Skip to main content

Physiological Adaptations of the Insect Gut to Herbivory

  • Chapter
  • First Online:
Arthropod-Plant Interactions

Part of the book series: Progress in Biological Control ((PIBC,volume 14))

Abstract

Plant biomass is the most abundant resource in terrestrial communities, and terrestrial green plants and the herbivorous (phytophagous) insects that feed on them account for more than half of all living species (Scudder 2009). Still, herbivory appears to have represented a challenge that most insect orders have not been able to adapt, since phytophagous insects are only represented in nine (Coleoptera, Lepidoptera, Diptera, Hymenoptera, Hemiptera, Orthoptera, Phasmida, Thysanoptera, and Collembola) of the 29 orders of insects. Nonetheless, once an insect group has overcome the initial difficulties and can exploit the resources provided by the plants, the herbivorous habit seems to have promoted diversification (Futuyma and Agrawal 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aboshi T, Yoshinaga N, Nishida R, Mori N (2010) Phospholipid biosynthesis in the gut of Spodoptera litura larvae and effects of tannic acid ingestion. Insect Biochem Mol Biol 40:325–330

    Article  PubMed  CAS  Google Scholar 

  • Alarcon FJ, Martinez TF, Barranco P, Cabello T, Diaz M, Moyano FJ (2002) Digestive proteases during development of larvae of red palm weevil, Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae). Insect Biochem Mol Biol 32:265–274

    Article  PubMed  CAS  Google Scholar 

  • Appel HM (1993) Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol 19:1521–1552

    Article  CAS  Google Scholar 

  • Appel HM, Joern A (1997) Gut physicochemistry of grassland grasshoppers. J Insect Physiol 44:693–700

    Article  Google Scholar 

  • Appel HM, Maines LW (1995) The influence of host plant on gut conditions of gypsy moth (Lymantria dispar) caterpillars. J Insect Physiol 41:241–246

    Article  CAS  Google Scholar 

  • Ashford DA, Smith WA, Douglas AE (2000) Living on a high sugar diet: the fate of sucrose ingested by a phloem-feeding insect, the pea aphid Acyrthosiphon pisum. J Insect Physiol 46:335–341

    Article  PubMed  CAS  Google Scholar 

  • Babic B, Poisson A, Darwish S, Lacasse J, Merkx-Jacques M, Despland E, Bede JC (2008) Influence of dietary nutritional composition on caterpillar salivary enzyme activity. J Insect Physiol 54:286–296

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Kessler A, Schittko U (2001) Merging molecular and ecological approaches in plant-insect interactions. Curr Opin Plant Biol 4:351–358

    Article  PubMed  CAS  Google Scholar 

  • Barbehenn RV (1999) Non-absorption of ingested lipophilic and amphiphilic allelochemicals by generalist grasshoppers: the role of extractive ultrafiltration by the peritrophic envelope. Arch Insect Biochem Physiol 42:130–137

    Article  PubMed  CAS  Google Scholar 

  • Barbehenn RV (2001) Roles of peritrophic membranes in protecting herbivorous insects from ingested plant allelochemicals. Arch Insect Biochem Physiol 47:86–99

    Article  PubMed  CAS  Google Scholar 

  • Barbehenn RV, Martin MM (1992) The protective role of the peritrophic membrane in the tannin-tolerant larvae of Orgyia leucostigma (Lepidoptera). J Insect Physiol 38:973–978

    Article  CAS  Google Scholar 

  • Barbehenn RV, Martin MM (1994) Tannin sensitivity in larvae of Malacosoma disstria (Lepidoptera): roles of the peritrophic envelope and midgut oxidation. J Chem Ecol 20:1985–2001

    Article  CAS  Google Scholar 

  • Barbehenn RV, Stannard J (2004) Antioxidant defense of the midgut epithelium by the peritrophic envelope in caterpillars. J Insect Physiol 50:783–790

