Skip to main content

Observed Hydrological Cycle

  • Chapter
  • First Online:
Arctic Climate Change

Abstract

The transition between the liquid and solid phase affects all processes in the Arctic. The solid phase is a special challenge to the instruments and the scientists who develop new instruments or analyze, correct, and interpret the observed data.

This chapter shows some results from observed parameters of the hydrological cycle, that is, precipitation, snow, runoff, and the atmospheric moisture flux into the polar cap. The precipitation in the Arctic catchments shows only for central Siberia a slight decreasing trend in summer and in North Europe an increasing trend in winter. In Northern Eurasia in winter, the snow depth and snow cover duration increase, as well as the temperature. The runoff and the atmospheric moisture flux derived from radiosonde data show no temporal changes. The uncertainties are still high due to the sparse measuring network, and satellite data are not yet usable for climatological purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APDA:

Arctic Precipitation Data Archive

ARDB:

Arctic Runoff Data Base

CIS:

Commonwealth of Independent States (FSU Former Soviet Union)

CMAP:

CPC Merged Analysis of Precipitation

cog:

center of gravity

CPC:

Climate Prediction Center (NOAA)

CRU:

Climate Research Unit

DARE:

WMO Data Rescue Program

ECMWF:

European Centre for Medium-Range Weather Forecasts

ERA15:

ECMWF 15 Years Re-Analysis

ERA40:

ECMWF 40 Years Re-Analysis

FAO:

UN Food and Agricultural Organization

FSU:

Former Soviet Union

GDCN:

Global Daily Climatology Network

GHCN:

Global Historical Climate Network

GIS:

Geographic Information system

GPCC:

Global Precipitation Climatology Centre

GPCP:

Global Precipitation Climatology Project

GPM:

Global Precipitation Mission

GRDC:

Global Runoff Data Centre

GTS:

Global Telecommunication System

HARA:

Historical Arctic Rawinsonde Archive

HD:

hydrological discharge model

NCAR:

National Center for Atmospheric Research

NCEP:

National Centers for Environmental Prediction

NESDIS:

National Environmental Satellite Data, and ­Information Service (NOAA)

NHS:

National Hydrological Services

NOAA:

National Oceanic and Atmospheric Administration

NRA:

NCEP Reanalysis

NSIDC:

National Snow and Ice Data Center

NWP:

Numerical Weather Prediction models

R-ArcticNet:

Regional Electronic, Hydrographic Data Network For the Arctic Region

RC:

runoff coefficient

SL:

land surface scheme

TOVS:

TIROS Operational Vertical Sounder

TRMM:

Tropical Rainfall Measuring Mission

USSR:

Union of Soviet Socialist Republics

WMO:

World Meteorological Organization

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P-P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Baumgartner A, Reichel E (1975) The world water balance – mean annual, global, continental and maritime precipitation, evaporation and runoff. Elsevier, Amsterdam

    Google Scholar 

  • Betts AK, Ball JH, Viterbo P (2003) Evaluation of the ERA-40 surface water budget and surface temperature for the Mackenzie River basin. J Hydrometeorol 4:1194–1211

    Article  Google Scholar 

  • Chen M, Xie P, Janowiak JE, Arkin PA (2002) Global land precipitation: a 50-yr monthly analysis based on gauge observations. J Hydrometeorol 3:249–266

    Article  Google Scholar 

  • Climate Analysis Section (2002) Atmospheric mass, moisture and energy budget products from ECMWF 15-Year reanalysis at tapered T42. http://www.cgd.ucar.edu/cas/catalog/outline.html. Accessed 26 Mar 2010

  • Cullather RI, Bromwich DH, Serreze MC (2000) The atmospheric hydrologic cycle over the Arctic Basin from reanalyses. Part I: comparison with observations and previous studies. J Clim 13:923–937

    Article  Google Scholar 

  • Dai A, Trenberth KE (2002) Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J Hydrometeorol 3:660–687

    Article  Google Scholar 

  • de Couet T, Maurer T (2009) Surface freshwater fluxes into the world oceans. Global Runoff Data Centre, Koblenz, Federal Institute of Hydrology (BfG), http://www.bafg.de/cln_016/nn_294838/GRDC/EN/02__Services/02__DataProducts/FreshwaterFluxes/freshflux__node.html. Accessed 26 Mar 2010

  • Doswell CA III, Caracena F (1988) Derivative estimation from marginally sampled vector point functions. J Atmos Sci 45:242–253

    Article  Google Scholar 

  • Dümenil Gates L, Hagemann S, Golz C (2000) Observed historical discharge data from major rivers for climate model validation, report 307, Max-Planck-Inst für Meteorol, Hamburg

    Google Scholar 

  • Ehrendorfer M, Hantel M, Wang Y (1994) A variational modification algorithm for the three-dimensional mass flux non-divergence. Q J R Meteorol Soc 120:655–698

    Article  Google Scholar 

  • Fetterer F, Radionov V (2000) Arctic climatology project: environmental working group Arctic meteorology and climate atlas. National Snow and Ice Data Center, Boulder, CD-ROM

    Google Scholar 

  • Førland EJ, Hanssen-Bauer I (2000) Increased precipitation in the Norwegian Arctic: true or false? Clim Change 46:485–509

    Article  Google Scholar 

  • Førland EJ, Allerup P, Dahlström B, Elomaa E, Jónsson T, Madsen H, Perälä J, Rissanen P, Vedin H, Vejen F (1996) Manual for operational correction of Nordic precipitation data. Norwegian Meteorological Institute, Oslo

    Google Scholar 

  • Foster DJ, Davy RD (1988) Global snow depth climatology, USAFETAC/TN-88/006. Scott Air Force Base, Scott AFB

    Google Scholar 

  • Gibson JK, Kållberg P, Uppala S, Hernandez A, Nomura A, Serrano E (1997) Era description, ECMWF Reanal. Project Report Series 1. European Centre for Medium-Range Weather Forecasting, Geneva

    Google Scholar 

  • Gleason BE (2002) National Climatic Data Center. Data documentation for data set 9101, Global Daily Climatology Network, V1.0. NCDC. http://lwf.ncdc.noaa.gov/oa/climate/research/gdcn/GDCN_V1_0.pdf. Accessed 26 Mar 2010

  • Göber M, Hagenbrock R, Ament F, Hense A (2003) Comparing mass consistent atmospheric budgets on an irregular grid: an Arctic example. Q J R Meteorol Soc 129:2383–2400

    Article  Google Scholar 

  • Goodison BE, Louie PYT, Yang D (1998) WMO solid precipitation measurement intercomparison. Final report. WMO/TD-No. 872. Instruments and observing methods report no. 67, Geneva

    Google Scholar 

  • Grabs WE, Portmann F, de Couet T (2000) Discharge observation networks in Arctic regions: computation of the river runoff into the Arctic Ocean, its seasonality and variability. In: Lewis et al (eds) The freshwater budget of the Arctic ocean. Proceedings of the NATO advanced research workshop, Tallinn, 27 Apr–1 May 1998, Kluwer Academic, Dordrecht

    Google Scholar 

  • Hagemann S, Dümenil L (1998) A parameterization of the lateral waterflow for the global scale. Clim Dyn 14:17–31

    Article  Google Scholar 

  • Hagemann S, Dümenil Gates L (2001) Validation of the hydrological cycle of ECMWF and NCEP reanalyses using the MPI hydrological discharge model. J Geophys Res 106:1503–1510

    Article  Google Scholar 

  • Hagemann S, Dümenil Gates L (2003) Improving a subgrid runoff parameterization scheme for climate models by the use of high resolution data derived from satellite observations. Clim Dyn 21:349–359

    Article  Google Scholar 

  • Hagenbrock R (2003) Der Feuchtehaushalt der arktischen Troposphäre aus Radiosonden-Messungen (The moisture budget of the Arctic atmosphere based on radiosonde measurements). PhD thesis, University of Bonn, Bonn (in German)

    Google Scholar 

  • Huffman GJ, Adler RF, Arkin A, Chang A, Ferraro R, Gruber A, Janowiak J, Joyce RJ, McNab A, Rudolf B, Schneider U, Xie P (1997) The global precipitation climatology project (GPCP) combined precipitation data set. Bull Am Meteorol Soc 78:5–20

    Article  Google Scholar 

  • Huffman GF, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multi-satellite observations. J Hydometeorol 2:36–50

    Article  Google Scholar 

  • Kållberg P (1997) Aspects of the re-analysed climate. ECMWF reanalysed Project Report Series 2, European Centre for Medium-Range Weather Forecasting, Geneva

    Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year re-analysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kitaev LM (2002) Spatial-temporal variability of snow cover depth in the northern hemisphere. Russ Meteorol Hydrol 5:28–34

    Google Scholar 

  • Kitaev L, Kislov A, Krenke A, Razuvaev V, Martuganov R, Konstantinov I (2002) The snow cover characteristics of northern Eurasia and their relationship to climatic parameters. Boreal Environ Res 7:437–446

    Google Scholar 

  • Kopanev ID (1971) Methods for snow cover studying. Gidrometeoizdat, Leningrad (In Russian)

    Google Scholar 

  • Korzoun VI, Sokolov AA, Voskresensky KP et al (1977a) World water balance and water resources of the earth. UNESCO Press, Paris

    Google Scholar 

  • Korzoun VI, Sokolov AA, Voskresensky KP, Kalinin GP, Konoplyantsev AA, Korotkevich ES, Lvovich MI (1977b) Atlas of world water balance. UNESCO Press, Paris

    Google Scholar 

  • Legates DR (1987) A climatology of global precipitation, Publ Climatol, vol XL, no 1, Newark, Delaware

    Google Scholar 

  • MacKay DK, Løken OH (1974) Arctic hydrology. In: Ives JD, Barry RG (eds) Arctic and alpine environments. William Clowes and Sons, London

    Google Scholar 

  • Manual for weather stations and posts (1985) vol. 3, part I and II, Gidrometeoizdat, Leningrad, Russian Federation, 164 p. (In Russian)

    Google Scholar 

  • Masuda K (1990) Atmospheric heat and water budgets of polar regions: analysis of FGGE data. Proc NIPR Symp Polar Meteorol Glaciol 3:79–88

    Google Scholar 

  • McKay GA, Gray DM (1981) The distribution of snow cover. In: Gray DM, Male DH (eds) Hand-book of snow: principles, processes, management and use. Pergamon Press, Toronto

    Google Scholar 

  • New M, Hulme M, Jones P (1999) Representing twentieth-century space-time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology. J Clim 12:829–856

    Article  Google Scholar 

  • New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J Clim 13:2217–2238

    Article  Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25

    Article  Google Scholar 

  • Overland JE, Turet P (1994) Variability of the atmospheric energy flux across 70°N computed from the GFDL data set. The polar oceans and their role in shaping the global environment, The Nansen centennial volume, Geophysical Monograph no 85. American Geophysical Union, Washington, DC, pp 313–325

    Google Scholar 

  • Peixoto JP, Oort AH (1983) The atmospheric branch of the hydrological cycle and climate. In: Street-Perrott A, Beran M, Ratcliffe R (eds) Variations in the global water budget. D. Reidel, Dordrecht

    Google Scholar 

  • Peixoto JP, Oort AH (1992) Physics of climate. Am Institute of Physics/Springer, New York

    Google Scholar 

  • Peterson BJ, Holmes RM, McClelland JW et al (2002) Increasing river discharge to the Arctic ocean. Science 298:2171–2173

    Article  Google Scholar 

  • Roads J, Betts A (2000) NCEP-NCAR and ECMWF reanalysis surface water and energy budgets for the Mississippi River basin. J Hydrometeorol 1:88–94

    Article  Google Scholar 

  • Rubel F, Hantel M (1999) Correction of daily rain gauge measurements in the Baltic Sea drainage basin. Nordic Hydrol 30:191–208

    Google Scholar 

  • Rudolf B, Hauschild H, Rüth W, Schneider U (1996) Comparison of rain gauge analyses, satellite-based precipitation estimates and forecast model results. Adv Space Res 7:53–62

