Skip to main content
Log in

Hsp-27 induction requires POU4F2/Brn-3b TF in doxorubicin-treated breast cancer cells, whereas phosphorylation alters its cellular localisation following drug treatment

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

POU4F2/Brn-3b transcription factor (referred to as Brn-3b) is elevated in >60% of breast cancers and profoundly alters growth and behaviour of cancer cells by regulating distinct subsets of target genes. Previous studies showed that Brn-3b was required to maximally transactivate small heat shock protein, HSPB1/Hsp-27 (referred to as Hsp-27), and consequently, Brn-3b expression correlated well with Hsp27 levels in human breast biopsies. In these studies, we showed that Brn-3b is increased in MCF7 breast cancer cells that survive following treatment with chemotherapeutic drug doxorubicin (Dox) with concomitant increases in Hsp-27 expression. Targeting of Brn-3b using short interfering RNA reduced Hsp-27 in Dox-treated cells, suggesting that Brn-3b regulates Hsp-27 expression under these conditions. Wound healing assays showed increased Brn-3b in Dox-treated migratory cells that also express Hsp-27. Interestingly, Hsp-27 phosphorylation and cellular localisation are also significantly altered at different times following Dox treatment. Thus, phospho-Hsp-27 (p-Hsp27) protein displayed widespread distribution after 24 hrs of Dox treatment but was restricted to the nucleus after 5 days. However, in drug-resistant cells (grown in Dox for > 1 month), p-Hsp-27 was excluded from nuclei and most of the cytoplasm and appeared to be associated with the cell membrane. Studies to determine how this protein promotes survival and migration in breast cancer cells showed that the protective effects were conferred by unphosphorylated Hsp-27 protein. Thus, complex and dynamic mechanisms underlie effects of Hsp-27 protein in breast cancer cells following treatment with chemotherapeutic drugs such as Dox, and this may contribute to invasiveness and drug resistance following chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Brn-3b:

POU transcription factorBrn-3b/POU4F2

HSP:

Small heat-shock protein

AV:

Adenovirus

WT:

Wild type

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

References

  • Arrigo AP, Suhan JP, Welch WJ (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein3. Mol Cell Biol 8:5059–5071

    PubMed  CAS  Google Scholar 

  • Benndorf R, Hayess K, Ryazantsev S, Wieske M, Behlke J, Lutsch G (1994) Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem 269:20780–20784

    PubMed  CAS  Google Scholar 

  • Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, Garrido C (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2:645–652

    Article  PubMed  CAS  Google Scholar 

  • Budhram-Mahadeo V, Ndisang D, Ward T, Weber BL, Latchman DS (1999) The Brn-3b POU family transcription factor represses expression of the BRCA-1 anti-oncogene in breast cancer cells. Oncogene 18:6684–6691

    Article  PubMed  CAS  Google Scholar 

  • Budhram-Mahadeo V, Parker M, Latchman DS (1998) POU transcription factors Brn-3a and Brn-3b interact with the estrogen receptor and differentially regulate transcriptional activity via an estrogen response element. Mol Cell Biol 18:1029–1041

    PubMed  CAS  Google Scholar 

  • Budhram-Mahadeo VS, Irshad S, Bowen S, Lee SA, Samady L, Tonini GP, Latchman DS (2008) Proliferation-associated Brn-3b transcription factor can activate cyclin D1 expression in neuroblastoma and breast cancer cells. Oncogene 27:145–154

    Article  PubMed  CAS  Google Scholar 

  • Budhram-Mahadeo VS, Latchman DS (2006) Targeting Brn-3b in breast cancer therapy. Expert Opin Ther Targets 10:15–25

    Article  PubMed  CAS  Google Scholar 

  • Charette SJ, Landry J (2000) The interaction of HSP27 with Daxx identifies a potential regulatory role of HSP27 in Fas-induced apoptosis. Ann N Y Acad Sci 926:126–131

    Article  PubMed  CAS  Google Scholar 

  • Charette SJ, Lavoie JN, Lambert H, Landry J (2000) Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 20:7602–7612

