Skip to main content

Freshwater Picocyanobacteria: Single Cells, Microcolonies and Colonial Forms

  • Chapter
  • First Online:
Ecology of Cyanobacteria II

Summary

This chapter deals with some taxonomic and ecological aspects of picocyanobacteria (Pcy) single-cells, microcolonies and other colonial (CPcy), that are common in lakes throughout the world, and abundant across a wide spectrum of trophic conditions. We discussed phenotypic diversity of Pcy in conjunction with a genotypic approach in order to resolve whether a similar morphology also reflects a phylogenetic relationship. Microcolonies of different size (from 5 to 50 cells) constitute a gradient without a net separation from single-celled types and should be considered Pcy, as transition forms from single-cell to colonial morphotypes. The single-celled Pcy populations tend to be predominant in large, deep oligo-mesotrophic lakes, while the CPcy find optimal conditions in warmer, shallower and more nutrient rich lakes. The knowledge of Pcy diversity in pelagic and littoral zone habitats is a key to understand the dominance of certain genotypes in the water column and of their ubiquity. We devoted some paragraphs to analyse the factors (biotic and abiotic) which can influence the dynamics of the different Pcy forms and we have approached the study of their common ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Pcy:

picocyanobacteria

CPcy:

colonial picocyanobacteria

PE-rich:

phycoerythrin containing Pcy

PC-rich:

phycocyanin containing Pcy

Chl:

chlorophyll a

HNF:

heterotrophic nanoflagellates

ITS-1:

internal transcribed spacer region between the 16S rRNA and 23S rRNA genes

T-RFLP:

terminal restriction fragment length polymorphism

DGGE:

denaturating gradient gel electrophoresis

ARISA:

automated ribosomal intergenic spacer analyses

DCM:

deep chlorophyll maximum

OTU:

operational taxonomic unit

RT-qPCR:

real-time quantitative polymerase chain reaction

FDC:

frequency of dividing cells

RUBISCO:

ribulose-1,5-bisphosphate carboxylase oxygenase

ELF:

enzyme labelled fluorescence

APA:

extracellular phosphatase activity

DOP:

dissolved organic phosphorus

CPD:

cyclobutane pyrimidine dimer

BWF:

biological weighting functions

MAAs:

mycosporine-like amino acid compounds

Kd :

extinction coefficient of photosynthetically active radiation

References

  • Adams DG (2000) Symbiotic interactions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 523–561, 668 pp

    Google Scholar 

  • Ahlgren NA, Rocap G (2006) Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies. Appl Environ Microbiol 72:7193–7204

    Article  PubMed  CAS  Google Scholar 

  • Ahlgren NA, Rocap G, Chisholm SW (2006) Measurement of Prochlorococcus ecotypes using real-time polymerase chain reaction reveals different abundances of genotypes with similar light physiologies. Environ Microbiol 8:441–454

    Article  PubMed  CAS  Google Scholar 

  • Allende L, Izaguirre I (2003) The role of physical stability on the establishment of steady states in the phytoplankton community of two Maritime Antarctic lakes. Hydrobiologia 502:211–224

    Article  Google Scholar 

  • Ålvik G (1934) Plankton-Algen norwegischer Austernpollen I. Systematik und Vorkommen der Arten. Bergens Mus Årb 1934(6):47 pp

    Google Scholar 

  • Arndt H (1993) Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) – a review. Hydrobiologia 255(256):231–246

    Article  Google Scholar 

  • Bailey S, Clokie MRJ, Millard A, Mann NH (2004) Cyanophage infection and photoinhibition in marine cyanobacteria. Mini-review. Res Microbiol 155:720–725

    Article  PubMed  CAS  Google Scholar 

  • Balseiro EG, Modenutti BE, Queimaliños CP (1997) Nutrient recycling and shifts in N:P ratio by different zooplankton structures in a South Andes lake. J Plankton Res 19:805–817

    Article  Google Scholar 

  • Balseiro EG, Queimaliños C, Modenutti BE (2004) Grazing impact on autotrophic picoplankton in two south Andean lakes (Patagonia, Argentina) with different light:nutrient ratios. Rev Chil Hist Nat 77:73–85

    Article  Google Scholar 

  • Beardall J, Raven JA (2004) Potential effects of global change on microalgal photosynthesis, growth and ecology. Phycologia 43:26–40

    Article  Google Scholar 

  • Bec A, Martin-Creuzburg D, von Elert E (2006) Trophic upgrading of autotrophic picoplankton by the heterotrophic nanoflagellate Paraphysomonas sp. Limnol Oceanogr 51:1699–1707

    Article  Google Scholar 

  • Becker S, Böger P, Oehlmann R, Ernst A (2000) PCR bias in ecological analysis: a case study for quantitative Taq nuclease assays in analyses of microbial communities. Appl Environ Microbiol 66:4945–4953

    Article  PubMed  CAS  Google Scholar 

  • Becker S, Fahrbach M, Böger P, Ernst A (2002) Quantitative tracing, by Taq nuclease assays, of a Synechococcus ecotype in a highly diversified natural population. Appl Environ Microbiol 68:4486–4494

    Article  PubMed  CAS  Google Scholar 

  • Becker S, Singh AK, Postius C, Böger P, Ernst A (2004) Genetic diversity and distribution of periphytic Synechococcus spp. in biofilms and picoplankton of Lake Constance. FEMS Microbiol Ecol 49:181–190

    Article  PubMed  CAS  Google Scholar 

  • Becker S, Richl P, Ernst A (2007) Seasonal and habitat-related distribution pattern of Synechococcus genotypes in Lake Constance. FEMS Microbiol Ecol 62:64–67

    Article  PubMed  CAS  Google Scholar 

  • Bell JL (1991) Patches and picoplankton. Effects on larval life spans on gastropod larvae. Am Zool 31:6A

    Google Scholar 

  • Bell T, Kalff L (2001) The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnol Oceanogr 46:1243–1248

    Article  Google Scholar 

  • Bell RT, Tranvik L (1993) Impact of acidification and liming on the microbial ecology of lakes. Ambio 22:325–330

    Google Scholar 

  • Belykh OI, Ekaterina G, Sorokovikova T, Saphonova A, Tikhonova V (2006) Autotrophic picoplankton of Lake Baikal: composition, abundance and structure. Hydrobiologia 568:9–17

    Article  Google Scholar 

  • Bergman E, Hamrin SF, Romare P (1999) The effect of cyprinid reduction on the fish community. In Hansson LA and Bergman B (eds) Nutrient reduction and biomanipulation as tools to improve water quality. The Lake Ringsjön story. Hydrobiologia 404:65–75

    Article  Google Scholar 

  • Berman T, Yacobi YZ, Pollingher U (1992) Lake Kinneret phytoplankton: stability and variability during twenty years (1970–1989). Aquat Sci 54:104–127

    Article  Google Scholar 

  • Bertilsson S, Berglund O, Karl DM, Chisholm SW (2003) Elemental composition of marine Prochlorococcus and Synechococcus: implications for the ecological stoichiometry of the sea. Limnol Oceanogr 48:1721–1731

    Article  CAS  Google Scholar 

  • Bertoni R, Piscia R, Callieri C (2004) Horizontal heterogeneity of seston, organic carbon and picoplankton in the photic zone of Lago Maggiore, Northern Italy. J Limnol 63:244–249

    Article  Google Scholar 

  • Bird DJ, Kalff J (1987) Algal phagotrophy: regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol Oceanogr 32:277–284

    Article  CAS  Google Scholar 

  • Bird C, Wyman M (2003) Nitrate/nitrite assimilation system of the marine picoplanktonic cyanobacterium Synechococcus sp. strain WH8103: effect of nitrogen source and availability on gene expression. Appl Environ Microbiol 69:7009–7018

    Article  PubMed  CAS  Google Scholar 

  • Björk S et al (1972) Ecosystem studies in connection with the restoration of lakes. Verh Int Ver Limnol 18:379–387

    Google Scholar 

  • Bláha L, Marsálek B (1999) Microcystin production and toxicity of picocyanobacteria as a risk factor for drinking water treatment plants. Algol Stud 92:95–108

    Google Scholar 

  • Blank CE, Sánchez-Baracaldo P (2010) Timing of morphological and ecological innovations in the cyanobacteria – a key to understanding the rise in atmospheric oxygen. Geobiology 8:1–23

    Article  PubMed  CAS  Google Scholar 

  • Blomqvist P (1996) Late summer phytoplankton responses to experimental manipulations of nutrients and grazing in unlimed and limed Lake Njupfatet, central Sweden. Arch Hydrobiol 137:425–455

    Google Scholar 

  • Boenigk J, Matz C, Jürgens K, Arndt H (2001) The influence of preculture conditions and food quality on the ingestion and digestion process of three species of heterotrophic nanoflagellates. Microb Ecol 42:168–176

    PubMed  Google Scholar 

  • Boersma M, Wiltshire K (2006) Gut passage of phosphorus-limited algae through Daphnia: do they take up nutrients in the process? Arch Hydrobiol 167:498–500

    Google Scholar 

  • Bourrelly P (1985) Les Algues d’Eaux Douce. III. Les Algues Bleues et Rouges, Les Eugléniens, Peridiniens et Cryptomonadines. Société Nouvelle des Éditions Boubée, Paris, 606 pp

    Google Scholar 

  • Buma AGJ, van Hannen EJ, Veldhuis MJW, Gieskes WWC (1995) Monitoring ultraviolet B-induced DNA damage in individual diatom cells by immuno-fluorescent-thymin dimer detection. J Phycol 31:314–321

