Skip to main content

Neural Stem Cell Migration: Role of Directional Cues and Electric Fields

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 8

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 8))

Abstract

The migration of neural stem cells (NSCs) is a key component of their therapeutic potential. NSCs are among the potential tools for cell-based therapies directed at CNS repair, and a better understanding of their capacity to respond to directional cues can contribute to their improved targeting to injured regions. These responses are also essential for the observed ability of NSCs to closely track brain tumor cells in vivo, which has significant clinical potential as well. Recently, it has been shown that NSC migration in vitro can be precisely controlled by the application of an external electric field (EF). EFs have been widely studied as directional cues in vitro, and their application to control cell migration in vivo as well as their use in clinical settings is beginning to be developed. Controlling neural stem cell migration by using diverse directional cues, among them EFs, will contribute to their use as therapeutic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO, Snyder EY (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 97:12846–12851

    Article  CAS  PubMed  Google Scholar 

  • Arocena M, Zhao M, Collinson JM, Song B (2010) A time-lapse and quantitative modelling analysis of neural stem cell motion in the absence of directional cues and in electric fields. J Neurosci Res 88:3267–3274

    Article  CAS  PubMed  Google Scholar 

  • Brown MJ, Loew LM (1994) Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent. J Cell Biol 127:117–128

    Article  CAS  PubMed  Google Scholar 

  • Chiaramello S, Dalmasso G, Bezin L, Marcel D, Jourdan F, Peretto P, Fasolo A, De Marchis S (2007) BDNF/TrkB interaction regulates migration of SVZ precursor cells via PI3-K and MAP-K signalling pathways. Eur J Neurosci 7:1780–1790

    Article  Google Scholar 

  • Erickson CA, Nuccitelli R (1984) Embryonic fibroblast motility and orientation can be influenced by physiological electric fields. J Cell Biol 98:296–307

    Article  CAS  PubMed  Google Scholar 

  • Fang KS, Farboud B, Nuccitelli R, Isseroff RR (1998) Migration of human keratinocytes in electric fields requires growth factors and extracellular calcium. J Invest Dermatol 111:751–756

    Article  CAS  PubMed  Google Scholar 

  • Fang KS, Ionides E, Oster G, Nuccitelli R, Isseroff RR (1999) Epidermal growth factor receptor relocalization and kinase activity are necessary for directional migration of keratinocytes in DC electric fields. J Cell Sci 112:1967–1978

    CAS  PubMed  Google Scholar 

  • Finkelstein EI, Chao PHG, Hung CT, Bulinski JC (2007) Electric field-induced polarization of charged cell surface proteins does not determine the direction of galvanotaxis. Cell Motil Cytoskeleton 64:833–846

    Article  CAS  PubMed  Google Scholar 

  • Gamboa OL, Pu J, Townend J, Forrester JV, Zhao M, McCaig C, Lois N (2010) Electrical stimulation of retinal pigment epithelial cells. Exp Eye Res 91:195–204

    Article  CAS  PubMed  Google Scholar 

  • Ghashghaei HT, Lai C, Anton ES (2007) Neuronal migration in the adult brain: are we there yet? Nat Rev Neurosci 8:141–151

    Article  CAS  PubMed  Google Scholar 

  • Hartman NW, Carpentino JE, LaMonica K, Mor DE, Naegele JR, Grabel L (2010) CXCL12-mediated guidance of migrating embryonic stem cell-derived neural progenitors transplanted into the hippocampus. PLoS ONE 5:e15856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 101:18117–18122

    Article  CAS  PubMed  Google Scholar 

  • Kendall SE, Najbauer J, Johnston HF, Metz MZ, Li S, Bowers M, Garcia E, Kim SU, Barish ME, Aboody KS, Glackin CA (2008) Neural stem cell targeting of glioma is dependent on phosphoinositide 3-kinase signaling. Stem Cells 26:1575–1586

    Article  CAS  PubMed  Google Scholar 

  • Kim SU (2011) Neural stem cell-based gene therapy for brain tumors. Stem Cell Rev Rep 7:130–140