    Article  PubMed  CAS  Google Scholar 

  • Barbehenn RV, Bumgarner SL, Roosen EF, Martin MM (2001) Antioxidant defenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen. J Insect Physiol 47:349–357

    Article  PubMed  CAS  Google Scholar 

  • Bede JC, McNeil JN, Tobe SS (2007) The role of neuropeptides in caterpillar nutritional ecology. Peptides 28:185–196

    Article  PubMed  CAS  Google Scholar 

  • Behmer ST (2009) Insect herbivore nutrient regulation. Annu Rev Entomol 54:165–187

    Article  PubMed  CAS  Google Scholar 

  • Berbays EA (1991) Evolution of insect morphology in relation to plants. Philos Trans R Soc Lond B 333:257–264

    Article  Google Scholar 

  • Berenbaum M (1980) Adaptive signifi-cance of midgut pH in larval Lepidoptera. Am Nat 115:138–146

    Article  Google Scholar 

  • Bernays EA, Chamberlain DJ (1980) A study of tolerance of ingested tannin in Schistocerca gregaria. J Insect Physiol 26:415–420

    Article  CAS  Google Scholar 

  • Bown DP, Wilkinson HS, Gatehouse JA (1997) Differentially regulated inhibitor-sensitive and insensitive protease genes from the phytophagous insect pest, Helicoverpa armigara, are members of complex multigene families. Insect Biochem Mol Biol 27:625–638

    Article  PubMed  CAS  Google Scholar 

  • Bown DP, Wilkinson HS, Gatehouse JA (2004) Regulation of expression of genes encoding digestive proteases in the gut of a polyphagous lepidopteran larva in response to dietary protease inhibitors. Physiol Entomol 29:278–290

    Article  CAS  Google Scholar 

  • Broadway RM (1997) Dietary regulation of serine proteinases that are resistant to serine proteinase inhibitors. J Insect Physiol 43:855–874

    Article  PubMed  CAS  Google Scholar 

  • Broadway RM, Duffey SS (1986) The effect of dietary protein on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J Insect Physiol 32:673–680

    Article  CAS  Google Scholar 

  • Broadway RM, Duffey SS (1988) The effect of plant protein quality on insect digestive physiology and the toxicity of plant proteinase inhibitors. J Insect Physiol 34:1111–1117

    Article  CAS  Google Scholar 

  • Carrillo L, Martinez M, Alvarez-Alfageme F, Castañera P, Smagghe G, Diaz I, Ortego F (2011) A barley cysteine-proteinase inhibitor reduces the performance of two aphid species in artificial diets and transgenic Arabidopsis plants. Transgenic Res 20:305–319

    Article  PubMed  CAS  Google Scholar 

  • Chaloner WG, Scott AC, Stephenson J (1991) Fossil evidence for plant-arthropod interactions in the Palaeozoic and Mesozoic. Philos Trans R Soc Lond B 333:177–186

    Article  Google Scholar 

  • Chambers PG, Simpson SJ, Raubenheimer D (1995) Behavioural mechanisms of nutrient balancing in Locusta migratoria nymphs. Anim Behav 50:1513–1523

    Article  Google Scholar 

  • Chi YH, Salzman RA, Balfe S, Ahn JE, Sun W, Moon J, Yun DJ, Lee SY, Higgins TJV, Pittendrigh B, Murdock LL, Zhu-Salzman K (2009) Cowpea bruchid midgut transcriptome response to a soybean cystatin – costs and benefits of counter-defence. Insect Mol Biol 18:97–110

    Article  PubMed  CAS  Google Scholar 

  • Chougule NP, Giri AP, Sainani MN, Gupta VS (2005) Gene expression patterns of Helicoverpa armigera gut proteases. Insect Biochem Mol Biol 35:355–367

    Article  PubMed  CAS  Google Scholar 

  • Clark TM (1999) Evolution and adaptive significance of larval midgut alkalinisation in the insect superorder Mecopterida. J Chem Ecol 25:1945–1960

