z, Zhang L, Yu J (2009b) microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res 69:8157–8165

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Baker MB, Moore JP, Searles CD (2010) MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun 393:643–648

    Article  CAS  PubMed  Google Scholar 

  • Weng R, Chen YW, Bushati N, Cliffe A, Cohen SM (2009) Recombinase-mediated cassette exchange provides a versatile platform for gene targeting: knockout of miR-31b. Genetics 183:399–402

    Article  CAS  PubMed  Google Scholar 

  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Sun S, Tu K, Gao Y, Xie B, Krainer AR, Zhu J (2010a) A splicing-independent function of SF2/ASF in microRNA processing. Mol Cell 38:67–77

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T, Zhan R, He X (2010b) Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene 29:2302–2308

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Deng H, Yao H, Liu Q, Su F, Song E (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 29:4194–4204

    Article  CAS  PubMed  Google Scholar 

  • Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, Pasquinelli AE, Yeo GW (2010) Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 17:173–179

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors’ research is supported by funding from Science Foundation Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niall Barron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barron, N., Sanchez, N., Kelly, P. et al. MicroRNAs: tiny targets for engineering CHO cell phenotypes?. Biotechnol Lett 33, 11–21 (2011). https://doi.org/10.1007/s10529-010-0415-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-010-0415-5

Keywords

Navigation