    Article  CAS  Google Scholar 

  • Burns CW, Schallenberg M (1996) Relative impacts of copepods, cladocerans and nutrients on the microbial food web of a mesotrophic lake. J Plankton Res 18:683–714

    Article  Google Scholar 

  • Burns CW, Schallenberg M (2001) Short-term impacts of nutrients, Daphnia, and copepods on microbial food-webs on an oligotrophic and eutrophic lake. N Z J Mar Freshw Res 35:695–710

    Article  Google Scholar 

  • Butcher RW (1952) Contributions to our knowledge of smaller marine algae. J Mar Biol Assoc UK 31:610–652

    Article  Google Scholar 

  • Callieri C (1996) Extinction coefficient of red, green and blue light and its influence on Pcy types in lakes at different trophic levels. Mem Ist Ital Idrobiol 54:135–142

    Google Scholar 

  • Callieri C (2008) Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshw Rev 1:1–28

    Google Scholar 

  • Callieri C (2010) Single cells and microcolonies of freshwater picocyanobacteria: a common ecology. J Limnol 69:257–277

    Article  Google Scholar 

  • Callieri C, Bertoni R (1999) Organic carbon and microbial food web assemblages in an oligotrophic alpine lake. In: Straškrabová V, Callieri C, Fott J (eds) Pelagic food web in Mountain Lakes. MOuntain LAkes Research Program. J Limnol 58:136–143

    Article  Google Scholar 

  • Callieri C, Pinolini ML (1995) Picoplankton in Lake Maggiore, Italy. Int Rev Ges Hydrobiol 80:491–501

    Article  Google Scholar 

  • Callieri C, Piscia R (2002) Photosynthetic efficiency and seasonality of autotrophic picoplankton in Lago Maggiore after its recovery. Freshw Biol 47:941–956

    Article  Google Scholar 

  • Callieri C, Stockner JG (2002) Freshwater autotrophic picoplankton: a review. J Limnol 61:1–14

    Google Scholar 

  • Callieri C, Amicucci E, Bertoni R, Vörös L (1996a) Fluorometric characterization of two picocyanobacteria strains from different underwater light quality. Int Rev Ges Hydrobiol 81:13–23

    Article  CAS  Google Scholar 

  • Callieri C, Bertoni R, Amicucci E, Pinolini ML, Jasser I (1996b) Growth rates of freshwater picocyanobacteria measured by FDC: problems and potentials for the estimation of picoplankton organic carbon synthesis. Arch Hydrobiol Spec Issues Adv Limnol 48:93–103

    Google Scholar 

  • Callieri C, Lami A, Bertoni (2011) Microcolony formation by single-cell Synechococcus strains as a fast response to UV radiation. Appl Environ Microbiol 77:7533–7540

    Google Scholar 

  • Callieri C, Morabito G, Huot Y, Neal P, Lichman E (2001) Photosynthetic response of pico- and nanoplanktonic algae to UVB, UVA and PAR in a high mountain lake. Aquat Sci 63:286–293

    Article  Google Scholar 

  • Callieri C, Karjalainen SM, Passoni S (2002) Grazing by ciliates and heterotrophic nanoflagellates on picocyanobacteria in Lago Maggiore, Italy. J Plankton Res 24:785–796

    Article  Google Scholar 

  • Callieri C, Balseiro E, Bertoni R, Modenutti B (2004) Picocyanobacterial photosynthetic efficiency under Daphnia grazing pressure. J Plankton Res 26:1471–1477

    Article  CAS  Google Scholar 

  • Callieri C, Moro S, Caravati E, Crosbie ND, Weisse T (2005) Strain specific photosynthetic response of freshwater picocyanobacteria. Verh Int Ver Limnol 29:777–782

    CAS  Google Scholar 

  • Callieri C, Caravati E, Morabito G, Oggioni A (2006) The unicellular freshwater cyanobacterium Synechococcus and mixotrophic flagellates: evidence for a functional association in an oligotrophic, subalpine lake. Freshw Biol 51:263–273

    Article  Google Scholar 

  • Callieri C, Modenutti B, Queimaliños C, Bertoni R, Balseiro E (2007) Production and biomass of picophytoplankton and larger autotrophs in Andean ultraoligotrophic lakes: differences in light harvesting efficiency in deep layers. Aquat Ecol 80:345–362

    Google Scholar 

  • Callieri C, Caravati E, Corno G, Bertoni R (2012) Picocyanobacterial community structure and space-time dynamics in the subalpine Lake Maggiore (N. Italy). J Limnol 71:95–103

    Google Scholar 

  • Camacho A, Picazo A, Miracle MR, Vicente E (2003) Spatial distribution and temporal dynamics of picocyanobacteria in a meromictic karstic lake. Algol Stud 109:171–184

    Article  Google Scholar 

  • Campbell L, Carpenter EJ (1986a) Diel pattern of cell division in marine Synechococcus spp. (Cyanobacteria): use of frequency of dividing cell technique to measure growth rate. Mar Ecol Prog Ser 32:139–148

    Article  Google Scholar 

  • Campbell L, Carpenter EJ (1986b) Estimating the grazing pressure of heterotrophic nanoplankton on Synechococcus spp. using the seawater dilution and selective inhibitor techniques. Mar Ecol Prog Ser 33:121–129

    Article  Google Scholar 

  • Caravati E (2008) Biodiversità e caratteristiche eco-fisiologiche dei picocianobatteri d’acqua dolce. Ph D thesis, University of Parma, Parma, 133 pp

    Google Scholar 

  • Caravati E, Callieri C, Modenutti B, Corno G, Balseiro E, Bertoni R, Michaud L (2010) Picocyanobacterial assemblages in ultraoligotrophic Andean lakes reveal high regional microdiversity. J Plankton Res 32:357–366

    Article  Google Scholar 

  • Caron DA, Lim EL, Miceli G, Waterbury JB, Valois FW (1991) Grazing and utilization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and coastal plankton community. Mar Ecol Prog Ser 76:205–217

    Article  Google Scholar 

  • Carpenter EJ, Foster RA (2002) Marine symbioses. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, Dordrecht, pp 11–18

    Google Scholar 

  • Carreto JI, Carignan MO, Daleo G, De Marco SG (1990) Occurrence of mycosporine-like amino acids in the red tide dinoflagellate Alexandrium escavatum: UV-photoprotective compounds? J Plankton Res 12:909–921

    Article  CAS  Google Scholar 

  • Carrillo P, Reche I, Cruz-Pizarro L (1996) Quantification of the phosphorus released by zooplankton in an oligotrophic lake (La Caldera, Spain) – regulating factors and adjustment to theoretical-models. J Plankton Res 18:1567–1586

    Article  CAS  Google Scholar 

  • Chen F, Wang K, Kan JJ, Suzuki MT, Wommack KE (2006) Diverse and unique Pcy in Chesapeake Bay, revealed by 16S-23S rRNA internal transcribed spacer sequences. Appl Environ Microbiol 72:2239–2243

    Article  PubMed  CAS  Google Scholar 

  • Chisholm SW (1992) Phytoplankton size. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York, pp 213–237

    Google Scholar 

  • Chisholm SW, Armbrust EV, Olson RJ (1986) The individual cell in phytoplankton ecology: cell cycle and applications of flow cytometry. Can Bull Fish Aquat Sci 214:343–369

    Google Scholar 

  • Christoffersen K (1994) Variation of feeding activities of heterotrophic nanoflagellates on picoplankton. Mar Microb Food Web 8:111–123

    Google Scholar 

  • Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, Delong EF, Chisholm SW (2006) Genomic islands and the ecology and evolution of Prochlorococcus. Science 311:1768–1770

    Article  PubMed  CAS  Google Scholar 

  • Collos Y, Bec B, Jauzein C, Abadie E, Laugier T, Lautier J, Pastoureaud A, Souchu P, Vaquer A (2009) Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau Lagoon, southern France. J Sea Res 61:68–75

    Article  Google Scholar 

  • Cronberg G (1988) Cyanodictyon tubiforme, a new chroococcal blue-green alga from Lake Börringesjön, Scania, Sweden. Algol Stud 50–53:191–194

    Google Scholar 

  • Cronberg G (1991) Cyanothamnos plancticus gen. Et sp. Nov., a new colonial cyanophyte from an eutrophic Scanian lake, Sweden. Algol Stud 64:61–70

    Google Scholar 

  • Cronberg G (1999) Qualitative and quantitative investigations of phytoplankton in Lake Ringsjön, Scania Sweden. Hydrobiologia 404:27–40

    Article  Google Scholar 

  • Cronberg G (2003) New and interesting cyanoprokaryotes from tempe­rate, brackish ponds and the Baltic Sea. Algol Stud 109:197–211

    Article  Google Scholar 

  • Cronberg G, Komárek J (1994) Planktic Cyanoprokaryotes found in South Swedish lakes during the XIIth international symposium on Cyanophyte research, 1992. Algol Stud 75:323–352

    Google Scholar 

  • Cronberg G, Weibull C (1981) Cyanodictyon imperfectum a new chroococcal blue-green alga from Lake Trummen, Sweden. Algol Stud 27:101–110

    Google Scholar 

  • Crosbie ND, Pöckl M, Weisse T (2003a) Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Appl Environ Microbiol 69:5716–5721

    Article  PubMed  CAS  Google Scholar 

  • Crosbie ND, Pöckl M, Weisse T (2003b) Rapid establishment of clonal isolates of freshwater autotrophic picoplankton by single-cell and single-colony sorting. J Microbiol Method 55:361–370