    Article  CAS  Google Scholar 

  • Cloutier C, Jean C, Fournier M, Yelle S, Michaud D (2000) Adult Colorado potato beetles, Leptinotarsa decemlineata compensate for nutritional stress on oryzacystatin I-transgenic potato plants by hypertrophic behavior and over-production of insensitive proteases. Arch Insect Biochem Physiol 44:69–81

    Article  PubMed  CAS  Google Scholar 

  • Colebatch G, East P, Cooper P (2001) Preliminary characterisation of digestive proteases of the green mirid, Creontiades dilutus (Hemiptera: Miridae). Insect Biochem Mol Biol 31:415–423

    Article  PubMed  CAS  Google Scholar 

  • Cristofoletti PT, Ribeiro AF, Deraison C, Rahbé Y, Terra WR (2003) Midgut adaptation and digestive enzyme distribution in a phloem feeding insect, the pea aphid Acyrthosiphon pisum. J Insect Physiol 49:11–24

    Article  PubMed  CAS  Google Scholar 

  • Dadd RH (1985) Nutrition: organisms. In: Kerkut GA, Gilbert LI (eds) Comparative insect physiology, biochemistry and pharmacology, vol 4. Pergamon Press, New York, pp 313–390

    Google Scholar 

  • De Leo F, Bonadé-Bottino MA, Ceci LR, Gallerani R, Jouanin L (1998) Opposite effects on Spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants. Plant Physiol 118:997–1004

    Article  PubMed  Google Scholar 

  • Díaz-Mendoza M, Ortego F, de Lacoba MG, Magaña C, de la Poza M, Farinós GP, Castañera P, Hernandez-Crespo P (2005) Diversity of trypsins in the Mediterranean corn borer Sesamia nonagrioides (Lepidoptera: Noctuidae), revealed by nucleic acid sequences and enzyme purification. Insect Biochem Mol Biol 35:1005–1020

    Article  PubMed  CAS  Google Scholar 

  • Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92

    Article  PubMed  CAS  Google Scholar 

  • Douglas AE (2006) Phloem-sap feeding by animals: problems and solutions. J Exp Bot 57:747–754

    Article  PubMed  CAS  Google Scholar 

  • Dow JAT (1992) pH gradients in lepidopteran midgut. J Exp Biol 172:355–375

    PubMed  CAS  Google Scholar 

  • Duffey SS, Stout MJ (1996) Antinutritive and toxic components of plant defense against insects. Arch Insect Biochem Physiol 32:3–37

    Article  CAS  Google Scholar 

  • Eichenseer H, Mathews MC, Bi JL, Murphy JB, Felton GW (1999) Salivary glucose oxidase: multifunctional roles for Helicoverpa zea? Arch Insect Biochem Physiol 42:99–109

    Article  PubMed  CAS  Google Scholar 

  • Espinoza-Fuentes FP, Terra WR (1987) Physiological adaptations for digesting bacteria. Water fluxes and distribution of digestive enzymes in Musca domestica larval midgut. Insect Biochem 17:809–817

    Article  CAS  Google Scholar 

  • Farrell BD (1998) “Inordinate fondness” explained: why are there so many beetles? Science 281:555–559

    Article  PubMed  CAS  Google Scholar 

  • Felton GW (1996) Nutritive quality of plant protein: sources of variation and insect herbivore responses. Arch Insect Biochem Physiol 32:107–130

    Article  CAS  Google Scholar 

  • Felton GW, Duffey SS (1991) Reassessment of the role of gut alkalinity and detergency in insect herbivory. J Chem Ecol 17:1821–1836

    Article  CAS  Google Scholar 

  • Futuyma DJ, Agrawal AA (2009) Macroevolution and the biological diversity of plants and herbivores. Proc Natl Acad Sci USA 106:18054–18061

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse LN, Shannon AL, Burgess EPJ, Christeller JT (1997) Characterization of major midgut proteinase cDNAs from Helicoverpa armigera larvae and changes in gene expression in response to four proteinase inhibitors in the diet. Insect Biochem Mol Biol 27:929–944