    Article  PubMed  CAS  Google Scholar 

  • Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103

    Article  PubMed  CAS  Google Scholar 

  • Ciocca DR, Fuqua SA, Lock-Lim S, Toft DO, Welch WJ, McGuire WL (1992) Response of human breast cancer cells to heat shock and chemotherapeutic drugs. Cancer Res 52:3648–3654

    PubMed  CAS  Google Scholar 

  • Ciocca DR, Oesterreich S, Chamness GC, McGuire WL, Fuqua SA (1993) Biological and clinical implications of heat shock protein 27000 (Hsp27): a review. J Natl Cancer Inst 85:1558–1570

    Article  PubMed  CAS  Google Scholar 

  • Concannon CG, Gorman AM, Samali A (2003) On the role of Hsp27 in regulating apoptosis. Apoptosis 8:61–70

    Article  PubMed  CAS  Google Scholar 

  • Dennis JH, Budhram-Mahadeo V, Latchman DS (2001) The Brn-3b POU family transcription factor regulates the cellular growth, proliferation, and anchorage dependence of MCF7 human breast cancer cells. Oncogene 20:4961–4971

    Article  PubMed  CAS  Google Scholar 

  • Doshi BM, Perdrizet GA, Hightower LE (2008) Wound healing from a cellular stress response perspective. Cell Stress Chaperones 13:393–399

    Article  PubMed  Google Scholar 

  • Farooqui-Kabir SR, Budhram-Mahadeo V, Lewis H, Latchman DS, Marber MS, Heads RJ (2004) Regulation of Hsp27 expression and cell survival by the POU transcription factor Brn3a. Cell Death Differ 11:1242–1244

    Article  PubMed  CAS  Google Scholar 

  • Freeman BC, Yamamoto KR (2002) Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296:2232–2235

    Article  PubMed  CAS  Google Scholar 

  • Friedman MJ, Li S, Li XJ (2009) Activation of gene transcription by heat shock protein 27 may contribute to its neuronal protection. J Biol Chem 284:27944–27951

    Article  PubMed  CAS  Google Scholar 

  • Garrido C (2002) Size matters: of the small HSP27 and its large oligomers. Cell Death Differ 9:483–485

    Article  PubMed  CAS  Google Scholar 

  • Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J (1997) Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 110(Pt 3):357–368

    PubMed  CAS  Google Scholar 

  • Hansen RK, Parra I, Lemieux P, Oesterreich S, Hilsenbeck SG, Fuqua SA (1999) Hsp27 overexpression inhibits doxorubicin-induced apoptosis in human breast cancer cells. Breast Cancer Res Treat 56:187–196

    Article  PubMed  CAS  Google Scholar 

  • Harris AL, Hochhauser D (1992) Mechanisms of multidrug resistance in cancer treatment. Acta Oncol 31:205–213

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  PubMed  CAS  Google Scholar 

  • Huot J, Houle F, Spitz DR, Landry J (1996) HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res 56:273–279

    PubMed  CAS  Google Scholar 

  • Huot J, Lambert H, Lavoie JN, Guimond A, Houle F, Landry J (1995) Characterization of 45-kDa/54-kDa HSP27 kinase, a stress-sensitive kinase which may activate the phosphorylation-dependent protective function of mammalian 27-kDa heat-shock protein HSP27. Eur J Biochem 227:416–427

    Article  PubMed  CAS  Google Scholar 

  • Irshad S, Pedley RB, Anderson J, Latchman DS, Budhram-Mahadeo V (2004) The Brn-3b transcription factor regulates the growth, behavior, and invasiveness of human neuroblastoma cells in vitro and in vivo. J Biol Chem 279:21617–21627

    Article  PubMed  CAS  Google Scholar 

  • Jacks T, Weinberg RA (2002) Taking the study of cancer cell survival to a new dimension. Cell 111:923–925

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Shuman J, Sette M, Przybyla A (1984) Nuclear localization and phosphorylation of three 25-kilodalton rat stress proteins. Mol Cell Biol 4:468–474

    PubMed  CAS  Google Scholar 

  • Lambert H, Charette SJ, Bernier AF, Guimond A, Landry J (1999) HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 274:9378–9385