    Article  CAS  Google Scholar 

  • Crosbie ND, Teubner K, Weisse T (2003c) Flow-cytometric mapping provides novel insights into the seasonal and vertical distributions of freshwater autotrophic picoplankton. Aquat Microb Ecol 33:53–66

    Article  Google Scholar 

  • Diaz M, Pedrozo F, Reynolds C(S), Temporetti P (2007) Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica 37:17–27

    Article  CAS  Google Scholar 

  • Dillon A, Parry JD (2008) Characterization of temperate cyanophages active against freshwater phycocyanin-rich Synechococcus spp. Freshw Biol 53:1253–1261

    Article  Google Scholar 

  • Dillon A, Parry JD (2009) Amoebic grazing of freshwater Synechococcus strains rich in phycocyanin. FEMS Microbiol Ecol 69:106–112

    Article  PubMed  CAS  Google Scholar 

  • Dillon JG, Tatsumi CM, Tandingan PG, Castenholz RW (2002) Effect of environmental factors on the synthesis of scytonemin, a UV-screening pigment, in a cyanobacterium (Chroococcidiopsis sp.). Arch Microbiol 177:322–331

    Article  PubMed  CAS  Google Scholar 

  • Domingos P, Rubim TK, Molica RJR, Azevedo SMFO, Carmichael WW (1999) First report of microcystin production by picoplanktic cyanobacteria isolated from a Northeast Brazilian drinking water supply. Environ Toxicol 14:13–35

    Article  Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2129

    Article  PubMed  CAS  Google Scholar 

  • Drakare S, Blomqvist P, Bergström AK, Jansson M (2003) Relationships between picophytoplankton and environmental variables in lakes along a gradient of water colour and nutrient content. Freshw Biol 48:729–740

    Article  Google Scholar 

  • Drews G, Prauser H, Uhlmann D (1961) Massenvorkommen von Synechococcus plancticus nov. spec., einer solitären, planktischen Cyanophyceae, in einem Abwasserteich. Betrag zur Kenntnis der sogenannten “μ-Algen”. Arch Mikrobiol 39:101–115

    Article  PubMed  CAS  Google Scholar 

  • Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, Paulsen IT, Tandeau de Marsac N, Wincker P, Dossat C, Ferriera S, Johnson J, Post AP, Hess WR, Partensky F (2008) Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 9:R90. doi:10.1186/gb-2008-9-5-r90

    Article  PubMed  CAS  Google Scholar 

  • DuRand MD, Olson RJ, Chisholm SW (2001) Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep Sea Res Part II 48:1983–2003

    Article  Google Scholar 

  • Ernst A (1991) Cyanobacterial picoplankton from Lake Constance I. sola­tion by fluorescence characteristics. J Plankton Res 13:1307–1312

    Article  Google Scholar 

  • Ernst A, Postius C, Böger P (1996) Glycosylated surface proteins reflect genetic diversity among Synechococcus spp. of Lake Constance. Arch Hydrobiol 48:1–6

    Google Scholar 

  • Ernst A, Becker S, Hennes K, Postius C (1999) Is there a succession in the autotrophic picoplankton of temperate zone lakes? In: Bell CR, Brylinski M, Johnson-Green P (eds) Microbial biosystems: new frontiers. Proceedings of the 8th international symposium on microbial ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada, pp 623–629

    Google Scholar 

  • Ernst A, Becker S, Wollenzien VIA, Postius C (2003) Ecosystem dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology 149:217–228

    Article  PubMed  CAS  Google Scholar 

  • Everroad RC, Wood AM (2006) Comparative molecular evolution of newly discovered picocyanobacterial strains reveals a phylogenetically informative variable region of beta-phycoerythrin. J Phycol 42:1300–1311

    Article  CAS  Google Scholar 

  • Fahnenstiel GL, Carrick HJ (1992) Phototrophic picoplankton in lakes Huron and Michigan: abundance, distribution, composition and contribution to biomass and production. Can J Fish Aquat Sci 49:379–388

    Article  Google Scholar 

  • Fahnenstiel GL, Patton TR, Carrick HJ, McCormick MJ (1991) Diel division cycle and growth rates of Synechococcus in lakes Huron and Michigan. Int Rev Ges Hydrobiol 76:657–664

    Article  Google Scholar 

  • Foster RA, Collier JL, Carpenter EJ (2006) Reverse transcription PCR amplification of cyanobacterial symbiont 16S rRNA sequences from single non-photosynthetic eukaryotic marine planktonic host cells. J Phycol 42:243–250

    Article  CAS  Google Scholar 

  • Frias-Lopez J, Thompson A, Waldbauer J, Chisholm S (2009) Use of stable isotope-labelled cells to identify active grazers of picocyanobacteria in ocean surface waters. Environ Microbiol 11:512–525

    Article  PubMed  CAS  Google Scholar 

  • Fu FX, Warner ME, Zhang Y, Feng Y, Hutchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). J Phycol 43:485–496

    Article  Google Scholar 

  • Fuller NJ, Tarran GA, Yallop M, Orcutt KM, Scanlan DJ (2006) Molecular analysis of picocyanobacterial community structure along an Arabian sea transect reveals distinct spatial separation of lineages. Limnol Oceanogr 51:2515–2526

    Article  Google Scholar 

  • Furnas M, Crosbie ND (1999) In situ growth dynamics of the photosynthetic prokaryotic picoplankters Synechococcus and Prochlorococcus. Bull Inst Oceanogr Monaco N Spec 19:387–417

    Google Scholar 

  • Furtado ALFF, Calijuri MDC, Lorenzi AS, Honda RY, Genuario DB, Fiore MF (2009) Morphological and molecular characterization of cyanobacteria from a Brazilian facultative wastewater stabilization pond and evaluation of microcystis production. Hydrobiologia 627:195–209

    Article  CAS  Google Scholar 

  • Gaedke U, Weisse T (1998) Seasonal and interannual variability of picocyanobacteria in Lake Costance. Arch Hydrobiol Spec Issues Adv Limnol 53:143–158

    Google Scholar 

  • Gallager SM, Waterbury JB, Stoecker DK (1994) Efficient grazing and utilization of the marine cyanobacterium Synechococcus by larvae of the bivalve Mercenaria mercenaria. Mar Biol 119:251–259

    Article  Google Scholar 

  • Garcia-Pichel F (1994) A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704–1717

    Article  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacteria sheath pigment. J Phycol 27:395–409

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Environ Microbiol 59:163–169

    PubMed  CAS  Google Scholar 

  • Geitler L (1932) Cyanophyceae. In: Rabenhorst L (ed) Kryptogamen-flora, vol 14. Akademische Verlagsgesellschaft, Leipzig, 1069 pp

    Google Scholar 

  • Gervais F, Padisák J, Koschel R (1997) Do light quality and low nutrient concentration favour picocyanobacteria below the thermocline of the oligotrophic Lake Stechlin? J Plankton Res 19:771

    Article  Google Scholar 

  • Gismervik I (2006) Top-down impact by copepods on ciliate numbers and persistence depends on copepod and ciliate species composition. J Plankton Res 28:499–507

    Article  Google Scholar 

  • Glibert PM, Ray RT (1990) Different patterns of growth and nitrogen uptake in two clones of marine Synechococcus spp. Mar Biol 107:273–280

    Article  Google Scholar 

  • Glover HE, Phinney DA, Yentsch CS (1985) Photosynthetic characteristics of picoplankton compared with those of larger phytoplankton populations in various water masses in the Gulf of Maine. Biol Oceanogr 3:223–248

    Google Scholar 

  • Gophen M, Geller W (1984) Filter mesh size and food particle uptake by Daphnia. Oecologia 64:408–412

    Article  Google Scholar 

  • Gouvea AP, Boyer GL, Twiss MR (2008) Influeance of ultraviolet radiation, copper, and zinc on microcystin content in Microcystis aeruginosa (Cyanobacteria). Harmful Algae 7:194–205

    Article  CAS  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725–749

    PubMed  CAS  Google Scholar 

  • Häder DP, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267–285

    Article  PubMed  CAS  Google Scholar 

  • Harris GP (1980) Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models and management. Can J Fish Aquat Sci 37:877–900

    Article  Google Scholar 

  • Harrison JW, Smith REH (2009) Effects of ultraviolet radiation on the productivity and composition of freshwater phytoplankton communities. Photochem Photobiol Sci 8:1218–1232

    Article  PubMed  CAS  Google Scholar 

  • Hauschild CA, McMurter HJG, Pick FR (1991) Effect of spectral quality on growth and pigmentation of picocyanobacteria. J Phycol 27:698–702

    Article  Google Scholar 

  • Havens KE, Heath RT (1991) Increased transparency due to changes in the algal size spectrum during experimental acidification in mesocosms. J Plankton Res 13:673–679

    Article  Google Scholar 

  • Haverkamp T, Acinas SG, Doeleman M, Stomp M, Huisman J, Stal LJ (2008) Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ Microbiol 10:174–188

    PubMed  CAS  Google Scholar 

  • Haverkamp THA, Schouten D, Doeleman M, Wollenzien U, Huisman J, Stal LJ (2009) Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea. ISME J 3:397–408

    Article  PubMed  CAS  Google Scholar 

  • Hawley GRW, Whitton BA (1991a) Survey of algal picoplankton from lakes in five continents. Verh Int Ver Limnol 24:1220–1222