    Article  PubMed  CAS  Google Scholar 

  • Girard C, Le Métayer M, Zaccomer B, Bartlet E, Williams I, Bonadé-Bottino M, Pham-Delegue MH, Jouanin L (1998) Growth stimulation of beetle larvae reared on a transgenic oilseed rape expressing a cysteine proteinase inhibitor. J Insect Physiol 44:263–270

    Article  PubMed  CAS  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge, p 755

    Google Scholar 

  • Gullan PJ, Kosztarab M (1997) Adaptations in scale insects. Annu Rev Entomol 42:23–50

    Article  PubMed  CAS  Google Scholar 

  • Gündüz EA, Douglas AE (2009) Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc R Soc B 276:987–991

    Article  CAS  Google Scholar 

  • Harrison JF (2001) Insect acid–base physiology. Annu Rev Entomol 46:221–250

    Article  PubMed  CAS  Google Scholar 

  • Hegedus D, Erlandson M, Gillott C, Toprak U (2009) New insights into peritrophic matrix synthesis, architecture, and function. Annu Rev Entomol 54:285–302

    Article  PubMed  CAS  Google Scholar 

  • Hinks CF, Erlandson MA (1995) The accumulation of haemolymph proteins and activity of digestive proteinases of grasshoppers (Melanoplus sanguinipes) fed wheat, oats or kochia. J Insect Physiol 41:425–433

    Article  CAS  Google Scholar 

  • Horne I, Haritos VS, Oakeshott JG (2009) Comparative and functional genomics of lipases in holometabolous insects. Insect Biochem Mol Biol 39:547–567

    Article  PubMed  CAS  Google Scholar 

  • Johnson KS, Felton GW (1996) Potential influence of midgut pH and redox potential on protein utilization in insect herbivores. Arch Insect Biochem Physiol 32:85–105

    Article  CAS  Google Scholar 

  • Johnson KS, Rabosky D (2000) Phylogenetic distribution of cysteine proteinases in beetles: evidence for an evolutionary shift to an alkaline digestive strategy in Cerambycidae. Comp Biochem Physiol 126B:609–619

    CAS  Google Scholar 

  • Jongsma MA, Bolter C (1997) The adaptation of insects to plant protease inhibitors. J Insect Physiol 43:885–895

    Article  PubMed  CAS  Google Scholar 

  • Jongsma MA, Bakker PL, Peters J, Bosch D, Stiekema WJ (1995) Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Proc Natl Acad Sci USA 92:8041–8045

    Article  PubMed  CAS  Google Scholar 

  • Kotkar HM, Sarate PJ, Tamhane VA, Gupta VS, Giri AP (2009) Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants. J Insect Physiol 55:663–670

    Article  PubMed  CAS  Google Scholar 

  • Krishnan N, Kodrík D (2006) Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress? J Insect Physiol 52:11–20

    Article  PubMed  CAS  Google Scholar 

  • Labandeira CC, Phillips TL (1996) Insect fluid-feeding on Upper Pennsylvanian tree ferns (Palaeodictyoptera, Marattiales) and the early history of the piercing-and-sucking functional feeding group. Ann Entomol Soc Am 89:157–183

    Google Scholar 

  • Lara P, Ortego F, Gonzalez-Hidalgo E, Castañera P, Carbonero P, Diaz I (2000) Adaptation of Spodoptera exigua (Lepidoptera: Noctuidae) to barley trypsin inhibitor BTI-CMe expressed in transgenic tobacco. Transgenic Res 9:169–178

    Article  PubMed  CAS  Google Scholar 

  • Lee PL (2007) The interactive effects of protein quality and macronutrient imbalance on nutrient balancing in an insect herbivore. J Exp Biol 210:3236–3244

    Article  PubMed  Google Scholar 

  • Lehane MJ (1997) Peritrophic matrix structure and function. Annu Rev Entomol 42:525–550

