Skip to main content

Evidence on Cholesterol-Controlled Lipid Raft Interaction of the Small Heat Shock Protein HSPB11

  • Chapter
  • First Online:
Cellular Trafficking of Cell Stress Proteins in Health and Disease

Part of the book series: Heat Shock Proteins ((HESP,volume 6))

Abstract

Small heat-shock proteins (sHSPs) are members of the family of molecular chaperones. Their major cellular function is considered to be the prevention of irreversible protein aggregation during stress conditions and subsequent promotion of the folding of partially denatured proteins. However, sHSPs may also be associated with biological membranes and participate in cellular “stress management” by acting as membrane-stabilizing factors. In spite of the great potential significance in the development of therapeutic strategies, the mechanisms of the membrane (and lipid) association of sHSPs are still unknown. A novel 16.2 kDa human sHSP, HSPB11, inhibits H2O2, taxol and etoposide-induced cell death through stabilization of the mitochondrial membrane system, the activation of HSP90, the stabilization of lipid rafts and activation of the PI-3-kinase—Akt cytoprotective pathway. We show here that HSPB11 binds to lipid membranes via a specific cholesterol-mediated interaction. The affinity of HSPB11 demonstrates a very distinct cholesterol-dependent binding to cholesterol/sphingomyelin Langmuir monolayers: If the cholesterol concentration increases above a certain level, HSPB11 binds to membranes much more efficiently. The possible roles of HSPB11 and other sHSPs in protection against stress-induced hydrophobic membrane defects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam RM, Mukhopadhyay NK, Kim J et al (2007) Cholesterol sensitivity of endogenous and myristoylated Akt. Cancer Res 67:6238–6246

    Article  PubMed  CAS  Google Scholar 

  • Balogi Z, Torok Z, Balogh G et al (2005) “Heat shock lipid” in cyanobacteria during heat/light-acclimation. Arch Biochem Biophys 436:346–354

    Article  PubMed  CAS  Google Scholar 

  • Balogi Z, Cheregi O, Giese KC et al (2008) A mutant small heat shock protein with increased thylakoid association provides an elevated resistance against UV-B damage in Synechocystis 6803. J Biol Chem 283:22983–22991

    Article  PubMed  CAS  Google Scholar 

  • Basha E, Lee GJ, Demeler B, Vierling E (2005) Chaperone activity of cytosolic small heat shock proteins from wheat. Eur J Biochem 271:1426–1436

    Article  Google Scholar 

  • Bausero MA, Page DT, Osinaga E, Asea A (2004) Surface expression of HSP25 and HSP72 differentially regulates tumor growth and metastasis. Tumour Biol 25:243–251

    Article  PubMed  CAS  Google Scholar 

  • Bausero MA, Bharti A, Page DT et al (2006) Silencing the hsp25 gene eliminates migration capability of the highly metastatic murine 4T1 breast adenocarcinoma cell. Tumour Biol 27:17–26

    Article  PubMed  CAS  Google Scholar 

  • Bellyei S, Szigeti A, Boronkai A et al (2007a) Inhibition of cell death by a novel 16.2 kD heat shock protein predominantly via HSP90 mediated lipid rafts stabilization and Akt activation pathway. Apoptosis 12:97–112

    Article  CAS  Google Scholar 

  • Bellyei S, Szigeti A, Pozsgai E, Boronkai A, Gomori E, Hocsak E et al (2007b) Preventing apoptotic cell death by a novel small heat shock protein. Eur J Cell Biol 86:161–171

    Article  CAS  Google Scholar 

  • Broquet AH, Thomas G, Masliah J, Trugnan G, Bachelet M (2003) Expression of the molecular chaperone HSP70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem 278:21601–21606

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Bawa D, Besshoh S, Gurd JW, Brown IR (2005) Association of heat shock proteins and neuronal membrane components with lipid rafts from the rat brain. J Neurosci Res 81:522–529

    Article  PubMed  CAS  Google Scholar 

  • Chowdary TK, Raman B, Ramakrishna T, Rao Ch M (2007) Interaction of mammalian HSP22 with lipid membranes. Biochem J 401:437–445

    Article  PubMed  CAS  Google Scholar 

  • Cinar B, Mukhopadhyay NK, Meng G, Freeman MR (2007) Phosphoinositide 3-kinase-independent non-genomic signals transit from the androgen receptor to Akt1 in membrane raft microdomains. J Biol Chem 282:29584–29593

    Article  PubMed  CAS  Google Scholar 

  • Cobb BA, Petrash JM (2000) Characterization of alpha-crystallin-plasma membrane binding. J Biol Chem 275:6664–6672

    Article  PubMed  CAS  Google Scholar 

  • Cobb BA, Petrash JM (2002) Alpha-crystallin chaperone-like activity and membrane binding in age-related cataracts. Biochemistry 41:483–490

    Article  PubMed  CAS  Google Scholar 

  • Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428

    Google Scholar 

  • Ehrnsperger M, Gräber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    Article  PubMed  CAS  Google Scholar 

  • Franzmann TM, Wühr M, Richter K, Walter S, Buchner J (2005) The activation mechanism of Hsp26 does not require dissociation of the oligomer. J Mol Biol 350:1083–1093

    Article  PubMed  CAS  Google Scholar 

  • Fujita R, Ounzain S, Wang AC, Heads RJ, Budhram-Mahadeo VS (2011) HSP-27 induction requires POU4F2/Brn-3b TF in doxorubicin-treated breast cancer cells, whereas phosphorylation alters its cellular localisation following drug treatment. Cell Stress Chaperones 16:427–439

    Article  PubMed  CAS  Google Scholar 

  • Gangalum RK, Atanasov IC, Zhou ZH, Bhat SP (2010) AlphaB-crystallin is found in detergent-resistant membrane microdomains and is secreted via exosomes from human retinal pigment epithelial cells. J Biol Chem 286:3261–3269

    Article  PubMed  Google Scholar 

  • Grami V, Marrero Y, Huang L, Tang D, Yappert M, Borchman D (2005) α-Crystallin binding in vitro to lipids from clear human lenses. Exp Eye Res 81(2):138–146

    Article  PubMed  CAS  Google Scholar 

  • Haslbeck M (2002) sHsps and their role in the chaperone network. Cell Mol Life Sci 59:1649–1657

    Article  PubMed  CAS  Google Scholar 

  • Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: The structure and function of small heat-shock proteins. Nat Struct Mol Biol 1:842–846

    Article  Google Scholar 

  • Horvath I, Multhoff G, Sonnleitner A, Vigh L (2008) Membrane-associated stress proteins: More than simply chaperones. Biochimica et Biophysica Acta – Biomembranes 1778:1653–1664

    Article  CAS  Google Scholar 

  • Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89:10449–10453

    Article  PubMed  CAS  Google Scholar 

  • Horwitz J (2003) Alpha-crystallin. Exp Eye Res 76:145–153

    Article  PubMed  CAS  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford E et al. (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 1:105–111

    Article  Google Scholar 

  • Lancelot E, Grauby-Heywang C (2007) Comparison of the interaction of dihydrocholesterol and cholesterol with sphingolipid or phospholipid Langmuir monolayers. Colloids Surf B Biointerfaces 59:1–86

    Article  Google Scholar 

  • Launay N, Tarze A, Vicart P, Lilienbaum A (2010) Serine 59 phosphorylation of {alpha}B-crystallin down-regulates its anti-apoptotic function by binding and sequestering Bcl-2 in breast cancer cells. J Biol Chem 285:37324–37332

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Satoh T, Shinoda H, Samejima T, Wu SH, Chiou SH (1997) Effect of heat-induced structural perturbation of secondary and tertiary structures on the chaperone activity of alpha-crystallin. Biochem Biophys Res Commun 237:277–282

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa M, Tsujimoto N, Nakagawa H, Iwaki T, Fukumaki Y, Iwaki A (2001) Association of HSPB2, a member of the small heat shock protein family, with mitochondria. Exp Cell Res 271:161–168

    Article  PubMed  CAS  Google Scholar 

  • Nakamoto H, Vigh L (2007) The small heat shock proteins and their clients. Cell Mol Life Sci 64:294–306

    Article  PubMed  CAS  Google Scholar 

  • Narberhaus F (2002) Alpha-crystallin-type heat shock proteins: Socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93