    Google Scholar 

  • Hawley GRW, Whitton BA (1991b) Seasonal changes in chlorophyll-containing picoplankton populations of ten lakes in Northern England. Int Rev Ges Hydrobiol 76:545–554

    Article  Google Scholar 

  • Helbling EW, Villafañe VE, Barbieri ES (2001) Sensitivity of winter phytoplankton communities from Andean lakes to artificial ultraviolet-B radiation. Rev Chil Hist Nat 74:273–282

    Article  Google Scholar 

  • Helbling EW, Farías ME, Fernández Zenoff MV, Villafañe VE (2006) In situ responses of phytoplankton from the subtropical Lake La Angostura (Tucumán, Argentina) in relation to solar ultraviolet radiation exposure and mixing conditions. Hydrobiologia 559:123–134

    Article  Google Scholar 

  • Heldal M, Scanlan DJ, Norlans S, Thingstad F, Mann NH (2003) Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis. Limnol Oceanogr 48:1731–1743

    Article  Google Scholar 

  • Hickel B (1985) Cyanonephron styloides gen. et sp. nov., a new chroococcal blue-green alga (Cyanophyta) from a brackish lake. Arch Hydrobiol Suppl 71; Algol Stud 38/39:99–104

    Google Scholar 

  • Hickel B (1991) Two new chroococcal cyanophytes from a brackish environment, (Schlei-Fjord) Germany. Algol Stud 64:97–104

    Google Scholar 

  • Hindák F (1975) Einige neue und interessante Planktonblaualgen aus der Westslowakei. Arch Hydrobiol Suppl 46(4); Algol Stud 13:330–353

    Google Scholar 

  • Hindák F (1982) On some planktonic coccoid blue-green algae characteristic by Fe-precipitates. Arch Hydrobiol Suppl 63(3); Algol Stud 32:241–258

    Google Scholar 

  • Hindák F (1985) The cyanophycean genus Lemmermanniella Geitler 1942. Arch Hydrobiol Suppl 71(3); Algol Stud 40:393–401

    Google Scholar 

  • Honda D, Yokota A, Sugiyama J (1999) Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48:723–739

    Article  PubMed  CAS  Google Scholar 

  • Hopkinson BM, Morel FMM (2009) The role of siderophores in iron acquisition by photosynthetic marine microorganisms. Biometals 22:656–669

    Article  CAS  Google Scholar 

  • Houlahan JE, Currie DJ, Cottenie K, Cumming GS, Ernest SKM, Findlay CS, Fuhlendorf SD, Gaedke U, Legendre P, Magnuson JJ, McArdle BH, Muldavin EH, Noble D, Russell R, Stevens RD, Willis TJ, Woiwod IP, Wondzell SM (2007) Compensatory dynamics are rare in natural ecological communities. Proc Natl Acad Sci USA 104:3273–3277

    Article  PubMed  CAS  Google Scholar 

  • Ilikchyan IN, McKay RML, Zehr JP, Dyhrman ST, Bullerjahn GS (2009) Detection and expression of the phosphonate transporter gene PHND in marine and freshwater picocyanobacteria. Environ Microbiol 11:1314–1324

    Article  PubMed  CAS  Google Scholar 

  • Iturriaga R, Mitchell BG (1986) Chroococcoid cyanobacteria: a significant component in the food web dynamics of the open ocean. Mar Ecol Prog Ser 28:291–297

    Article  Google Scholar 

  • Ivanikova NV, Popels LC, McKay RML, Bullerjahn GS (2007) Lake Superior supports novel clusters of cyanobacterial picoplankton. Appl Environ Microbiol 73:4055–4065

    Article  PubMed  CAS  Google Scholar 

  • Izaguirre I, Allende L, Marinone MC (2003) Comparative study of the planktonic communities of three lakes of contrasting trophic status at Hope Bay (Antarctic Peninsula). J Plankton Res 25:1079–1097

    Article  Google Scholar 

  • Jacquet S, Partensky F, Lennon JF, Vaulot D (2001) Diel patterns of growth and division in marine picoplankton in culture. J Phycol 37:357–369

    Article  Google Scholar 

  • Jacquet S, Domaizon I, Personnic S, Sime-Ngando T (2007) Do small grazers influence viral-induced bacterial mortality in Lake Bourget? Fund Appl Limnol 170:125–132

    Article  Google Scholar 

  • Jansson M, Olsson H, Pettersson K (1988) Phosphatases: origin, characteristic and function in lakes. Hydrobiologia 170:157–175

    Article  CAS  Google Scholar 

  • Jasser I (1997) The dynamics and importance of picoplankton in shallow, dystrophic lake in comparison with surface waters of two deep lakes with contrasting trophic status. Hydrobiologia 342–343:87–93

    Article  Google Scholar 

  • Jasser I, Arvola L (2003) Potential effects of abiotic factors on the abundance of autotrophic picoplankton in four boreal lakes. J Plankton Res 25:873–883

    Article  CAS  Google Scholar 

  • Jasser I, Królicka A, Karnkowska-Ishikawa A (2011) A novel phylogenetic clade of picocyanobacteria from the Mazurian lakes (Poland) reflects the early ontogeny of glacial lakes. FEMS Microbiol Ecol 75:89–98

    Google Scholar 

  • Jezberová J, Komárková J (2007) Morphological transformation in a freshwater Cyanobium sp. induced by grazers. Environ Microbiol 9:1858–1862

    Article  PubMed  CAS  Google Scholar 

  • Jochem FJ (2000) Probing the physiological state of phytoplankton at the single-cell level. Sci Mar 64:183–195

    Article  Google Scholar 

  • Joosten AMT (2006) Flora of the blue-green algae of the Netherlands. KNNV Publishing, Utrecht, p 239

    Google Scholar 

  • Jürgens K, Jeppesen E (2000) The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. J Plankton Res 22:1047–1070

    Article  Google Scholar 

  • Kana TM, Glibert PM (1987a) Effect of irradiances up to 2000 μE m−2 s−1 on marine Synechococcus WH7803-I. Growth, pigmentation, and cell composition. Deep Sea Res 34:479–495

    Article  CAS  Google Scholar 

  • Kana TM, Glibert PM (1987b) Effect of irradiances up to 2000 μE m−2 s−1 on marine Synechococcus WH7803 -II. Photosynthetic responses and mechanisms. Deep Sea Res 34:497–516

    Article  CAS  Google Scholar 

  • Karentz D, McEuen FS, Land MC, Dunlap WC (1991) Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar Biol 108:157–166

    Article  CAS  Google Scholar 

  • Karl DM, Letelier R, Tupas L, Dore JE, Christian J, Hebel DV (1997) The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388:533–538

    Article  CAS  Google Scholar 

  • Kasai F, Waiser MJ, Robarts RD, Arts MT (2001) Size dependent UVR sensitivity in Redberry lake phytoplankton communities. Ver Int Ver Limnol 27:2018–2023

    Google Scholar 

  • Kasprzak P, Gervais F, Adrian R, Weiler W, Radke R, Jaeger I, Riest S, Siedel U, Schneider V, Boehme M, Eckmann R, Walz N (2000) Trophic characterization, pelagic food web structure and comparison of two mesotrophic lakes in Brandenburg (Germany). Int Rev Ges Hydrobiol 85:167–189

    Article  CAS  Google Scholar 

  • Katano T, Nakano S, Ueno H, Mitamura U, Anbutsu K, Kihira M, Satoh Y, Drucker V, Sugiyama M (2005) Abundance, growth and grazing loss rates of picophytoplankton in Barguzin Bay, Lake Baikal. Aquat Ecol 39:431–438

    Article  Google Scholar 

  • Katano T, Nakano S, Mitamura O, Yoshida H, Azumi H, Matsuura Y, Tanaka Y, Maezono H, Satoh Y, Satoh T, Sugiyama Y, Watanabe Y, Mimura T, Akagashi Y, Machida H, Drucker V, Tikhonova I, Belykh O, Fialkov VA, Han MS, Kang SH, Sugiyama M (2008) Abundance and pigment type composition of picocyanobacteria in Barguzin Bay, Lake Baikal. Limnology 9:105–114

    Article  Google Scholar 

  • Klut EM, Stockner JG (1991) Picoplankton associations in an ultra-oligotrophic lake on Vancouver Island, British Columbia. Can J Fish Aquat Sci 48:1092–1099

    Article  Google Scholar 

  • Koblížek M, Komenda J, Masojídek J, Pechar L (2000) Cell aggregation of the cyanobacterium Synechococcus elongatus: role of the electron transport chain. J Phycol 36:662–668

    Article  Google Scholar 

  • Komárek J (1958) Die taxonomische Revision der planktischen Blaualgen der Tschechoslowakei. In: Komárek J, Ettl H (eds) Algologische Studien. Naklad, ČSAV, Prague, pp 10–106

    Google Scholar 

  • Komárek J (1976) Taxonomic review of the genera Synechocystis SAUV. 1892, Synechococcus Näg. 1849, and Cyanothece gen. nov. (Cyanophyceae). Arch Protistenk 118:119–179

    Google Scholar 

  • Komárek J (1996) Towards a combined approach for the taxonomic and species delimitation of picoplanktic cyanoprokaryotes. Algol Stud 83:377–401

    Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1. Teil Chroococcales. Süsswasserflora von Mitteleuropas. Gustav Fischer, Stuttgart, 548 pp

    Google Scholar 

  • Komárek J, Anagnostidis K (1999) Cyanoprokaryota 1. Teil Chroococcales. Süsswasserflora von Mitteleuropa 19/1. Gustav Fischer, Jena, 548 p

