Skip to main content

Preparation of Neural Stem Cells and Progenitors: Neuronal Production and Grafting Applications

  • Protocol
  • First Online:
Neuronal Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2311))

Abstract

Neural stem cells (NSCs) are a valuable tool for the study of neural development and function as well as an important source of cell transplantation strategies for neural disease. NSCs can be used to study how neurons acquire distinct phenotypes and how the interactions between neurons and glial cells in the developing nervous system shape the structure and function of the CNS. NSCs can also be used for cell replacement therapies following CNS injury targeting astrocytes, oligodendrocytes, and neurons. With the availability of patient-derived induced pluripotent stem cells (iPSCs), neurons prepared from NSCs can be used to elucidate the molecular basis of neurological disorders leading to potential treatments. Although NSCs can be derived from different species and many sources, including embryonic stem cells (ESCs), iPSCs, adult CNS, and direct reprogramming of nonneural cells, isolating primary NSCs directly from fetal tissue is still the most common technique for preparation and study of neurons. Regardless of the source of tissue, similar techniques are used to maintain NSCs in culture and to differentiate NSCs toward mature neural lineages. This chapter will describe specific methods for isolating and characterizing multipotent NSCs and neural precursor cells (NPCs) from embryonic rat CNS tissue (mostly spinal cord) and from human ESCs and iPSCs as well as NPCs prepared by reprogramming. NPCs can be separated into neuronal and glial restricted progenitors (NRP and GRP, respectively) and used to reliably produce neurons or glial cells both in vitro and following transplantation into the adult CNS. This chapter will describe in detail the methods required for the isolation, propagation, storage, and differentiation of NSCs and NPCs isolated from rat and mouse spinal cords for subsequent in vitro or in vivo studies as well as new methods associated with ESCs, iPSCs, and reprogramming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carmichael ST (2016) Emergent properties of neural repair: elemental biology to therapeutic concepts. Ann Neurol 79(6):895–906

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lepore AC et al (2004) Differential fate of multipotent and lineage-restricted neural precursors following transplantation into the adult CNS. Neuron Glia Biol 1(2):113–126

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lane MA, Lepore AC, Fischer I (2017) Improving the therapeutic efficacy of neural progenitor cell transplantation following spinal cord injury. Expert Rev Neurother 17(5):433–440

    Article  CAS  PubMed  Google Scholar 

  4. Upadhyay G, Shankar S, Srivastava RK (2015) Stem cells in neurological disorders: emerging therapy with stunning hopes. Mol Neurobiol 52(1):610–625

    Article  CAS  PubMed  Google Scholar 

  5. Egawa N et al (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4(145):145ra104

    Article  PubMed  CAS  Google Scholar 

  6. Kim J et al (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 108(19):7838–7843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bonner J, Fischer I (2013) Transplantation of neural stem cells and progenitors in animal models of disease. In: Kaur N, Vemuri M (eds) Neural stem cell assays. Wiley Blackwell

    Google Scholar 

  8. Sareen D et al (2014) Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J Comp Neurol 522(12):2707–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haston KM, Finkbeiner S (2016) Clinical trials in a dish: the potential of pluripotent stem cells to develop therapies for neurodegenerative diseases. Annu Rev Pharmacol Toxicol 56:489–510

    Article  CAS  PubMed  Google Scholar 

  10. Reier PJ et al (1992) Neural tissue transplantation and CNS trauma: anatomical and functional repair of the injured spinal cord. J Neurotrauma 9(Suppl 1):S223–S248

    PubMed  Google Scholar 

  11. Lu P et al (2014) Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron 83(4):789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lepore AC, Fischer I (2005) Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord. Exp Neurol 194(1):230–242

    Article  CAS  PubMed  Google Scholar 

  13. Zholudeva LV et al (2017) Anatomical recruitment of spinal V2a interneurons into phrenic motor circuitry after high cervical spinal cord injury. J Neurotrauma 34(21):3058–3065

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cao Q-L et al (2002) Differentiation of engrafted neuronal-restricted precursor cells is inhibited in the traumatically injured spinal cord. Exp Neurol 177(12429182):349–359

    Article  CAS  PubMed  Google Scholar 

  15. Han SS et al (2002) Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord. Exp Neurol 177(2):360–375

    Article  PubMed  Google Scholar 

  16. Kalyani AJ et al (1998) Spinal cord neuronal precursors generate multiple neuronal phenotypes in culture. J Neurosci 18(19):7856–7868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Medalha CC et al (2014) Transplanting neural progenitors into a complete transection model of spinal cord injury. J Neurosci Res 92(5):607–618

    Article  CAS  PubMed  Google Scholar 

  18. Tuszynski MH et al (2014) Neural stem cell dissemination after grafting to CNS injury sites. Cell 156(3):388–389

    Article  CAS  PubMed  Google Scholar 

  19. Kurtz A et al (2018) A standard nomenclature for referencing and authentication of pluripotent stem cells. Stem Cell Rep 10(1):1–6

    Article  CAS  Google Scholar 

  20. White TE et al (2010) Neuronal progenitor transplantation and respiratory outcomes following upper cervical spinal cord injury in adult rats. Exp Neurol 225:231