    Article  PubMed  CAS  Google Scholar 

  • Nedellec P, Edling Y, Perret E, Fardeau M, Vicart P (2002) Glucocorticoid treatment induces expression of small heat shock proteins in human satellite cell populations: Consequences for a desmin-related myopathy involving the R120G alpha B-crystallin mutation. Neuromuscul Disord 12:457–465

    Article  PubMed  Google Scholar 

  • Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15:419–442

    Article  PubMed  CAS  Google Scholar 

  • Norberg E, Orrenius S, Zhivotovsky B (2010) Mitochondrial regulation of cell death: Processing of apoptosis-inducing factor (AIF). Biochem Biophys Res Commun 396:95–100

    Article  PubMed  CAS  Google Scholar 

  • Pozsgai E, Gomori E, Szigeti A, Boronkai A, Gallyas F Jr, Sumegi B et al (2007) Correlation between the progressive cytoplasmic expression of a novel small heat shock protein (HSPB11) and malignancy in brain tumors. BMC Cancer 7:233

    Article  PubMed  Google Scholar 

  • Radhakrishnan A, McConnell HM (2000) Chemical activity of cholesterol in membranes. Biochemistry 39:8119–8124

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnan A, Anderson TG, McConnell HM (2000) Condensed complexes, rafts, and the chemical activity of cholesterol in membranes. Proc Natl Acad Sci USA 97:12422–12427

    Article  PubMed  CAS  Google Scholar 

  • Sankhala RS, Damai RS, Swamy MJ (2011) Correlation of membrane binding and hydrophobicity to the chaperone-like activity of PDC-109, the major protein of bovine seminal plasma. PLoS ONE 6(3):e17330

    Article  Google Scholar 

  • Scolari S, Müller K, Bittman R, Herrmann A, Müller P (2010) Interaction of mammalian seminal plasma protein PDC-109 with cholesterol: Implications for a Putative CRAC Domain. Biochemistry 49:9027–9031

    Article  PubMed  CAS  Google Scholar 

  • Shah M, Patel K, Fried VA et al (2002) Interactions of STAT3 with caveolin-1 and heat shock protein 90 in plasma membrane raft and cytosolic complexes. Preservation of cytokine signaling during fever. J Biol Chem 277:45662–45669

    Article  PubMed  CAS  Google Scholar 

  • Soti C, Nagy E, Giricz Z, Vigh L, Csermely P, Ferdinandy P (2005) Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 146:769–780

    Article  PubMed  CAS  Google Scholar 

  • Sreedhar AS, Mihaly K, Pato B, Schnaider T, Steták A, Kis-Petik K et al (2003) HSP90 inhibition accelerates cell lysis. Anti-HSP90 ribozyme reveals a complex mechanism of HSP90 inhibitors involving both superoxide- and HSP90-dependent events. J Biol Chem 278:35231–35240

    Article  PubMed  CAS  Google Scholar 

  • Stromer T, Ehrnsperger M, Gaestel M, Buchner J (2003) Analysis of the interaction of small heat shock proteins with unfolding proteins. J Biol Chem 278:18015–18021

    Article  PubMed  CAS  Google Scholar 

  • Tang D, Borchman D, Yappert MC, Cenedella RJ (1998) Influence of cholesterol on the interaction of alpha-crystallin with phospholipids. Exp Eye Res 66:559–567

    Article  PubMed  CAS  Google Scholar 

  • Tapodi A, Debreceni B, Hanto K, Bognar Z, Wittmann I, Gallyas F Jr, Varbiro G, Sumegi B (2005) Pivotal role of Akt activation in mitochondrial protection and cell survival by poly(ADP-ribose) polymerase-1 inhibition in oxidative stress J Biol Chem 280:35767–35775

    Article  PubMed  CAS  Google Scholar 

  • Taylor RP, Benjamin IJ (2005) Small heat shock proteins: A new classification scheme in mammals. J. Mol Cell Cardiol 38:433–444

    Article  PubMed  CAS  Google Scholar 

  • Torok Z, Horváth I, Goloubinoff P, Kovács E, Glatz A, Balogh G, Vígh L (1997) Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc Natl Acad Sci USA 94:2192–2197

    Google Scholar 

  • Torok Z, Goloubinoff P, Horvath I, Tsvetkova NM, Glatz A, Balogh G et al (2001) Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc Natl Acad Sci USA 98:3098–3103