    Google Scholar 

  • Komárek J, Kling H (1991) Variation in six planktonic cyanophyte genera in Lake Victoria (East Africa). Algol Stud 61:21–45

    Google Scholar 

  • Komárek J, Komárková-Legnerová J (1992) Variability of some planktic gomphosphaeriod cyanoprocaryotes in northern lakes. Nord J Bot Sect Phycol 12:513–524

    Article  Google Scholar 

  • Komárek J, Azevedo SMFO, Domingos P, Komárková J, Tichý M (2001) Background of the Caruaru tragedy; a case taxonomic study of toxic cyanobacteria. Algol Stud 103:9–29

    Google Scholar 

  • Komárek J, Cepák V, Kaštovský J, Sulek J (2004) What are the cyanobacterial genera Cyanothece and Cyanobacterium? Contribution to the combined molecular and phenotype taxonomic evaluation of cyanobacterial diversity. Algol Stud 113:1–36

    Article  Google Scholar 

  • Komárková J (2002) Cyanobacterial picoplankton and its colonial formations in two eutrophic canyon reservoirs (Czech Republic). Arch Hydrobiol 154:605–623

    Google Scholar 

  • Komárková J, Cronberg G (1985) Lemmermanniella pallida (LEMM.) GEITL. from South-Swedish lakes. Arch Hydrobiol Suppl 71(3); Algol Stud 40:403–413

    Google Scholar 

  • Komárková-Legnerová J, Cronberg G (1994) Planktic blue-green algae from lakes in South Scania Sweden Part I: Chroococcales. Algol Stud 72:13–51

    Google Scholar 

  • Kranzler C, Lis H, Shaked Y, Keren N (2011) The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium. Environ Microbiol 13:2990–2999

    Google Scholar 

  • Lagerheim G (1883) Bidrag till Sveriges algflora. Öfv Kgl Vetensk-Akad Förhandl 40(2):37–39

    Google Scholar 

  • Landry MR, Hassett RP (1982) Estimating the grazing impact of marine microzooplankton. Mar Biol 67:283–288

    Article  Google Scholar 

  • Landry MR, Kirshtein J, Constantinou J (1995) A refined dilution technique for measuring the community grazing impact of microzooplankton with experimental tests in the Central Equatorial Pacific. Mar Ecol Prog Ser 120:53–63

    Article  Google Scholar 

  • Laurion I, Vincent WF (1998) Cell size vs. taxonomic composition as determinants of UV sensitivity in natural phytoplankton communities. Limnol Oceanogr 43:1774–1779

    CAS  Google Scholar 

  • Lavallée BF, Pick FR (2002) Picocyanobacteria abundance in relation to growth and loss rates in oligotrophic to mesotrophic lakes. Aquat Microb Ecol 27:37–46

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzales A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Lemmermann E (1904) Das Plankton schwedischer Gewasser. Ark Bot 2:1–209

    Google Scholar 

  • Li WKW (1998) Annual average abundance of heterotrophic bacteria and Synechococcus in surface ocean waters. Limnol Oceanogr 43:1743–1753

    Article  Google Scholar 

  • Liu H, Campbell L, Landry MR (1995) Growth and mortality rates of Prochlorococcus and Synechococcus measured with a selective inhibitor technique. Mar Ecol Prog Ser 116:277–287

    Article  Google Scholar 

  • Liu Z, Häder DP, Sommaruga R (2004) Occurrence of mycosporine-like aminoacids (MAAs) in the bloom-forming cyanobacterium Microcyctis aeruginosa. J Plankton Res 26:963–966

    Article  CAS  Google Scholar 

  • Liu X, Shi M, Liao Y, Gao Y, Zhang Z, Wen D, Wu W, An C (2006) Feeding characteristics of an amoeba (Lobosea: Naegleria) grazing upon cyanobacteria: food selection, ingestion and digestion process. Microb Ecol 51:315–325

    Article  Google Scholar 

  • Logue JB, Lindström ES (2008) Biogeography of bacterioplankton in inland waters. Freshw Rev 1:99–114

    Google Scholar 

  • Mackey KRM, Paytan A, Grossman AR, Bailey S (2008) A photosynthetic strategy for coping in a high-light, low-nutrient environment. Limnol Oceanogr 53:900–913

    Article  CAS  Google Scholar 

  • Mackey KRM, Rivlin T, Grossman AR, Post AF, Paytan A (2009) Picophytoplankton responses to changing nutrient and light regimes during a bloom. Mar Biol 156:1535–1546

    Article  Google Scholar 

  • Maeda H, Kawai A, Tilzer MM (1992) The water bloom of cyano­bacterial picoplankton in Lake Biwa, Japan. Hydrobiologia 248:93–103

    Article  Google Scholar 

  • Malinsky-Rushansky N, Berman T, Dubinsky Z (1995) Seasonal dynamics of picophytoplankton in Lake Kinneret, Israel. Freshw Biol 34:241–254

    Article  Google Scholar 

  • Mann KH (1993) Physical oceanography, food chains, and fish stocks: a review. ICES J Mar Sci 50:105–119

    Article  Google Scholar 

  • Mann NH (2003) Phages of marine cyanobacterial picophytoplankton. FEMS Microbiol Rev 27:17–34

    Article  PubMed  CAS  Google Scholar 

  • Martin-Creuzburg D, Von Elert E (2006) Trophic upgrading of autotrophic picoplankton by the heterotrophic nanoflagellate Paraphysomonas sp. Limnol Oceanogr 51:1699–1707

    Article  Google Scholar 

  • Martin-Creuzburg D, Bec A, Von Elert E (2005) Trophic upgrading of picocyanobacterial carbon by ciliates for nutrition of Daphnia magna. Aquat Microb Ecol 41:271–280

    Article  Google Scholar 

  • Massana R, del Campo J, Dinter C, Sommaruga R (2007) Crash of a population of the marine heterotrophic flagellate Cafeteria roenbergensis by viral infection. Environ Microbiol 9:2660–2669

    Article  PubMed  CAS  Google Scholar 

  • Mastala Z, Herodek S, V-Balogh K, Borbély G, Shafik HM, Vörös L (1996) Nutrient requirement and growth of a Synechococcus species isolated from Lake Balaton. Int Rev Ges Hydrobiol 81:503–512

    Article  Google Scholar 

  • Meyer B (1994) A new species of Cyanodictyon (Cyanophyceae, Chroococcales) planktic in eutrophic lakes. Algol Stud 75:183–188

    Google Scholar 

  • Mills MM, Ridame C, Davey M, La Roche J (2004) Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429:292–294

    Article  PubMed  CAS  Google Scholar 

  • Modenutti BE, Balseiro EG (2002) Mixotrophic ciliates in an Andean lake: dependence on light and prey of an Ophrydium naumanni population. Freshw Biol 47:121–128

    Article  Google Scholar 

  • Modenutti BE, Queimaliños C, Balseiro EG, Reissig M (2003) Impact of different zooplankton structures on the microbial food web of a South Andean oligotrophic lake. Acta Oecol 24:S289–S298

    Article  Google Scholar 

  • Moore LR, Ostrowski M, Scanlan DJ, Feren K, Sweetsir T (2005) Ecotypic variation in phosphorus acquisition mechanisms within marine picocyanobacteria. Aquat Microb Ecol 39:257–269

    Article  Google Scholar 

  • Morel A, Bricaud A (1981) Theoretical results concerning light absorption in a discrete medium, an application to specific absorption of phytoplankton. Deep Sea Res 28:1375–1393

    Article  Google Scholar 

  • Morris I, Glover HE (1981) Physiology of photosynthesis by marine coccoid cyanobacteria some ecological implications. Limnol Oceanogr 26:957–961

    Article  CAS  Google Scholar 

  • Moser M, Callieri C, Weisse T (2009) Photosynthetic and growth response of freshwater picocyanobacteria are strain-specific and sensitive to photoacclimation. J Plankton Res 31:349–357

    Article  PubMed  CAS  Google Scholar 

  • Moutin T, Thingstad TR, Van Wambeke F, Marie D, Slawyk G, Raimbault P, Claustre H (2002) Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium Synechococcus ? Limnol Oceanogr 47:1562–1567

    Article  CAS  Google Scholar 

  • Mózes A, Présing M, Vörös L (2006) Seasonal dynamics of picocyanobacteria and picoeukaryotes in a large shallow lake (Lake Balaton, Hungary). Int Rev Ges Hydrobiol 91:38–50

    Article  CAS  Google Scholar 

  • Mühling M, Fuller NJ, Millard A, Somerfield PJ, Marie D, Wilson WH, Scanlan DJ, Post AF, Joint I, Mann NH (2005) Genetic diversity of marine Synechococcus and co-occurring cyanophage community: evidence for viral control of phytoplankton. Environ Microbiol 7:499–508

    Article  PubMed  Google Scholar 

  • Murphy TP, Lean DRS, Nalewajko C (1976) Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae. Science 192:900–902

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Takai K, Kawanobe K, Kim D, Nakazato R, Guselnikova N, Bondarenko N, Mologawaya O, Kostrnova T, Drucker V, Satoh Y, Watanabe Y (1994) Autotrophic picoplankton in southern Lake Baikal: abundance growth and grazing mortality during summer. J Plankton Res 16:945–959

    Article  Google Scholar 

  • Nagata T, Takay K, Kawabata K, Nakanishi M, Urabe J (1996) The trophic transfer via a picoplankton-flagellate-copepod food chain during a picocyanobacterial bloom in Lake Biwa. Arch Hydrobiol 137:145–160