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bonner JF et al (2011) Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J Neurosci 31(12):4675–4686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Spruance VM et al (2018) Integration of transplanted neural precursors with the injured spinal cord. J Neurotrauma 35:1781

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kalyani A, Hobson K, Rao MS (1997) Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clonal analysis. Dev Biol 186(9205140):202–223

    Article  CAS  PubMed  Google Scholar 

  24. Mujtaba T, Mayer-Proschel M, Rao MS (1998) A common neural progenitor for the CNS and PNS. Dev Biol 200(1):1–15

    Article  CAS  PubMed  Google Scholar 

  25. Shihabuddin LS et al (2000) Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 20(11102479):8727–8735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bonner JF, Haas CJ, Fischer I (2013) Preparation of neural stem cells and progenitors: neuronal production and grafting applications. Methods Mol Biol 1078:65–88

    Article  CAS  PubMed  Google Scholar 

  27. Sugar O, Gerard RW (1940) Spinal cord regeneration in the rat. J Neurophysiol 3:1–19

    Article  Google Scholar 

  28. Reier PJ, Perlow MJ, Guth L (1983) Development of embryonic spinal cord transplants in the rat. Brain Res 312(2):201–219

    Article  CAS  PubMed  Google Scholar 

  29. Jakeman LB, Reier PJ (1991) Axonal projections between fetal spinal cord transplants and the adult rat spinal cord: a neuroanatomical tracing study of local interactions. J Comp Neurol 307(2):311–334

    Article  CAS  PubMed  Google Scholar 

  30. Reier PJ (1985) Neural tissue grafts and repair of the injured spinal cord. Neuropathol Appl Neurobiol 11(2):81–104

    Article  CAS  PubMed  Google Scholar 

  31. Reier PJ, Bregman BS, Wujek JR (1986) Intraspinal transplantation of embryonic spinal cord tissue in neonatal and adult rats. J Comp Neurol 247(3):275–296

    Article  CAS  PubMed  Google Scholar 

  32. Dulin JN et al (2018) Injured adult motor and sensory axons regenerate into appropriate organotypic domains of neural progenitor grafts. Nat Commun 9(1):84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Jakeman LB et al (1989) Differentiation of substantia gelatinosa-like regions in intraspinal and intracerebral transplants of embryonic spinal cord tissue in the rat. Exp Neurol 103(1):17–33

    Article  CAS  PubMed  Google Scholar 

  34. Cai J et al (2002) Properties of a fetal multipotent neural stem cell (NEP cell). Dev Biol 251(2):221–240

    Article  CAS  PubMed  Google Scholar 

  35. Bonner JF, Steward O (2015) Repair of spinal cord injury with neuronal relays: from fetal grafts to neural stem cells. Brain Res 1619:115–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jakeman LB, Reier PJ (2015) Fetal spinal cord transplantation after spinal cord injury: around and back again. In: So K-F (ed) Neural regeneration. Elsevier Inc.

    Google Scholar 

  37. Reier PJ (2004) Cellular transplantation strategies for spinal cord injury and translational neurobiology. NeuroRx 1(4):424–451

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rao MS, Noble M, Mayer-Pröschel M (1998) A tripotential glial precursor cell is present in the developing spinal cord. Proc Natl Acad Sci U S A 95(7):3996–4001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang H et al (2000) Region-specific differentiation of neural tube-derived neuronal restricted progenitor cells after heterotopic transplantation. Proc Natl Acad Sci U S A 97(24):13366–13371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lepore AC et al (2005) Neural precursor cells can be delivered into the injured cervical spinal cord by intrathecal injection at the lumbar cord. Brain Res 1045(1–2):206–216

    Article  CAS  PubMed  Google Scholar 

  41. Houlé JD, Reier PJ (1988) Transplantation of fetal spinal cord tissue into the chronically injured adult rat spinal cord. J Comp Neurol 269(4):535–547

    Article  PubMed  Google Scholar 

  42. Kadoya K et al (2016) Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med 22:479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu P et al (2012) Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150(6):1264–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Robinson J, Lu P (2017) Optimization of trophic support for neural stem cell grafts in sites of spinal cord injury. Exp Neurol 291:87–97

    Article  CAS  PubMed  Google Scholar 

  45. Altman PL, Katz DD (1962) Growth Including Reproduction And Morphological Development. Federation of American Societies for Experimental Biology, Washington

    Google Scholar 

  46. Iyer NR et al (2016) Generation of highly enriched V2a interneurons from mouse embryonic stem cells. Exp Neurol 277:305–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McCreedy DA et al (2014) A new method for generating high purity motoneurons from mouse embryonic stem cells. Biotechnol Bioeng 111(10):2041–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu H et al (2015) A puromycin selectable cell line for the enrichment of mouse embryonic stem cell-derived V3 interneurons. Stem Cell Res Ther 6:220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itzhak Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zholudeva, L.V., Jin, Y., Qiang, L., Lane, M.A., Fischer, I. (2021). Preparation of Neural Stem Cells and Progenitors: Neuronal Production and Grafting Applications. In: Amini, S., White, M.K. (eds) Neuronal Cell Culture. Methods in Molecular Biology, vol 2311. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1437-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1437-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1436-5

  • Online ISBN: 978-1-0716-1437-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics