Skip to main content

Biodiesel Production from Microalgae: Methods for Microalgal Lipid Assessment with Emphasis on the Use of Flow Cytometry

  • Chapter
  • First Online:
The Science of Algal Fuels

Abstract

Some microalgae species can accumulate high oil contents which can be used for biodiesel production. When selecting microalgal strains as potential oil producers, improving or scaling-up the microalgal oil production process at an industrial scale, the use of a rapid and accurate technique for lipid production and cell physiological states assessment is crucial. The next chapter will discuss the advantages and drawbacks of the lipid assessment methods currently used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

 References

  • Adler N, Schmitt M, Altenburger R (2007) Flow cytometry as a tool to study phytotoxic modes-of-action. Environ Toxicol Chem 26:297–306

    Article  CAS  Google Scholar 

  • Ahlgren G, Uppsala L (1991) Lipid analysis of fresh water microalgae: a method study. Arch Hydrobiol 121:295–303

    CAS  Google Scholar 

  • Bligh E, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  • Cabrini L, Landi L, Stefanelli C, Barzantu V, Sechi AM (1992) Extraction of lipids and lipophilic antioxidants from fish tissues – a comparison among different methods. Comp Biochem Physiol 101b:383–386

    CAS  Google Scholar 

  • Cao-Hoang L, Marechal P, Thanh M, Gervais P, Waché Y (2008) Fluorescent probes to evaluate the physiological state and activity of microbial biocatalysts: a guide for prokaryotic and eukaryotic investigation. Biotechnol J 3:890–903

    Article  Google Scholar 

  • Carvalho AP, Malcata FX (2005) Preparation of fatty acid methyl esters for gas-chromatographic analysis of marine lipids: insight studies. J Agric Food Chem 53:5049–5059

    Article  CAS  Google Scholar 

  • Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile Red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–47

    Article  CAS  Google Scholar 

  • Cheng YS, Zheng Y, VanderGheynst JS (2011) Rapid quantitative analysis using a colorimetric method in a microplate format. Lipids 46:95–103

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  Google Scholar 

  • Cid A, Fidalgo P, Herrero C, Abalde J (1996) Toxic effect of copper on the membrane system of a marine diatom measured by flow cytometry. Cytometry 25:32–36

    Article  CAS  Google Scholar 

  • Cohen Z, Vonshak A, Richmond A (1988) Effect of environmental-conditions on fatty-acid composition of the red alga Porphyridium-cruentum – correlation to growth-rate. J Phycol 4:328–332

    Google Scholar 

  • Converti A, Casazza A, Oritz E, Perego P, Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Proc 48:1146–1151

    Article  CAS  Google Scholar 

  • Cooksey K, Guckert J, Williams S, Callis P (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J Microbiol Methods 6:333–345

    Article  CAS  Google Scholar 

  • Cooney M, Young G, Naggle N (2009) Extraction of bio-oils from microalgae. Sep Purif Rev 38:291–325

    Article  CAS  Google Scholar 

  • Cooper M, Hardin W, Petersen T, Cattolico R (2010) Visualizing “green oil” in live algal cells. J Biosci Bioeng 109:198–201

    Article  CAS  Google Scholar 

  • de la Jara A, Mendoza H, Martel A, Molina C, de la Nordstron L, Rosa V, Diaz R (2003) Flow cutometric determination of lipid content in a marine dinoflagellate Crypthecodinium cohnii. J Appl Phycol 15:433–438

    Article  Google Scholar 

  • Elsey MI, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods 68:639–642

    Article  CAS  Google Scholar 

  • Franklin NM, Stauber JL, Lim RP (2001) Development of flow cytometry-based algal bioassays for assessing toxicity of copper in natural waters. Environ Toxicol Chem 20:160–170

    Article  CAS  Google Scholar 

  • Franklin NM, Stauber J, Lim R (2004) Development of multispecies algal bioassays using flow cytometry. Environ Toxicol Chem 23:1452–1462

    Article  CAS  Google Scholar 

  • Franqueira D, Orosa M, Torres E, Herrero C, Cid A (2000) Potential use of flow cytometry in toxicity studies with microalgae. Sci Total Environ 247:119–126

    Article  CAS  Google Scholar 

  • Fraser S, Green C, Bode H, Giluda N (1987) Selective disruption of gap junctional communication interferes with a patterning process in hydra. Science 3:49–55

    Article  Google Scholar 

  • Gao C, Xiong W, Zhang Y, Yuan W, Wu Q (2008) Rapid quantification of lipid in microalgae by time-domain nuclear magnetic resonance. J Microbiol Methods 75:437–440

    Article  CAS  Google Scholar 

  • Greenspan P, Mayer EP, Fowler SD (1985) Nile Red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    Article  CAS  Google Scholar 

  • Grima E, Medina A, Giménez A, Pérez J, Camacho F, Sànchez J (1994) Comparison between extraction of lipids and fatty acids from microalgal biomass. J Am Oil Chem Soc 71:955–959