    Article  PubMed  CAS  Google Scholar 

  • Landry J, Huot J (1999) Regulation of actin dynamics by stress-activated protein kinase 2 (SAPK2)-dependent phosphorylation of heat-shock protein of 27 kDa (Hsp27). Biochem Soc Symp 64:79–89

    PubMed  CAS  Google Scholar 

  • Landry J, Lambert H, Zhou M, Lavoie JN, Hickey E, Weber LA, Anderson CW (1992) Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J Biol Chem 267:794–803

    PubMed  CAS  Google Scholar 

  • Latchman DS (2002) Protection of neuronal and cardiac cells by HSP27. Prog Mol Subcell Biol 28:253–265

    Article  PubMed  CAS  Google Scholar 

  • Lavoie JN, Hickey E, Weber LA, Landry J (1993) Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem 268:24210–24214

    PubMed  CAS  Google Scholar 

  • Lavoie JN, Lambert H, Hickey E, Weber LA, Landry J (1995) Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol Cell Biol 15:505–516

    PubMed  CAS  Google Scholar 

  • Lee SA, Ndisang D, Patel C, Dennis JH, Faulkes DJ, D'Arrigo C, Samady L, Farooqui-Kabir S, Heads RJ, Latchman DS, Budhram-Mahadeo VS (2005) Expression of the Brn-3b transcription factor correlates with expression of HSP-27 in breast cancer biopsies and is required for maximal activation of the HSP-27 promoter. Cancer Res 65:3072–3080

    PubMed  CAS  Google Scholar 

  • Lemieux P, Oesterreich S, Lawrence JA, Steeg PS, Hilsenbeck SG, Harvey JM, Fuqua SA (1997) The small heat shock protein hsp27 increases invasiveness but decreases motility of breast cancer cells. Invasion Metastasis 17:113–123

    PubMed  CAS  Google Scholar 

  • Martin JL, Hickey E, Weber LA, Dillmann WH, Mestril R (1999) Influence of phosphorylation and oligomerization on the protective role of the small heat shock protein 27 in rat adult cardiomyocytes. Gene Expr 7:349–355

    PubMed  CAS  Google Scholar 

  • Martin JL, Mestril R, Hilal-Dandan R, Brunton LL, Dillmann WH (1997) Small heat shock proteins and protection against ischemic injury in cardiac myocytes. Circulation 96:4343–4348

    PubMed  CAS  Google Scholar 

  • Mearow KM, Dodge ME, Rahimtula M, Yegappan C (2002) Stress-mediated signaling in PC12 cells—the role of the small heat shock protein, Hsp27, and Akt in protecting cells from heat stress and nerve growth factor withdrawal. J Neurochem 83:452–462

    Article  PubMed  CAS  Google Scholar 

  • Merck KB, Groenen PJ, Voorter CE, Haard-Hoekman WA, Horwitz J, Bloemendal H, de Jong WW (1993a) Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein A family of chaperones. J Biol Chem 268:1046–1052

    PubMed  CAS  Google Scholar 

  • Merck KB, Horwitz J, Kersten M, Overkamp P, Gaestel M, Bloemendal H, de Jong WW (1993b) Comparison of the homologous carboxy-terminal domain and tail of alpha-crystallin and small heat shock protein. Mol Biol Rep 18:209–215

    Article  PubMed  CAS  Google Scholar 

  • Miron T, Vancompernolle K, Vandekerckhove J, Wilchek M, Geiger B (1991) A 25-kD inhibitor of actin polymerization is a low molecular mass heat shock protein. J Cell Biol 114:255–261

    Article  PubMed  CAS  Google Scholar 

  • Nollen EA, Morimoto RI (2002) Chaperoning signaling pathways: molecular chaperones as stress-sensing 'heat shock' proteins. J Cell Sci 115:2809–2816

    PubMed  CAS  Google Scholar 

  • Oesterreich S, Weng CN, Qiu M, Hilsenbeck SG, Osborne CK, Fuqua SA (1993) The small heat shock protein hsp27 is correlated with growth and drug resistance in human breast cancer cell lines. Cancer Res 53:4443–4448

    PubMed  CAS  Google Scholar 

  • Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C (2003) Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun 304:505–512