    Google Scholar 

  • Naumann E (1924) Sotvattnets plankton Stockholm, Sweden 267 pp

    Google Scholar 

  • Nedoma J, Štrojsová A, Vrba J, Komárková J, Šimek K (2003) Extracellular phosphatase activity of natural plankton studied with ELF97 phosphate: fluorescence quantification and labelling kinetics. Environ Microbiol 5:462–472

    Article  PubMed  CAS  Google Scholar 

  • Padisák J, Krienitz L, Koschel R, Nedoma J (1997) Deep-layer autotrophic picoplankton maximum in the oligotrophic Lake Stechlin, Germany: origin, activity, development and erosion. Eur J Phycol 32:403–416

    Google Scholar 

  • Padisák J, Krienitz L, Scheffler W, Koschel R, Kristiansen J, Grigorszky I (1998) Phytoplankton succession in the oligotrophic Lake Stechlin (Germany) in 1994 and 1995. Hydrobiologia 369/370:179–197

    Article  Google Scholar 

  • Padisák J, Barbosa FAR, Koschel R, Krienitz L (2003) Deep layer cyanoprokaryota maxima are constitutional features of lakes: examples from temperate and tropical regions. Arch Hydrobiol Spec Issues Adv Limnol 58:175–199

    Google Scholar 

  • Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA, Waterbury J (2003) The genome of a motile marine Synechococcus. Nature 424:1037–1042

    Article  PubMed  CAS  Google Scholar 

  • Passoni S, Callieri C (2000) Picocyanobacteria single forms, aggregates and microcolonies: survival strategy or species succession? Ver Int Ver Limnol 27:1879–1883

    Google Scholar 

  • Pérez G, Quemaliños C, Modenutti B (2002) Light climate and plankton in the deep chlorophyll maxima in North Patagonian Andean lakes. J Plankton Res 24:591–599

    Article  Google Scholar 

  • Pernthaler J, Šimek K, Sattler B, Schwarzenbacher A, Bobkova J, Psenner R (1996) Short-term changes of protozoan control on autotrophic picoplankton in an oligo-mesotrophic lake. J Plankton Res 18:443–462

    Article  Google Scholar 

  • Personnic S, Domaizon I, Dorigo U, Berdjeb L, Jacquet S (2009a) Seasonal and spatial variability of virio-, bacterio-, and picophytoplanktonic abundances in three peri-alpine lakes. Hydrobiologia 627:99–116

    Article  Google Scholar 

  • Personnic S, Domaizon I, Sime-Ngando T, Jacquet S (2009b) Seasonal variations of microbial abundances and virus-versus flagellate-induced mortality of picoplankton in three peri-alpine lakes. J Plankton Res 31:1161–1177

    Article  Google Scholar 

  • Peštová D, Macek M, Martínez Pérez ME (2008) Ciliates and their picophytoplankton-feeding activity in a high-altitude warm-monomictic saline lake. Eur J Protistol 44:13–25

    Article  PubMed  Google Scholar 

  • Pick FR (1991) The abundance and composition of freshwater picocyanobacteria in relation to light penetration. Limnol Oceanogr 36:1457–1462

    Article  CAS  Google Scholar 

  • Pick FR, Agbeti DM (1991) The seasonal dynamic and composition of photosynthetic picoplankton communities in temperate lakes in Ontario, Canada. Int Rev Ges Hydrobiol 76:565–580

    Article  Google Scholar 

  • Ploug H, Stolte W, Jørgensen BB (1999) Diffusive boundary layers of the colony-forming plankton alga Phaeocystis sp. – implications for nutrient uptake and cellular growth. Limnol Oceanogr 44:1959–1967

    Article  CAS  Google Scholar 

  • Porter KG (1973) Selective grazing and differential digestion of algae by zooplankton. Nature 244:179–180

    Article  Google Scholar 

  • Porter KG (1975) Viable gut passage of gelatinous green algae ingested by Daphnia. Ver Int Ver Limnol 19:2840–2850

    Google Scholar 

  • Postius C, Böger P (1998) Different interactions of phycoerythrin- and phycocyanin-rich Synechococcus spp. with diazotrophic bacteria from the picoplankton of Lake Constance. Arch Hydrobiol 141:181–194

    CAS  Google Scholar 

  • Postius C, Ernst A (1999) Mechanisms of dominance: coexistence of picocyanobacterial genotypes in a freshwater ecosystem. Arch Microbiol 172:69–75

    Article  PubMed  CAS  Google Scholar 

  • Powell LM, Bowman JP, Skerratt JH, Franzmann PD, Burton HR (2005) Ecology of a novel Synechococcus clade occurring in dense populations in saline Antarctic lakes. Mar Ecol Prog Ser 291:65–80

    Article  CAS  Google Scholar 

  • Pradeep Ram AS, Sime-Ngando T (2008) Functional responses of prokaryotes and viruses to grazer effects and nutrient additions in freshwater microcosms. ISME J 2:498–509

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (1986) Physiological consequences of extremely small size for autotrophic organisms in the sea. In: Platt T, Li WKW (eds) Photosynthetic picoplankton. Department of Fisheries and Oceans, Ottawa. Can Bull Fish Aquat Sci 214:1–70

    Google Scholar 

  • Reche I, Carrillo P, Cruz-Pizarro L (1997) Influence of metazooplankton on interactions of bacteria and phytoplankton in an oligotrophic lake. J Plankton Res 19:631–646

    Article  Google Scholar 

  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428

    Article  Google Scholar 

  • Robertson BR, Tezuka N, Watanabe MM (2001) Phylogenetic analyses of Synechococcus strains (Cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int J Syst Evol Microbiol 51:861–871

    Article  PubMed  CAS  Google Scholar 

  • Rocap G, Distel DL, Waterbury JB, Chisholm SW (2002) Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68:1180–1191

    Article  PubMed  CAS  Google Scholar 

  • Roff JC, Turner JT, Webber MK, Hopcroft RR (1995) Bacterivory by tropical copepod nauplii extent and possible significance. Aquat Microb Ecol 9:165–175

    Article  Google Scholar 

  • Ronneberger D (1998) Uptake of latex beads as size-model for food of planktonic rotifers. Hydrobiologia 387(388):445–449

    Article  Google Scholar 

  • Sánchez-Baracaldo P, Hayes PK, Blank CE (2005) Morphological and habitat evolution in the cyanobacteria using a compartmentalization approach. Geobiology 3:145–165

    Article  Google Scholar 

  • Sánchez-Baracaldo P, Handley BA, Hayes PK (2008) Picocyanobacterial community structure of freshwater lakes and the Baltic Sea revealed by phylogenetic analyses and clade-specific quantitative PCR. Microbiology 154:3347–3357

    Article  PubMed  CAS  Google Scholar 

  • Sanders RW, Berninger UG, Lim EL, Kemp PF, Caron DA (2000) Heterotrophic and mixotrophic nanoplankton predation on picoplankton in the Sargasso Sea and Georges Bank. Mar Ecol Prog Ser 192:103–118

    Article  Google Scholar 

  • Sant’Anna CL, Azevedo MTP, Senna PAC, Komárková J, Komárková J (2004) Planktic cyanobacteria from Sao Paulo State, Brazil: Chroococcales. Rev Bras Bot 27(2):213–227

    Article  Google Scholar 

  • Scanlan DJ, West NJ (2002) Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol Ecol 40:1–12

    Article  PubMed  CAS  Google Scholar 

  • Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky R (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73:249–299

    Article  PubMed  CAS  Google Scholar 

  • Schindler DW (1977) Evolution of phosphorus limitation in lakes: natural mechanisms compensate for deficiencies of nitrogen and carbon in eutrophied lakes. Science 195:260–262

    Article  PubMed  CAS  Google Scholar 

  • Schindler DW (1990) Experimental perturbations of the whole lakes as tests of hypotheses concerning ecosystem structure and function. Oikos 57:25–41

    Article  Google Scholar 

  • Schindler DW (2006) Recent advantages in understanding and management of eutrophication. Limnol Oceanogr 51:351–355

    Article  Google Scholar 

  • Shannon S, Chrzanowski T, Grover J (2007) Prey food quality affects flagellate ingestion rates. Microb Ecol 53:66–73

    Article  PubMed  Google Scholar 

  • Sherr EB, Sherr BF (1993) Protistan grazing rates via uptake of fluorescently labeled prey. In: Kemp P, Sherr B, Sherr E, Cole J (eds) Handbook of methods in aquatic microbial ecology. Lewis Publisher, Boca Raton, pp 695–701

    Google Scholar 

  • Sherr BF, Sherr EB, Albright LJ (1987) Bacteria: link or sink? Science 235:88–89

    Article  Google Scholar 

  • Sherr EB, Sherr BF, Berman T, Hadas O (1991) High abundance of picoplankton-ingesting ciliates during late fall in Lake Kinneret Israel. J Plankton Res 13:789–799

    Article  Google Scholar 

  • Šimek K, Chrzanowski TH (1992) Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. Appl Environ Microbiol 58:3715–3720

    PubMed  Google Scholar 

  • Šimek K, Bobkova J, Macek M, Nedoma J, Psenner R (1995) Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol Oceanogr 40:1077–1090

    Article  Google Scholar 

  • Šimek K, Macek M, Pernthaler J, Straskrabová V, Psenner R (1996) Can freshwater planktonic ciliates survive on a diet of picoplankton? J Plankton Res 18:597–613