    Article  Google Scholar 

  • Haas MJ, Scott KM (2007) Moisture removal substantially improves the efficiency on in situ biodiesel production from soybeans. J Am Oil Chem Soc 84:197–204

    Article  CAS  Google Scholar 

  • Haas MJ, Scott KM, Foglia TA, Marmer WN (2007) The general applicability on in situ transesterification for the production of fatty acid esters from a variety of feed stocks. J Am Oil Chem Soc 84:963–970

    Article  CAS  Google Scholar 

  • Hewitt CJ, Nebe-Von-Caron G (2001) An industrial application of multiparameter flow cytometry: assessment of cell physiological state and its application to the study of microbial fermentations. Cytometry 44:179–187

    Article  CAS  Google Scholar 

  • Lee SJ, Yoon B-D, Oh H-M (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12:553–556

    Article  CAS  Google Scholar 

  • Lee J, Yoo C, Jun S, Ahn C, Oh H (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:575–577

    Google Scholar 

  • Lepage G, Roy CC (1984) Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res 25:1391–1396

    CAS  Google Scholar 

  • Liu Z-Y, Wang G, Zhou B-C (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    Article  CAS  Google Scholar 

  • Luque de Castro MD, Jimenes-Carmons MM, Fernandez-Perez V (1999) Towards more rational techniques for the isolation of valuable essential oils from plants. Trends Anal Chem 18:708–715

    Article  CAS  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  CAS  Google Scholar 

  • Morowvat M, Rasoul-Amini S, Ghasemi Y (2010) Chlamydomonas as a “new” organism for biodiesel production. Bioresour Technol 101:2059–2062

    Article  CAS  Google Scholar 

  • Oh S, Han J, Kim Y, Ha J, Kim S, Jeong M, Jeong H, Kim N, Cho J, Yoon W, Lee S, Kang D, Lee H (2009) Lipid production in Porphyridium cruentum grown under different culture conditions. J Biosci Bioeng 108:429–434

    Article  CAS  Google Scholar 

  • Prado R, García R, Riaboo C, Herrero C, Abalde J, Cid A (2009) Comparison of the sensitivity of different toxicity test endpoints in a microalga exposed to the herbicide paraquat. Environ Int 35:240–247

    Article  CAS  Google Scholar 

  • Pruvost J, Van Vooren G, Cogne G, Legrand J (2009) Investigation of biomass and lipid production with Neochloris oleoabundans in photobioreactor. Bioresour Technol 100:5988–5995

    Article  CAS  Google Scholar 

  • Rioboo C, O’Connor J, Prado R, Herrero C, Cid A (2009) Cell proliferation alterations in Chlorella cells under stress conditions. Aquat Toxicol 94:229–237

    Article  CAS  Google Scholar 

  • Rodriguez-Ruiz J, Belarbi EH, Sanchez JLG, Alonso DL (1998) Rapid simultaneous lipid extraction and transesterification for fatty acid analysis. Biotechnol Tech 12:689–691

    Article  CAS  Google Scholar 

  • Rudolfi L, Zittelli GC, Bassi N, Padonavi G, Biondi N, Bonini G, Tredici M (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s aquatic species program: biodiesel from algae. NREL/TP-580-24190. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Silva TL, Santos CA, Reis A (2009a) Multi-parameter flow cytometry as a tool to monitor heterotrophic microalgal batch fermentations for oil production towards biodiesel. Biotechnol Bioprocess Eng 14:330–337

    Article  CAS  Google Scholar 

  • Silva TL, Reis A, Medeiros R, Oliveira C, Gouveia L (2009b) Monitoring oil production towards biofuel from autotrophic microalgae semi-continuous cultivations by flow cytometry. Appl Biochem Biotechnol 159:568–578

    Article  Google Scholar 

  • Stauber JL, Franklin N, Adams M (2002) Applications of flow cytometry to ecotoxicity testing using microalgae. Trends Biotechnol 20:141–143

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Hemanathan K (2009) Biodiesel production form freshwater algae. Energy Fuel 23:5448–5453

    Article  CAS  Google Scholar 

  • Wawrik B, Harriman B (2010) Rapid, colorimetric quantification of lipid from algal cultures. J Microbiol Lipids 80:262–266

    CAS  Google Scholar 

  • Widjaja A, Chien C, Ju Y (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    Article  CAS  Google Scholar 

  • Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36

    Article  CAS  Google Scholar 

  • Xu H, Miaoa X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  Google Scholar 

  • Yoo C, Jun S-Y, Lee J, Ahn C, Oh H (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:S71–S74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Teresa Lopes Da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Da Silva, M.T.L., Reis, A. (2012). Biodiesel Production from Microalgae: Methods for Microalgal Lipid Assessment with Emphasis on the Use of Flow Cytometry. In: Gordon, R., Seckbach, J. (eds) The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5110-1_14

Download citation

Publish with us

Policies and ethics