    Article  PubMed  CAS  Google Scholar 

  • Li C, Song X, Li G, Wang P (2009) Midgut cysteine protease-inhibiting activity in Trichoplusia ni protects the peritrophic membrane from degradation by plant cysteine proteases. Insect Biochem Mol Biol 39:726–734

    Article  PubMed  CAS  Google Scholar 

  • Lopes AR, Sato PM, Terra WR (2009) Insect chymotrypsins: chloromethyl ketone inactivation and substrate specificity relative to possible coevolutional adaptation of insects and plants. Arch Insect Biochem Physiol 70:188–203

    Article  PubMed  CAS  Google Scholar 

  • Markwick NP, Laing WA, Christeller JT, McHenry JZ, Newton MR (1998) Overproduction of digestive enzymes compensates for inhibitory effects of protease and α-amylase inhibitors fed to three species of leafrollers (Lepidoptera: Tortricidae). J Econ Entomol 91:1265–1276

    CAS  Google Scholar 

  • Martin MM, Martin JS (1984) Surfactants: their role in preventing the precipitation of proteins by tannins in insect guts. Oecologia 61:342–345

    Article  Google Scholar 

  • Mayhew PJ (2007) Why are there so many insect species? Perspectives from fossils and phylogenies. Biol Rev 82:425–454

    Article  PubMed  Google Scholar 

  • Mazumdar-Leighton S, Broadway RM (2001) Transcriptional induction of diverse midgut trypsins in larval Agrotis ipsilon and Helicoverpa zea feeding on the soybean trypsin inhibitor. Insect Biochem Mol Biol 31:645–657

    Article  PubMed  CAS  Google Scholar 

  • Michaud D, Cantin L, Vrain TC (1995) Carboxy-terminal truncation of oryzacysatin II by oryzacytatin-insensitive insect digestive proteinases. Arch Biochem Biophys 322:469–474

    Article  PubMed  CAS  Google Scholar 

  • Miles PW (1999) Aphid saliva. Biol Rev 74:41–85

    Article  Google Scholar 

  • Morris K, Lorenzen MD, Hiromasa Y, Tomich J, Oppert C, Elpidina EN, Vinokurov K, Jurat-Fuentes JL, Fabrick J, Oppert B (2009) Tribolium castaneum larval gut transcriptome and proteome: a resource for the study of the coleopteran gut. J Proteome Res 8:3889–3898

    Article  PubMed  CAS  Google Scholar 

  • Murdock LL, Brookhart G, Dunn PE, Foard DE, Kelley S, Kitch L, Shade RE, Shukle RH, Wolfson JL (1987) Cysteine digestive proteinases in Coleoptera. Comp Biochem Physiol 87B:783–787

    CAS  Google Scholar 

  • Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, Murphy JB, Felton GW (2002) Caterpillar saliva beats plant defences: a new weapon emerges in the evolutionary arms race between plants and herbivores. Nature 416:599–600

    Article  PubMed  CAS  Google Scholar 

  • Neal JJ (1996) Brush border membrane and amino acid transport. Arch Insect Biochem Physiol 32:55–64

    Article  CAS  Google Scholar 

  • Novillo C, Castañera P, Ortego F (1997) Characterization and distribution of chymotrypsin-like and other digestive proteases in Colorado potato beetle larvae. Arch Insect Biochem Physiol 36:181–201

    Article  CAS  Google Scholar 

  • Novillo C, Castañera P, Ortego F (1999) Isolation and characterization of two digestive trypsin-like proteinases from larvae of the stalk corn borer, Sesamia nonagrioides. Insect Biochem Mol Biol 29:177–184

    Article  PubMed  CAS  Google Scholar 

  • Oliveira-Neto OB, Batista JAN, Rigden DJ, Fragoso RR, Silva RO, Gomes EA, Franco OL, Dias SC, Cordeiro CMT, Monnerat RG, Grossi de Sa MF (2004) A diverse family of serine protemase genes expressed in cotton boll weevil (Anthonomus grandis): implications for the design of pest-resistant transgenic cotton plants. Insect Biochem Mol Biol 34:903–918