    Article  Google Scholar 

  • Sime-Ngando T (1995) Population dynamics of autotrophic picoplankton in relation to environmental factors in a productive lake. Aquat Sci 57:91–105

    Article  Google Scholar 

  • Simon RD (1987) Inclusion bodies in the cyanobacteria: cyanophycin, polyphospate, polyhedral bodies. In: Fay P, Van Baalen C (eds) The cyanobacteria. Elsevier, Amsterdam/New York/Oxford, pp 199–225, 543 pp

    Google Scholar 

  • Sinha RP, Häder DP (2008) UV-protectants in cyanobacteria. Plant Sci 174:278–289

    Article  CAS  Google Scholar 

  • Six C, Thomas JC, Garczarek L, Ostrowski M, Dufresne A, Blot N, Scanlan DJ, Partensky F (2007) Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol 8:R259

    Article  PubMed  CAS  Google Scholar 

  • Skuja H (1932) Vorarbeiten zu einer Algenflora von Lettland. Bibl Phycol 26:1–302

    Google Scholar 

  • Skuja H (1948) Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symb Bot Upsal 9:1–399

    Google Scholar 

  • Skuja H (1964) Grundzüge der Algenflora und Algenvegetation der Fjeldgegenden um Abisko in schwedisch-Lappland. Nova Acta Reg Soc Sci Upsal Ser 4 18(3):1–465

    Google Scholar 

  • Sommaruga R (2009) Perspectives and research on environmental effects of ultraviolet radiation. Photochem Photobiol Sci 8:1217

    Article  PubMed  CAS  Google Scholar 

  • Sommaruga R, Hofer JS, Alonso-Sáez L, Gasol JM (2005) Differential sunlight sensitivity of picophytoplankton from surface Mediterranean coastal waters. Appl Environ Microbiol 71:2154–2157

    Article  PubMed  CAS  Google Scholar 

  • Sommaruga R, Chen Y, Liu Z (2009) Multiple strategies of bloom-forming Microcyctis to minimize damage by solar ultraviolet radiation in surface waters. Microb Ecol 57:667–674

    Article  PubMed  Google Scholar 

  • Søndergaard M (1991) Phototrophic picoplankton in temperate lakes: seasonal abundance and importance along a trophic gradient. Int Rev Ges Hydrobiol 76:505–522

    Article  Google Scholar 

  • Staley JT (1997) Biodiversity: are microbial species threatened? Curr Opin Biotechnol 8:340–345

    Article  PubMed  CAS  Google Scholar 

  • Stanier RY, Kuniswawa R, Mandel R, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol Rev 35:171–205

    PubMed  CAS  Google Scholar 

  • Stockner JG (ed) (1991a) Autotrophic picoplankton in freshwater ecosystems. Int Rev Ges Hydrobiol 76:664 pp

    Google Scholar 

  • Stockner JG (1991b) Autotrophic picoplankton in freshwater ecosystems: the view from the summit. Int Rev Ges Hydrobiol 76:483–492

    Article  Google Scholar 

  • Stockner JG (1998) Global warming, picocyanobacteria and fisheries decline: is there a connection? In: Atti del 12° Congresso AIOL, Vol.II, Genova, pp 29–37

    Google Scholar 

  • Stockner JG, Antia NJ (1986) Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can J Fish Aquat Sci 43:2472–2503

    Article  Google Scholar 

  • Stockner JG, Porter KG (1988) Microbial food webs in fresh-water planktonic ecosystems. In: Carpenter SR (ed) Complex interactions in lake communities. Springer, New York, pp 69–83, 283 pp

    Chapter  Google Scholar 

  • Stockner JG, Shortreed KS (1988) Response of Anabaena and Synechococcus to manipulation of nitrogen:phosphorus ratios in a lake fertilization experiment. Limnol Oceanogr 33(1348):1361

    Google Scholar 

  • Stockner JG, Shortreed KS (1989) Algal picoplankton production and contribution to food webs in oligotrophic British Columbia lakes. Hydrobiologia 173:151–166

    Article  CAS  Google Scholar 

  • Stockner JG, Shortreed KS (1991) Phototrophic picoplankton: community composition abundance and distribution across a gradient of oligotrophic British Columbia and Yukon Territory lakes. Int Rev Ges Hydrobiol 76:581–601

    Article  Google Scholar 

  • Stockner JG, Shortreed KS (1994) Autotrophic picoplankton community dynamics in a pre-alpine lake in British Columbia, Canada. Hydrobiologia 274:133–142

    Article  Google Scholar 

  • Stockner J, Callieri C, Cronberg G (2000) Picoplankton and other non-bloom forming cyanobacteria in lakes. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 195–238, 688 pp

    Google Scholar 

  • Stockner JG, Langston A, Sebastian D, Wilson G (2005) The limnology of Williston Reservoir: British Columbia’s largest lacustrine ecosystem. Water Qual Res J Can 40:28–50

    CAS  Google Scholar 

  • Stomp M, Huisman J, de Jongh F, Veraart AJ, Gerla D, Rijkeboer M, Ibelings BW, Wollenzien UIA, Stal LJ (2004) Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432:104–107

    Article  PubMed  CAS  Google Scholar 

  • Stomp M, Huisman J, Vörös L, Pick FR, Laamanen M, Haverkamp T, Stal LJ (2007) Colorful coexistence of red and green picocyanobacteria in lakes and seas. Ecol Lett 10:290–298

    Article  PubMed  Google Scholar 

  • Straškrabová V, Callieri C, Carrillo P, Cruz-Pizarro L, Fott J, Hartman P, Macek M, Medina-Sánchez JM, Nedoma J, Šimek K (1999a) Investigation on pelagic food web in mountain lakes – aims and methods. In: Straškrabová V, Callieri C, Fott J (eds) Pelagic food web in Mountain Lakes. MOuntain LAkes Research Program. J Limnol 58:77–87

    Article  Google Scholar 

  • Straškrabová V, Callieri C, Fott J (eds) (1999b) Pelagic food web in mountain lakes (Mountain Lakes Research Program). J Limnol 58:222 pp

    Google Scholar 

  • Štrojsová A, Vrba J, Nedoma J, Komarková J, Znachor P (2003) Seasonal study of extracellular phosphatase expression in the phytoplankton of a eutrophic reservoir. Eur J Phycol 38:295–306

    Article  CAS  Google Scholar 

  • Sundt-Hansen LE, Olsen Y, Stibor H, Heldal M, Vadstein O (2006) Trophic cascades mediated by copepods, not nutrient supply rate, determine the development of picocyanobacteria. Aquat Microb Ecol 45:207–218

    Article  Google Scholar 

  • Suttle C (2000) Cyanophages and their role in the ecology of cyanobacteria. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 563–589, 668 pp

    Google Scholar 

  • Szelag-Wasielewska E (2003) Phytoplankton community structure in non-stratified lakes of Pomerania (NW Poland). Hydrobiologia 506–509:229–236

    Article  Google Scholar 

  • Takano H, Arai T, Hirano M, Matsunaga T (1995) Effects of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp. NKBG 042902. Appl Microbiol Biotechnol 43:1014–1018

    Article  CAS  Google Scholar 

  • Tarao M, Jezbera J, Hahn M (2009) Involvement of cell surface structures in size-independent grazing resistance of freshwater Actinobacteria. Appl Environ Microbiol 75:4720–4726

    Article  PubMed  CAS  Google Scholar 

  • Tarbe AL, Unrein F, Stenuite S, Pirlot S, Sarmento H, Sinyinza D, Jean-Descy JP (2011) Protist herbivory: a key pathway in the pelagic food web of Lake Tanganyika. Microb Ecol 62:314–323

    Google Scholar 

  • Taylor GT (1982) The role of pelagic heterotrophic protozoa in nutrient cycling: a review. Ann Inst Oceanogr 58:227–241

    Google Scholar 

  • Timmermans KR, van der Wagt B, Veldhuis MJW, Maatman A, de Baar HJW (2005) Physiological responses of three species of marine pico-phytoplankton to ammonium, phosphate, iron and light limitation. J Sea Res 53:109–120

    Article  CAS  Google Scholar 

  • Toro M, Camacho A, Rochera C, Rico E, Bañón M, Fernandez-Valiente E, Marco E, Justel A, Avendañn MC, Ariosa Y, Vincent WF, Quesada A (2007) Limnological characteristics of freshwater ecosystems of Byers peninsula, Livingstone Island, in maritime Antarctica. Polar Biol 30:635–649

    Article  Google Scholar 

  • Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–531

    Article  CAS  Google Scholar 

  • Urbach E, Scanlan DJ, Distel DL, Waterbury JB, Chisholm SW (1998) Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structure inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J Mol Evol 46:188–201

    Article  PubMed  CAS  Google Scholar 

  • Vadstein O (2000) Heterotrophic planktonic bacteria and cycling of phosphorus: phosphorus requirements, competitive ability, and food web interactions. In: Schink B (ed) Advances in microbial ecology, vol 16. Kluwer Academic Publisher, New York, pp 115–167

    Chapter  Google Scholar 

  • Van Donk E, Hessen DO (1993) Grazing resistance in nutrient-stressed phytoplankton. Oecologia 93:508–511

    Article  Google Scholar 

  • Van Donk E, Faafeng BA, De Lange HJ, Hessen DO (2001) Differential sensitivity to natural ultraviolet radiation among phytoplankton species in Arctic lakes (Spitsbergen, Norway). Plant Ecol 154:247–259