    Article  Google Scholar 

  • Schmidlin TW (1995) Automated quality control procedure for the “water equivalent of snow on the ground” measurement. J Appl Meteorol 34:143–151

    Article  Google Scholar 

  • Sellers WD (1965) Physical climatology. The University of Chicago Press, Chicago/London

    Google Scholar 

  • Serreze MC, Shiotani S (1997) Historical Arctic rawinsonde archive. Technical report, National Snow and Ice Data Center, Boulder, CD-ROM

    Google Scholar 

  • Serreze MC, Barry RG, Walsh JE (1995) Atmospheric water vapor characteristics at 70°N. J Clim 8:719–731

    Article  Google Scholar 

  • Sevruk B (ed) (1986) Correction of precipitation measurements. ETH/IAHS/WMO workshop of precipitation measurements, Zurich, 1–3 Apr 1985. ETH Geographisches Institut, Zurich

    Google Scholar 

  • Sevruk B (ed) (1990) Precipitation measurement. WMO/IAHS/ETH workshop of precipitation measurements, St. Moritz, 3–7 Dec 1989. ETH Geographisches Institut, Zurich

    Google Scholar 

  • Sevruk B, Klemm S (1989) Catalogue of national standard precipitation gauges. World meteorological organization, instruments and observing methods Report, WMO/TD-no. 313

    Google Scholar 

  • Sherwood K, Idso C (2003) Will global warming shut down the thermohaline circulation of the world’s oceans? CO2 Sci Mag 6(8), editorial commentary http://www.co2science.org/edit/v6_edit/v6n8edit.htm. Accessed 25 Mar 2010

  • Shiklomanov IA, Shiklomanov AI, Lammers RB, Peterson BJ, Vorosmarty CJ (2000) The dynamics of river water inflow to the Arctic Ocean. In: Lewis et al (eds) The Freshwater budget of the Arctic Ocean, Proceedings of the NATO advanced research workshop, Tallinn, 27 Apr–1 May 1998, Kluwer Academic, Dordrecht

    Google Scholar 

  • Simmons AJ, Gibson JK (2000) The ERA-40 project plan, ERA-40 Project Report Series 1, European Centre for Medium-Range Weather Forecasting, Reading

    Google Scholar 

  • Stendel M, Arpe K (1997) Evaluation of the hydrological cycle in re-analyses and observations. Report 228, Max-Planck-Institut for Meteorology, Hamburg

    Google Scholar 

  • Tuomenvirta H, Drebs A, Førland E, Ole Tveito E, Alexandersson H, Vaarby Laursen E, Jónsson T (2001) Nordklim data set 1.0 – description and illustrations. DNMI report no. 08/01, Norwegian Meteorological Institute, Oslo, Norway

    Google Scholar 

  • Uppala S (1997) Observing system performance in ERA, ECMWF Reanalysed Project Report Series 3, European Centre for Medium-Range Weather Forecasting, Reading

    Google Scholar 

  • Viterbo P, Betts AK (1999) Impact on ECMWF forecasts of changes to the albedo of the boreal forests in the presence of snow. J Geophys Res 104:27803–27810

    Article  Google Scholar 

  • Viterbo P, Beljaars ACM, Mahfouf J-F, Teixeira J (1999) The representation of soil moisture freezing and its impact on the stable boundary layer. Q J R Meteorol Soc 125:2401–2426

    Article  Google Scholar 

  • Wang J, Cole HL, Carlson DJ, Miller ER, Beierle K (2002) Corrections of humidity measurement errors from the Vaisala RS80 radiosonde – Application to TOGA COARE data. J Atmos Ocean Technol 19:981–1002

    Article  Google Scholar 

  • Xie P, Arkin P (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Mächel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mächel, H. et al. (2012). Observed Hydrological Cycle. In: Lemke, P., Jacobi, HW. (eds) Arctic Climate Change. Atmospheric and Oceanographic Sciences Library, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2027-5_5

Download citation

Publish with us

Policies and ethics