Skip to main content

Neural Stem Cells Differentiated from Embryonic Stem Cells: Proteomic Identification of Expressed Genes

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 5

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 5))

  • 1095 Accesses

Abstract

Embryonic stem (ES) cells can self-renew in culture and are pluripotent, giving rise to a variety of differentiated cell types. More complete utilization of this potential, however, requires more efficient differentiation of ES cells into specific lineages, including neural stem (NS) cells, which can generate functioning cells suitable for the functional recovery of damaged tissues, including neurons. The development of methods to effectively differentiate ES cells into highly homogeneous NS cells via NS spheres, and of proteomic methods of protein identification may allow the elucidation of differentially expressed genes in NS cells, thus providing insights into the molecular events associated with the transition from ES cells to NS cells. This in turn will help facilitate clinical applications of these ES cell-derived NS cells to treat neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abu-Abed S, Dolle P, Metzger D, Beckett B, Chambon P, Petkovich M (2001) The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev 15:226–240

    Article  PubMed  CAS  Google Scholar 

  • Akama K, Tatsuno R, Otsu M, Horikoshi T, Nakayama T, Nakamura M, Toda T, Inoue N (2008) Proteomic identification of differentially expressed genes in mouse neural stem cells and neurons differentiated from embryonic stem cells in vitro. Biochim Biophys Acta 1784:773–782

    PubMed  CAS  Google Scholar 

  • Akama K, Horikoshi T, Nakayama T, Otsu M, Imaizumi N, Nakamura M, Toda T, Inoue N (2011) Proteomic identification of differentially expressed genes in neural stem cells and neurons differentiated from embryonic stem cells of cynomolgus monkey (Macaca fascicularis) in vitro. Biochim Biophys Acta 1814:265–276

    PubMed  CAS  Google Scholar 

  • Arai Y, Funatsu N, Numayama-Tsuruta K, Nomura T, Nakamura S, Osumi N (2005) Role of Fabp7, a downstream gene of Pax6, in the maintenance of neuroepithelial cells during early embryonic development of the rat cortex. J Neurosci 25:9752–9761

    Article  PubMed  CAS  Google Scholar 

  • Arimura N, Kaibuchi K (2007) Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8:194–205

    Article  PubMed  CAS  Google Scholar 

  • Battersby A, Jones RD, Lilley KS, McFarlane RJ, Braig HR, Allen ND, Wakeman JA (2007) Comparative proteomic analysis reveals differential expression of Hsp25 following the directed differentiation of mouse embryonic stem cells. Biochim Biophys Acta 1773:147–156

    Article  PubMed  CAS  Google Scholar 

  • Budhu A, Gillilan R, Noy N (2001) Localization of the RAR interaction domain of cellular retinoic acid binding protein-II. J Mol Biol 305:939–949

    Article  PubMed  CAS  Google Scholar 

  • Chae JI, Kim J, Woo SM, Han HW, Cho YK, Oh K-B, Nam KH, Kang YK (2009) Cytoskeleton-associated proteins are enriched in human embryonic-stem cell-derived neuroectodermal spheres. Proteomics 9:1128–1141

    Article  PubMed  CAS  Google Scholar 

  • Cole AR, Noble W, van Aalten L, Plattner F, Meimaridou R, Hogan D, Taylor M, LaFrancois J, Gunn-Moore F, Verkhratsky A, Oddo S, LaFerla F, Giese KP, Dineley KT, Duff K, Richardson JC, Yan SD, Hanger DP, Allan SM, Sutherland C (2007) Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer’s disease progression. J Neurochem 103:1132–1144

    Article  PubMed  CAS  Google Scholar 

  • Dong D, Ruuska SE, Levinthal DJ, Noy N (1999) Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J Biol Chem 274:23695–23698

    Article  PubMed  CAS  Google Scholar 

  • Fernando P, Brunette S, Megeney LA (2005) Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J 19:1671–1673

    PubMed  CAS  Google Scholar 

  • Hall VJ, Li JY, Brundin P (2007) Restorative cell therapy for Parkinson’s disease: a quest for the perfect cell. Semin Cell Dev Biol 18:859–869

    Article  PubMed  CAS  Google Scholar 

  • Han J-DJ, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJM, Cusick ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430:88–93

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R (2004) Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131:5539–5550

    Article  PubMed  CAS  Google Scholar 

  • Hoffrogge R, Mikkat S, Scharf C, Beyer S, Christoph H, Pahnke J, Mix E, Berth M, Uhrmacher A, Zubrzycki IZ, Miljan E, Volker U, Rolfs A (2006a) 2-DE proteome analysis of a proliferating and differentiating human neuronal stem cell line (ReNcell VM). Proteomics 6:1833–1847

    Article  PubMed  CAS  Google Scholar 

  • Hoffrogge R, Beyer S, Völker U, Uhrmacher AM, Rolfs A (2006b) 2-DE proteomic profiling of neural stem cells. Neurodegener Dis 3:112–121

    Article  PubMed  CAS  Google Scholar 

  • Liu SV (2008) iPS cells: a more critical review. Stem Cells Dev 17:391–397

    Article  PubMed  Google Scholar 

  • Maurer MH, Feldmann RE Jr, Futterer CD, Kuschinsky W (2003) The proteome of neural stem cells from adult rat hippocampus. Proteome Sci 1:1–4

    Article  Google Scholar 

  • Maurer MH, Feldmann RE Jr, Futterer CD, Butlin J, Kuschinsky W (2004) Comprehensive proteome expression profiling of undifferentiated versus differentiated neural stem cells from adult rat hippocampus. Neurochem Res 29:1129–1144

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu S, Okuno T, Suzuki Y, Nakayama T, Kakiuchi T, Takino N, Iida A, Ono F, Terao K, Inoue N, Nakano I, Kondo Y, Tsukada H (2009) Multitracer assessment of dopamine function after transplantation of embryonic stem cell-derived neural stem cell in a primate model of Parkinson’s disease. Synapse 63:541–548

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Hirano H (2008) Japan HUPO for promotion of global collaborations in human proteomics. Mol Cell Proteomics 7:2486–2487

    Article  PubMed  CAS  Google Scholar 

  • Nakata K, Ujike H, Sakai A, Takaki M, Imamura T, Tanaka Y, Kuroda S (2003) The human dihydropyrimidinase-related protein 2 gene on chromosome 8p21 is associated with paranoid-type schizophrenia. Biol Psychiatry 53:571–576

    Article  PubMed  CAS  Google Scholar 

  • Nakayama T, Inoue N (2006) Embryonic cell protocols: differentiation model, neural stem sphere method: induction of neural stem cells and neurons by astrocyte-derived factors in embryonic stem cells in vitro. In: Turksen K (ed) Method Mol Biol 330:1–13

    Google Scholar 

  • Nakayama T, Momoki-Soga T, Inoue N (2003) Astrocyte-derived factors instruct differentiation of embryonic stem cells into neurons. Neurosci Res 46:241–249

    Article  PubMed  CAS  Google Scholar 

  • Nakayama T, Momoki-Soga T, Yamaguchi K, Inoue N (2004) Efficient production of neural stem cells and neurons from embryonic stem cells. Neuroreport 15:487–491

    Article  PubMed  Google Scholar 

  • Nakayama T, Sai T, Otsu M, Momoki-Soga T, Inoue N (2006) Astrocytogenesis of embryonic stem-cell-derived neural stem cells: default differentiation. Neuroreport 17:1519–1523

    Article  PubMed  Google Scholar 

  • Okuno T, Nakayama T, Konishi N, Michibata H, Wakimoto K, Suzuki Y, Nito S, Inaba T, Nakano I, Muramatsu S, Takano M, Kondo Y, Inoue N (2009) Selfcontained induction of neurons from human embryonic stem cells. PLoS One 4:e6318

    Article  PubMed  Google Scholar 

  • Otsu M, Sai T, Nakayama T, Murakami K, Inoue N (2011) Uni-directional differentiation of mouse embryonic stem cells into neurons by the neural stem sphere method. Neurosci Res 69:314–321

    Article  PubMed  CAS  Google Scholar 

  • Owada Y, Abdelwahab SA, Kitanaka N, Sakagami H, Takano H, Sugitani Y, Sugawara M, Kawashima H, Kiso Y, Mobarakeh JI, Yanai K, Kaneko K, Sasaki H, Kato H, Saino-Saito S, Matsumoto N, Akaike N, Noda T, Kondo H (2006) Altered emotional behavioral responses in mice lacking brain-type fatty acid-binding protein gene. Eur J Neurosci 24:175–187

    Article  PubMed  Google Scholar 

  • Pearce A, Svendsen CN (1999) Characterisation of stem cell expression using two-dimensional electrophoresis. Electrophoresis 20:969–970

    Article  PubMed  CAS  Google Scholar 

  • Plachta N, Annaheim C, Bissiere S, Lin S, Ruegg M, Hoving S, Muller D, Poroer F, Bibel M, Barde Y-A (2007) Identification of a lectin causing the degradation of neuronal processes using engineered embryonic stem cells. Nat Neurosci 10:712–719

    Article  PubMed  CAS  Google Scholar 

  • Puche AC, Poirier F, Hair M, Bartlett PF, Key B (1996) Role of galectin-1 in the developing mouse olfactory system. Dev Biol 179:274–287

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Gao L (2005) Proteomic analysis of neural differentiation of mouse embryonic stem cells. Proteomics 5:4414–4426

    Article  PubMed  CAS  Google Scholar 

  • Watanabe A, Toyota T, Owada Y, Hayashi T, Iwayama Y, Matsumata M, Ishitsuka Y, Nakaya A, Maekawa M, Ohnishi T, Arai R, Sakurai K, Yamada K, Kondo H, Hashimoto K, Osumi N, Yoshikawa T (2007) Fabp7 maps to a quantitative trait locus for a schizophrenia endophenotype. PLoS Biol 5:e297

    Article  PubMed  Google Scholar 

  • Yano M, Okano HJ, Okano H (2005) Involvement of Hu and heterogeneous nuclear ribonucleoprotein K in neuronal differentiation through p21 mRNA post-transcriptional regulation. J Biol Chem 280:12690–12699

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to Professor Hisashi Hirano of Yokohama City University for liquid chromatography-tandem mass spectrometry with education, training, and promotion of proteomics (Nakamura and Hirano 2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniko Akama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Akama, K., Nakayama, T., Otsu, M., Toda, T., Inoue, N. (2012). Neural Stem Cells Differentiated from Embryonic Stem Cells: Proteomic Identification of Expressed Genes. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 5. Stem Cells and Cancer Stem Cells, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2900-1_25

Download citation

Publish with us

Policies and ethics