    Article  Google Scholar 

  • Van Gremberghe I, Van Wichelen J, Van der Gucht K, Vanormelingen P, D’hondt S, Boutte C, Wilmotte A, Vyverman W (2008) Covariation between zooplankton community composition and cyanobacterial community dynamics in Lake Blaarmeersen (Belgium). FEMS Microbiol Ecol 63:222–237

    Article  PubMed  CAS  Google Scholar 

  • Van Mooy BAS, Rocap G, Fredericks HF, Evans CT, Devol AH (2006) Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc Natl Acad Sci USA 103:8607–8612

    Article  PubMed  CAS  Google Scholar 

  • Van Mooy BAS, Fredericks HF, Pedler BE, Dyhrman ST, Karl DM, Koblížek M, Lomas MW, Mincer TJ, Moore LR, Moutin T, Rappé MR, Webb EA (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarsity. Nature 458:69–72

    Article  PubMed  CAS  Google Scholar 

  • Vázquez-Domínguez E, Peters F, Gasol JM, Vaqué D (1999) Measuring the grazing losses of picoplankton: methodological improvements in the use of fluorescently labeled tracers combined with flow cytometry. Aquat Microb Ecol 20:119–128

    Article  Google Scholar 

  • Vázquez-Domínguez E, Duarte CM, Agustí S, Jürgens K, Vaqué D, Gasol JM (2008) Microbial plankton abundance and heterotrophic activity across the Central Atlantic Ocean. Prog Oceanogr 79:83–94

    Article  Google Scholar 

  • Veldhuis MJW, Admiral W (1987) Influence of phosphate depletion on the growth and colony formation of Phaeocystis pouchetii. Mar Biol 95:47–54

    Article  CAS  Google Scholar 

  • Villafañe VE, Andrade M, Lairana V, Zaratti F, Helbling EW (1999) Inhibition of phytoplankton photosynthesis by solar ultraviolet radiation: studies in Lake Titicaca, Bolivia. Freshw Biol 42:215–224

    Article  Google Scholar 

  • Villafañe VE, Sundbäck K, Figueroa FL, Helbling EW (2003) Photosynthesis in the aquatic environment as affected by UVR. In: Helbling EW, Zagarese H (eds) UV effects in aquatic organisms and ecosystems. Comprehensive series in photochemistry and photobiology. The Royal Society of Chemistry, Cambridge, pp 357–398

    Chapter  Google Scholar 

  • Villafañe VE, Marcoval MA, Helbling EW (2004) Photosynthesis versus irradiance characteristics in phytoplankton assemblages off Patagonia (Argentina): temporal variability and solar UVR effects. Mar Ecol Prog Ser 284:23–34

    Article  Google Scholar 

  • Vincent WF (2000) Cyanobacteria dominance in the polar region. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 321–340, 668 pp

    Google Scholar 

  • Vincent WF, Bowman JP, Rankin LM, McMeekin TA (2000) Phylogenetic diversity of picocyanobacteria in Arctic and Antarctic ecosystems. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Microbial biosystems: new frontiers. Atlantic Canada Society for Microbial Ecology, Halifax, pp 317–322

    Google Scholar 

  • Vörös L, Callieri C, Balogh KV, Bertoni R (1998) Freshwater picocyanobacteria along trophic gradient and light quality range. Hydrobiologia 369(370):117–125

    Article  Google Scholar 

  • Vörös L, Mózes A, Somogyi B (2009) A five-year study of autotrophic winter picoplankton in Lake Balaton, Hungary. Aquat Ecol 43:727–734

    Article  CAS  Google Scholar 

  • Vrede K (1996) Regulation of bacterioplankton production and biomass in an oligotrophic clearwater lake – the importance of the phytoplankton community. J Plankton Res 18:1009–1032

    Article  Google Scholar 

  • Waterbury JB, Watson SW, Valois FW, Franks DG (1986) Biological and ecological characterisation of the marine unicellular cyanobacterium Synechococcus. Can Bull Fish Aquat Sci 214:17–120

    Google Scholar 

  • Wehr JD (1993) Effects of experimental manipulations of light phosphorus supply on competition among picoplankton and nanoplankton in an oligotrophic lake. Can J Fish Aquat Sci 50:936–945

    Article  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    Article  PubMed  CAS  Google Scholar 

  • Weisse T (1990) Trophic interactions among heterotrophic microplankton, nanoplankton, and bacteria in Lake Constance (FRG). Hydrobiologia 191:111–122

    Article  Google Scholar 

  • Weisse T (1993) Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In: Jones JG (ed) Advances in microbial ecology, vol 13. Plenum Press, New York, pp 327–370

    Chapter  Google Scholar 

  • Weisse T, Kenter U (1991) Ecological characteristics of autotrophic picoplankton in a prealpine lake. Int Rev Ges Hydrobiol 76:493–504

    Article  Google Scholar 

  • Weisse T, Schweizer A (1991) Seasonal and interannual variation of autotrophic picoplankton in a large prealpine lake (Lake Constance). Verh Int Ver Limnol 24:821–825

    Google Scholar 

  • West W, West GS (1894) On some algae from the West Indies. J Linn Soc 30(208):264–280

    Article  Google Scholar 

  • Whitton BA, Grainger SLJ, Hawley GRW, Simon JW (1991) Cell-bound and extracellular phosphatase activities of cyanobacterial isolates. Microb Ecol 21:85–98

    Article  CAS  Google Scholar 

  • Whitton BA, Al-Shehri AH, Ellwood NTW, Turner BL (2005) Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. Commonwealth Agricultural Bureau, Wallingford, pp 205–241, 399 pp

    Chapter  Google Scholar 

  • Wilhelm SW (1995) Ecology of iron-limited cyanobacteria: a review of physiological responses and implications for aquatic systems. Aquat Microb Ecol 9:295–303

    Article  Google Scholar 

  • Wilmotte A, Golubić S (1991) Morphological and genetic criteria in the taxonomy of Cyanophyta/Cyanobacteria. Algol Stud 64:1–24

    Google Scholar 

  • Wilson DS (1992) Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73:1984–2000

    Article  Google Scholar 

  • Winder M (2009) Photosynthetic picoplankton dynamics in Lake Tahoe: temporal and spatial niche partitioning among prokaryotic and eukaryotic cells. J Plankton Res 31:1307–1320

    Article  Google Scholar 

  • Wood AM, Van Valen LM (1990) Paradox lost? On the release of energy-rich compounds by phytoplankton. Mar Microb Food Web 4:103–116

    Google Scholar 

  • Wood AM, Horan PK, Muirhead K, Phinney DA, Yentsch CM, Waterbury JB (1985) Discrimination between types of pigments in marine Synechococcus spp. by scanning spectroscopy, epi­fluorescence microscopy and flow cytometry. Limnol Oceanogr 30:1303–1315

    Article  CAS  Google Scholar 

  • Yang Z, Kong F (2012) Formation of large colonies: a defense mechanism of Microcystis aeruginosa under continuous grazing pressure by flagellate Ochromonas sp. J Limnol 71:61–66

    Google Scholar 

  • Yoshida T, Gurung TB, Kagami M, Urabe J (2001) Contrasting effects of cladoceran (Daphnia galeata) and calanoid copepod (Eodiaptomus japonicus) on algal and microbial plankton in a Japanese lake, Lake Biwa. Oecologia 129:602–610

    Google Scholar 

  • Zaret M, Suffern KL (1976) Vertical migration in zooplankton as a predator avoidance mechanism. Limnol Oceanogr 21:804–813

    Article  Google Scholar 

  • Zeidner G, Bielawski JP, Shmoish M, Scanlan DJ, Sabehi G, Beja O (2005) Potential photosynthesis gene recombination between Prochlorococcus and Synechococcus via viral intermediates. Environ Microbiol 7:1505–1513

    Article  PubMed  CAS  Google Scholar 

  • Zöllner E, Santer B, Boersma M, Hoppe HG, Jürgens K (2003) Cascading predation effects of Daphnia and copepods on microbial food web components. Freshw Biol 48:2174–2193

    Article  Google Scholar 

  • Zwirglmaier K, Heywood JL, Chamberlain K, Malcolm E, Woodward S, Zubkov MV, Scanlan DJ (2007) Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean. Environ Microbiol 9:1278–1290

    Article  PubMed  CAS  Google Scholar 

  • Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, Not F, Massana R, Ulloa O, Scanlan DJ (2008) Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10:147–161

    PubMed  Google Scholar 

  • Zwirglmaier K, Spence E, Zybkov MV, Scanlan DJ, Mann NH (2009) Differential grazing of two heterotrophic nanoflagellates on marine Synechococcus strains. Environ Microbiol 11:1767–1776

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank colleagues of the Microbial Ecology group of CNR-ISE Verbania, Italy, for their collaboration and strong support, and equally the Department of Fisheries and Oceans in British Columbia for supporting food chain research in lakes over the past three decades, including the special efforts of staff of Plankton Ecology Laboratory, West Vancouver, notably Ken Shortreed, Erland MacIsaac and Bruce Nidle. We also thank David Scanlan for valuable comments during preparation of the chapter, Roberto Bertoni for providing laboratory facilities in the microbial ecology laboratory at Verbania and Mario Contesini for technical assistance and field work on Lago Maggiore. A special thank to Brian Whitton for his untiring help to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiana Callieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Callieri, C., Cronberg, G., Stockner, J.G. (2012). Freshwater Picocyanobacteria: Single Cells, Microcolonies and Colonial Forms. In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_8

Download citation

Publish with us

Policies and ethics