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou M, Miyake K, Golenbock DT, Triantafilou K (2002) Mediators of innate immune recognition of bacteria concentrate in lipid raft and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 115:2603–2611

    PubMed  CAS  Google Scholar 

  • Tsvetkova NM, Horvath I, Torok Z, Wolkers WF, Balogi Z, Shigapova N et al (2002) Small heat-shock proteins regulate membrane lipid polymorphism. Proc Natl Acad Sci USA 99:3504–13509

    Article  Google Scholar 

  • van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 1:1025–1030

    Article  Google Scholar 

  • Varbiro G, Veres B, Gallyas F Jr, Sumegi B (2001) Direct effect of Taxol on free radical formation and mitochondrial permeability transition. Free Radic Biol Med. 31:548–558

    Article  PubMed  CAS  Google Scholar 

  • Vigh L, Maresca B, Harwood JL (1998) Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem Sci 23:369–374

    Article  PubMed  CAS  Google Scholar 

  • Vigh L, Maresca B (2002) Dual role of membranes in heat stress: As thermosensors modulate the expression of stress genes and, by interacting with stress proteins, re-organize their own lipid order and functionality. In: Cell and Molecular Responses to Stress, KB Storey and JM Storey (eds) (173–188) Elsevier, Amsterdam

    Google Scholar 

  • Vigh L, Escriba PV, Sonnleitner A, Sonnleitner M, Piotto S, Maresca B et al (2005) The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Prog Lipid Res 44:303–344

    Article  PubMed  CAS  Google Scholar 

  • Vigh L, Torok Z, Balogh G, Glatz A, Piotto S, Horvath I (2007a). Membrane-regulated stress response: A theoretical and practical approach. Adv Exp Med Biol 594:114–131

    Article  Google Scholar 

  • Vigh L, Torok Z, Balogh G, Glatz A, Piotto S, Horvath I (2007b) Membrane-regulated stress response: a theoretical and practical approach. Adv Exp Med Biol 594:114–131

    Google Scholar 

  • Vigh L, Horváth I, Maresca B, Harwood JL (2007c) Can the stress protein response be controlled by ‘membrane-lipid therapy’? Trends Biochem Sci 32:357–363

    Article  CAS  Google Scholar 

  • Waheed AA, Jones TL (2002) HSP90 interactions and acylation target the G protein Galpha 12 but not Galpha 13 to lipid rafts. J Biol Chem 277:32409–32412

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Kovalchin JT, Muhlenkamp P, Chandawarkar RY (2006) Exogenous heat shock protein 70 binds macrophage lipid raft microdomain and stimulates phagocytosis, processing, and MHC-II presentation of antigens. Blood 107:1636–1642

    Article  PubMed  CAS  Google Scholar 

  • Welker S, Rudolph B, Frenzel E, Hagn F, Liebisch G, Schmitz G et al (2010) HSP12 Is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function. Molecular Cell 39:507–520

    Article  PubMed  CAS  Google Scholar 

  • Whittaker R, Glassy MS, Gude N, Sussman MA, Gottlieb RA, Glembotski CC (2009) Kinetics of the translocation and phosphorylation of alphaB-crystallin in mouse heart mitochondria during ex vivo ischemia. Am J Physiol Heart Circ Physiol 296:H1633–1642

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Xu X, Yu Y, Graham M, Prince ME, Carey TE, Sun D (2010) Silencing heat shock protein 27 decreases metastatic behavior of human head and neck squamous cell cancer cells in vitro. Mol Pharm 7:1283–1290

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Hungarian National Scientific Research Foundation (OTKA K82097 and OTKA K84257) and the Hungarian National Development Agency (TAMOP-4.2.2/08/1-2008-0002, TAMOP-4.2.2/08/1-2008-0013 and TAMOP-4.2.2/08/1-2008-0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Vígh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Török, Z. et al. (2012). Evidence on Cholesterol-Controlled Lipid Raft Interaction of the Small Heat Shock Protein HSPB11. In: Henderson, B., Pockley, A. (eds) Cellular Trafficking of Cell Stress Proteins in Health and Disease. Heat Shock Proteins, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4740-1_5

Download citation

Publish with us

Policies and ethics