    Article  PubMed  CAS  Google Scholar 

  • Oppert B, Morgan TD, Hartzer K, Kramer KJ (2005) Compensatory proteolytic responses to dietary proteinase inhibitors in the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Comp Biochem Physiol C 140:53–58

    Article  CAS  Google Scholar 

  • Ortego F, Novillo C, Castañera P (1996) Characterization and distribution of digestive proteases of the stalk corn borer, Sesamia nonagrioides Lef. (Lepidoptera: Noctuidae). Arch Insect Biochem Physiol 33:163–180

    Article  CAS  Google Scholar 

  • Ortego F, Novillo C, Sánchez-Serrano JJ, Castañera P (2001) Physiological response of Colorado potato beetle and beet armyworm larvae to depletion of wound-inducible proteinase inhibitors in transgenic potato plants. J Insect Physiol 47:1291–1300

    Article  PubMed  CAS  Google Scholar 

  • Overney S, Fawe A, Yelle S, Michaud D (1997) Diet-related plasticity of the digestive proteolytic system in larvae of the Colorado potato beetle (Leptinotarsa decemlineata Say). Arch Insect Biochem Physiol 36:241–250

    Article  CAS  Google Scholar 

  • Patankar AG, Giri AP, Harsulkar AM, Sainani MN, Deshpande VV, Ranjekar PK, Gupta VS (2001) Complexity in specificities and expression of Helicoverpa armigera gut proteinases explains polyphagous nature of the insect pest. Insect Biochem Mol Biol 31:453–464

    Article  PubMed  CAS  Google Scholar 

  • Pauchet Y, Wilkinson P, Vogel H, Nelson DR, Reynolds SE, Heckel DG, ffrench-Constant RH (2010) Pyrosequencing the Manduca sexta larval midgut transcriptome: messages for digestion, detoxification and defence. Insect Mol Biol 19:61–75

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Dicke M (2007) Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci 12:564–569

    Article  PubMed  CAS  Google Scholar 

  • Prabhakar S, Chen M-S, Elpidina EN, Vinokurov KS, Smith CM, Oppert B (2007) Molecular characterization of digestive proteinases and sequence analysis of midgut cDNA transcripts of the yellow mealworm, Tenebrio molitor L. Insect Mol Biol 16:455–468

    Article  PubMed  CAS  Google Scholar 

  • Pytelková J, Hubert J, Lepšík M, Šobotník J, Šindelka R, Křížková I, Horn M, Mareš M (2009) Digestive α-amylases of the flour moth Ephestia kuehniella – adaptation to alkaline environment and plant inhibitors. FEBS J 276:3531–3546

    Article  PubMed  CAS  Google Scholar 

  • Raman A, Schaefer CW, Withers TM (2005) Galls and gall-inducing arthropods: an overview of their biology, ecology and evolution. In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology, and evolution of gall-inducing arthropods. Science Publishers, Enfield, pp 1–33

    Google Scholar 

  • Raubenheimer D, Simpson SJ (1999) Integrating nutrition: a geometrical approach. Entomol Exp Appl 91:67–82

    Article  Google Scholar 

  • Rivard D, Cloutier C, Michaud D (2004) Colorado potato beetles show differential digestive compensatory responses to host plants expressing distinct sets of defense proteins. Arch Insect Biochem Physiol 55:114–123

    Article  PubMed  CAS  Google Scholar 

  • San Andres V, Ortego F, Castañera P (2007) Effects of gamma-irradiation on midgut proteolytic activity of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Arch Insect Biochem Physiol 65:11–19

    Article  CAS  Google Scholar 

  • Sandström J, Moran N (1999) How nutritionally imbalanced is phloem sap for aphids? Ent Exp Appl 91:203–210