    Article  CAS  Google Scholar 

  • Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, Okano H, Sawamoto K (2010) Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells 28:545–554

    PubMed  Google Scholar 

  • Kuwabara T, Hsieh J, Nakashima K, Taira K, Gage FH (2004) A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116:779–793

    Article  CAS  PubMed  Google Scholar 

  • Li L, El-Hayek YH, Liu B, Chen Y, Gomez E, Wu X, Ning K, Li L, Chang N, Zhang L, Wang Z, Hu X, Wan Q (2008) Direct current electrical field guides neuronal stem/progenitor cell migration. Stem Cells 26:2193–2200

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Baldessari F, Gyenge CC, Sato T, Chambers RD, Santiago JG, Butcher EC (2008) Lymphocyte electrotaxis in vitro and in vivo. J Immunol 181:2465–2471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096

    Article  CAS  PubMed  Google Scholar 

  • McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behaviour electrically: current views and future potential. Physiol Rev 85:943–978

    Article  PubMed  Google Scholar 

  • McKasson MJ, Huang L, Robinson KR (2008) Chick embryonic Schwann cells migrate anodally in small electrical fields. Exp Neurol 211:585–587

    Article  PubMed Central  PubMed  Google Scholar 

  • McLaughlin S, Poo MM (1981) The role of electro-osmosis in the electric field-induced movement of charged macromolecules on the surfaces of cells. Biophys J 34:85–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meng X, Arocena M, Penninger J, Gage FH, Zhao M, Song B (2011) PI3K mediated electrotaxis of embryonic and adult neural progenitor cells in the presence of growth factors. Exp Neurol 227:210–217

    Article  CAS  PubMed  Google Scholar 

  • Mycielska ME, Djamgoz MB (2004) Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J Cell Sci 117:1631–1639

    Article  CAS  PubMed  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Kriegstein AR (2008) Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol 508:28–44

    Article  PubMed Central  PubMed  Google Scholar 

  • Prestoz L, Relvas JB, Hopkins K, Patel S, Sowinski P, Price J, ffrench-Constant C (2001) Association between integrin-dependent migration capacity of neural stem cells in vitro and anatomical repair following transplantation. Mol Cell Neurosci 18:473–484

    Article  CAS  PubMed  Google Scholar 

  • Schmidt NO, Koeder D, Messing M, Mueller FJ, Aboody KS, Kim SU, Black PM, Carroll RS, Westphal M, Lamszus K (2009) Vascular endothelial growth factor-stimulated cerebral microvascular endothelial cells mediate the recruitment of neural stem cells to the neurovascular niche. Brain Res 1268:24–37

    Article  CAS  PubMed  Google Scholar 

  • Shapiro S, Borgens R, Pascuzzi R, Roos K, Groff M, Purvines S, Rodgers RB, Hagy S, Nelson P (2005) Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J Neurosurg Spine 2:3–10

    Article  PubMed  Google Scholar 

  • Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Vutskits L, Pepper MS, Kiss JZ (2003) VEGF is a chemoattractant for FGF-2-stimulated neural progenitors. J Cell Biol 163:1375–1384

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Dick A, Forrester JV, McCaig CD (1999) Electric field-directed cell motility involves upregulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Mol Biol Cell 10:1259–1276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester JV, Bourne HR, Devreotes PN, McCaig CD, Penninger JM (2006) Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442:457–460

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Najbauer J, Garcia E, Metz MZ, Gutova M, Glackin CA, Kim SU, Aboody KS (2008) Neural stem cell tropism to glioma: critical role of tumor hypoxia. Mol Cancer Res 6:1819–1829

    Article  CAS  PubMed  Google Scholar 

  • Ziu M, Schmidt NO, Cargioli TG, Aboody KS, Black PM, Carroll RS (2006) Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells. J Neurooncol 79:125–133

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Arocena, M., Collinson, J.M. (2012). Neural Stem Cell Migration: Role of Directional Cues and Electric Fields. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 8. Stem Cells and Cancer Stem Cells, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4798-2_28

Download citation

Publish with us

Policies and ethics