    Article  PubMed  CAS  Google Scholar 

  • Parcellier A, Schmitt E, Brunet M, Hammann A, Solary E, Garrido C (2005) Small heat shock proteins HSP27 and alphaB-crystallin: cytoprotective and oncogenic functions. Antioxid Redox Signal 7:404–413

    Article  PubMed  CAS  Google Scholar 

  • Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo AP, Buchner J, Gaestel M (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274:18947–18956

    Article  PubMed  CAS  Google Scholar 

  • Rust W, Kingsley K, Petnicki T, Padmanabhan S, Carper SW, Plopper GE (1999) Heat shock protein 27 plays two distinct roles in controlling human breast cancer cell migration on laminin-5. Mol Cell Biol Res Commun 1:196–202

    Article  PubMed  CAS  Google Scholar 

  • Samady L, Dennis J, Budhram-Mahadeo V, Latchman DS (2004) Activation of CDK4 gene expression in human breast cancer cells by the Brn-3b POU family transcription factor. Cancer Biol Ther 3:317–323

    Article  PubMed  CAS  Google Scholar 

  • Samady L, Faulkes DJ, Budhram-Mahadeo V, Ndisang D, Potter E, Brabant G, Latchman DS (2006) The Brn-3b POU family transcription factor represses plakoglobin gene expression in human breast cancer cells. Int J Cancer 118:869–878

    Article  PubMed  CAS  Google Scholar 

  • Storm FK, Mahvi DM, Gilchrist KW (1996) Heat shock protein 27 overexpression in breast cancer lymph node metastasis. Ann Surg Oncol 3:570–573

    Article  PubMed  CAS  Google Scholar 

  • Tavaria M, Gabriele T, Kola I, Anderson RL (1996) A hitchhiker's guide to the human Hsp70 family. Cell Stress Chaperones 1:23–28

    Article  PubMed  CAS  Google Scholar 

  • Theil T, Rodel B, Spiegelhalter F, Moroy T (1995) Short isoform of POU factor Brn-3b can form a heterodimer with Brn-3a that is inactive for octamer motif binding. J Biol Chem 270:30958–30964

    Article  PubMed  CAS  Google Scholar 

  • Vargas-Roig LM, Gago FE, Tello O, Aznar JC, Ciocca DR (1998) Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer 79:468–475

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Okamoto A, Isonishi S, Ochiai K, Ohtake Y (2001) Heat shock protein 27 was up-regulated in cisplatin resistant human ovarian tumor cell line and associated with the cisplatin resistance. Cancer Lett 168:173–181

    Article  PubMed  CAS  Google Scholar 

  • Zantema A, Verlaan-De Vries M, Maasdam D, Bol S, Van der EA (1992) Heat shock protein 27 and alpha B-crystallin can form a complex, which dissociates by heat shock. J Biol Chem 267:12936–12941

    PubMed  CAS  Google Scholar 

  • Zheng C, Lin Z, Zhao ZJ, Yang Y, Niu H, Shen X (2006) MAPK-activated protein kinase-2 (MK2)-mediated formation and phosphorylation-regulated dissociation of the signal complex consisting of p38, MK2, Akt, and Hsp27. J Biol Chem 281:37215–37226

    Article  PubMed  CAS  Google Scholar 

  • Zoubeidi A, Zardan A, Beraldi E, Fazli L, Sowery R, Rennie P, Nelson C, Gleave M (2007) Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res 67:10455–10465

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by British Heart Foundation (BHF), Breast Cancer Campaign (BCC) UK and Association for International Cancer Research (AICR), UK. We also thank Dr. J.L. Martin, Department of Physiology, Cardiovascular Institute, Loyola University, Chicago, IL, USA, for sharing Hsp-27 wild-type and mutant adenoviral constructs and Dr. D. Trott and Prof M. Rose, Imperial College London, for providing viral stocks, which were invaluable for these experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwanie Shanie Budhram-Mahadeo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, R., Ounzain, S., Wang, A.C.Y. et al. Hsp-27 induction requires POU4F2/Brn-3b TF in doxorubicin-treated breast cancer cells, whereas phosphorylation alters its cellular localisation following drug treatment. Cell Stress and Chaperones 16, 427–439 (2011). https://doi.org/10.1007/s12192-011-0256-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-011-0256-8

Keywords

Navigation