    Article  Google Scholar 

  • Schultz JC, Lechowicz MJ (1986) Host plant, larval age and feeding behavior influence midgut pH in the gypsy moth (Lymantria dispar). Oecologia 71:133–137

    Article  Google Scholar 

  • Scudder GGE (2009) The importance of insects. In: Foottit RG, Adler PH (eds) Insect biodiversity: science and society. Wiley-Blackwell, Chichester, pp 7–32

    Chapter  Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sasaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86

    Article  PubMed  CAS  Google Scholar 

  • Shinbo H, Konno K, Hirayama C, Watanabe K (1996) Digestive sites of dietary proteins and absorptive sites of amino acids along the midgut of the silkworm, Bombyx mori. J Insect Physiol 42:1129–1138

    Article  CAS  Google Scholar 

  • Silva CP, Terra WR (1994) Digestive and absorptive sites along the midgut of the cotton seed sucker bug Dystercus peruvianus (Hemiptera: Pyrrhocoridae). Insect Biochem Mol Biol 24:493–505

    Article  CAS  Google Scholar 

  • Silva CP, Ribeiro AF, Gulbenkian S, Terra WR (1995) Organization, origin and function of the outer microvillar (perimicrovillar) membranes of Dysdercus peruvianus (Hemiptera) midgut cells. J Insect Physiol 41:1093–1103

    Article  CAS  Google Scholar 

  • Silva CP, Terra WR, Xavier-Filho J, Grossi de Sá MF, Lopes AR, Pontes E (1999) Digestion in larvae of Callosobruchus maculatus and Zabrotes subfasciatus (Coleoptera: Bruchidae) with emphasis on a-amylases and oligosaccharidases. Insect Biochem Mol Biol 29:355–366

    Article  CAS  Google Scholar 

  • Silva CP, Terra WR, Xavier-Filho J, Grossi de Sa MF, Isejima EM, DaMatta RA, Miguens FC, Bifano TD (2001a) Digestion of legume starch granules by larvae of Zabrotes subfasciatus (Coleoptera: Bruchidae) and the induction of α-amylases in response to different diets. Insect Biochem Mol Biol 31:41–50

    Article  PubMed  CAS  Google Scholar 

  • Silva CP, Terra WR, deSá MFG, Samuels RI, Isejima EM, Bifano TD, Almeida JS (2001b) Induction of digestive α-amylases in larvae of Zabrotes subfasciatus (Coleoptera: Bruchidae) in response to ingestion of common bean α-amylase inhibitor 1. J Insect Physiol 47:1283–1290

    Article  PubMed  CAS  Google Scholar 

  • Silva CP, Terra WR, Lima RM (2001c) Differences in midgut serine proteinases from larvae of the bruchid beetles Callosobruchus maculatus and Zabrotes subfasciatus. Arch Insect Biochem Physiol 47:18–28

    Article  PubMed  CAS  Google Scholar 

  • Silva CP, Silva JR, Vasconcelos FF, Petretski MDA, DaMatta RA, Ribeiro AF, Terra WR (2004) Occurrence of midgut perimicrovillar membranes in paraneopteran insect orders with comments on their function and evolutionary significance. Arthropod Struct Dev 33:139–148

    Article  PubMed  Google Scholar 

  • Simpson RM, Newcomb RD, Gatehouse HS, Crownhurst RN, Changné D, Gatehouse LN, Markwick NP, Beuning LL, Murray C, Marshall SD, Yauk Y-K, Nain B, Gleave AP, Christeller JT (2007) Expressed sequence tags from the midgut of Epiphyas postvittana (Walker) (Lepidoptera: Torticidae). Insect Mol Biol 16:675–690

    Article  PubMed  CAS  Google Scholar 

  • Slansky FJ, Wheeler GS (1991) Food consumption and utilization responses to dietary dilution with cellulose and water by velvetbean caterpillars, Anlicarsia gemmnatalis. Physiol Entomol 16:99–116

    Article  Google Scholar 

  • Summers CB, Felton GW (1996) Peritrophic envelope as a functional antioxidant. Arch Insect Biochem Physiol 32:131–142

    Article  CAS  Google Scholar 

  • Teo LH (1997) Tryptic and chymotryptic activities in different parts of the gut of the field cricket Gryllus bimaculatus (Orthoptera: Gryllidae). Ann Entomol Soc Am 90:69–74

    CAS  Google Scholar 

  • Teo LH, Woodring JP (1994) Comparative total activities of digestive enzymes in different gut regions of the house cricket, Acheta domesticus L. (Orthoptera: Gryllidae). Ann Entomol Soc Am 87:886–890

    CAS  Google Scholar 

  • Terra WR (1990) Evolution of digestive systems in insects. Annu Rev Entomol 35:181–200

    Article  Google Scholar 

  • Terra WR (2001) The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 47:47–61

    Article  PubMed  CAS  Google Scholar 

  • Terra WR, Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol 109B:1–62

    CAS  Google Scholar 

  • Terra WR, Ferreira C (2005) Biochemistry of digestion. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 4. Elsevier, Oxford, pp 171–224

    Chapter  Google Scholar 

  • Terra WR, Ferreira C, Bastos F (1985) Phylogenetic considerations of insect digestion. Disaccharidases and the spatial organization of digestion in the Tenebrio molitor larvae. Insect Biochem 15:443–449

    Article  CAS  Google Scholar 

  • Terra WR, Ferreira C, Baker JE (1996a) Compartmentalization of digestion. In: Lehane MJ, Billingsley PF (eds) Biology of the insect midgut. Chapman & Hall, London, pp 206–235

    Chapter  Google Scholar 

  • Terra WR, Ferreira C, Jordão BP, Dillon RJ (1996b) Digestive enzymes. In: Lehane MJ, Billingsley PF (eds) Biology of the insect midgut. Chapman & Hall, London, pp 153–194

    Chapter  Google Scholar 

  • Waldbauer GP, Friedman S (1991) Self-selection of optimal diets by insects. Annu Rev Entomol 36:43–63

    Article  Google Scholar 

  • Weech MH, Chapleau M, Pan L, Ide C, Bede JC (2008) Caterpillar saliva interferes with induced Arabidopsis thaliana defence responses via the systemic acquired resistance pathway. J Exp Bot 59:2437–2448

    Article  PubMed  CAS  Google Scholar 

  • Will T, Tjallingii WF, Thönnessen A, van Bel AJE (2007) Molecular sabotage of plant defense by aphid saliva. Proc Natl Acad Sci USA 104:10536–10541

    Article  PubMed  CAS  Google Scholar 

  • Wolfson JL, Murdock LL (1990) Diversity in digestive proteinase activity among insects. J Chem Ecol 16:1089–1102

    Article  CAS  Google Scholar 

  • Woods HA, Kingsolver JG (1999) Feeding rate and the structure of protein digestion and absorption in lepidopteran midguts. Arch Insect Biochem Physiol 42:74–87

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Fang Z, Dicke M, van Loon JJ, Jongsma MA (2009) The diamondback moth, Plutella xylostella, specifically inactivates Mustard Trypsin Inhibitor 2 (MTI2) to overcome host plant defence. Insect Biochem Mol Biol 39:55–61

    Article  PubMed  CAS  Google Scholar 

  • Yeoh HH, Wee YC, Watson L (1992) Leaf protein contents and amino acid patterns of dicotyledonous plants. Biochem Syst Ecol 20:657–663

    Article  CAS  Google Scholar 

  • Zhu-Salzman K, Koiwa H, Salzman RA, Shade RE, Ahn JE (2003) Cowpea bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor. Insect Mol Biol 12:135–145

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Ortego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ortego, F. (2012). Physiological Adaptations of the Insect Gut to Herbivory. In: Smagghe, G., Diaz, I. (eds) Arthropod-Plant Interactions. Progress in Biological Control, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3873-7_3

Download citation

Publish with us

Policies and ethics