Skip to main content

Bird’s-Eye View of Forest Hydrology: Novel Approaches Using Remote Sensing Techniques

  • Chapter
  • First Online:
Forest Hydrology and Biogeochemistry

Part of the book series: Ecological Studies ((ECOLSTUD,volume 216))

Abstract

Without question, better scientific understanding of hydrological processes in forested environments will be a product of the synergistic play of theory and data. Remote sensing (RS) from satellite and airborne platforms, along with many other sources of hydrological data such as wireless sensor arrays and ground-based radar networks, is playing and will continue to play a vital role in better understanding the hydrosphere by providing the next generation of datasets to the hydrological community. RS systems are planetary macroscopes that allow the study of ecosystems from a completely new vantage point, facilitating a holistic perspective like viewing the Earth does for astronauts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsdorf DE, Lettenmaier DP (2003) Tracking fresh water from space. Science 301:1491–1494

    Article  Google Scholar 

  • Alsdorf DE, Melack JM, Dunne T et al (2000) Interferometric radar measurements of water level changes on the Amazon flood plain. Nature 404:174–177

    Article  Google Scholar 

  • Alsdorf DE, Birkett C, Dunne T et al (2001) Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry. Geophys Res Lett 28:2671–2674

    Article  Google Scholar 

  • Andreadis KM, Liang D, Tsang L et al (2008) Characterization of errors in a coupled snow hydrology-microwave emission model. J Hydrometeorol 9:149–164

    Article  Google Scholar 

  • Bastiaanssen W, Menentia M, Feddes R et al (1998) A remote sensing surface energy balance algorithm for land (SEBAL), Part 1: formulation. J Hydrol 212–213:198–212

    Article  Google Scholar 

  • Batelaan O, De Smedt F (2007) GIS-based recharge estimation by coupling surface-subsurface water balances. J Hydrol 337:337–355

    Article  Google Scholar 

  • Batelaan O, De Smedt F, Otero Valle MN (1993) Development and application of a groundwater model integrated in the GIS GRASS. HydroGIS 93: application of geographic information systems in hydrology and water resources. In: Proceedings of the Vienna conference. IAHS Publication 211, pp 581–589

    Google Scholar 

  • Becker MW (2006) Potential for satellite remote sensing of ground water. Ground Water 44:306–318

    Article  Google Scholar 

  • Beven K (2000) On the future of distributed modelling in hydrology. Hydrol Process 14:3183–3184

    Article  Google Scholar 

  • Bobba AG, Bukata RP, Jerome JH (1992) Digitally processed satellite data as a tool in detecting potential groundwater flow systems. J Hydrol 131:25–62

    Article  Google Scholar 

  • Bulcock HH, Jewitt GP (2010) Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological applications with a particular focus on canopy interception. Hydrol Earth Syst Sc 14:383–392

    Google Scholar 

  • Buttle JM (2002) Rethinking the donut: the case for hydrologically relevant buffer zones. Hydrol Process 16:3093–3096

    Article  Google Scholar 

  • Bwangoy J-RB, Hansen MC, Roy DP et al (2010) Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sens Environ 114:73–86

    Article  Google Scholar 

  • Chen BZ, Coops NC (2009) Understanding of coupled terrestrial carbon, nitrogen and water dynamics: an overview. Sensors 9:8624–8657

    Article  Google Scholar 

  • Clark RB, Creed IF, Sass GZ (2009) Mapping hydrologically sensitive areas on the Boreal Plain: a multitemporal analysis of ERS synthetic aperture radar data. Int J Remote Sens 30:2619–2635

    Article  Google Scholar 

  • Creed IF, Tague CL, Clark R et al (2002) Modeling hydrologic processes in boreal watersheds: the proof is in the pattern. AGU 83(47) Fall Meeting Supplement, Abstract H61B-0775

    Google Scholar 

  • Creed IF, Sanford SE, Beall FD et al (2003) Cryptic wetlands: integrating hidden wetlands in regression models of the export of dissolved organic carbon from forested landscapes. Hydrol Process 17:3629–3648

    Article  Google Scholar 

  • Creed IF, Sass GZ, Wolniewicz MB et al (2008) Incorporating hydrologic dynamics into buffer strip design on the sub-humid Boreal Plain of Alberta. Forest Ecol Manag 256:1984–1994

    Article  Google Scholar 

  • Devito KJ, Creed IF, Gan T et al (2005) A framework for broad scale classification of hydrological response units on the Boreal Plain: is topography the last thing to consider? Hydrol Process 19:1705–1714

    Article  Google Scholar 

  • Entekhabi D, Moghaddam M (2007) Mapping recharge from space: roadmap to meeting the grand challenge. Hydrogeol J 15:105–116

    Article  Google Scholar 

  • Flaming GM (2005) Global precipitation measurement update. Geoscience and Remote Sensing Symposium, 25–29 July 2005. IGARSS '05. Proceedings. 2005 IEEE International 1:79–82

    Google Scholar 

  • Gao J (2009) Bathymetric mapping by means of remote sensing: methods, accuracy and limitations. Progr Phys Geog 33:103–116

    Google Scholar 

  • Glenn EP, Huete AR, Nagler PL et al (2007) Integrating remote sensing and ground methods to estimate evapotranspiration. Crit Rev Plant Sci 26:139–168

    Article  Google Scholar 

  • Goodrich DC, Scott R, Qi J et al (2000) Seasonal estimates of riparian evapotranspiration using remote and in situ measurements. Agric For Meteorol 105:281–309

    Article  Google Scholar 

  • Guerschmann JP, Van Dijk AIJM, Mattersdorf G et al (2009) Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia. J Hydrol 369:107–119

    Article  Google Scholar 

  • Hall DK (1996) Remote sensing applications to hydrology: imaging radar. Hydrol Sci J 41:609–624

    Article  Google Scholar 

  • Hong Y, Gochis D, Cheng JT et al (2007) Evaluation of PERSIANN-CCS rainfall measurement using the NAME Event Rain Gauge Network. J Hydrometeorol 8:469–482

    Article  Google Scholar 

  • Hwang T, Band L, Hales TC (2009) Ecosystem processes at the watershed scale: Extending optimality theory from plot to catchment. Water Resour Res 45:W11425

    Google Scholar 

  • Jackson TJ (2002) Remote sensing of soil moisture: implications for groundwater recharge. Hydrogeol J 10:40–51

    Article  Google Scholar 

  • Jackson TJ, Schmugge J, Engman ET (1996) Remote sensing applications to hydrology: soil moisture. Hydrol Sci J 41:517–530

    Article  Google Scholar 

  • Jha MK, Chowdhury A, Chowdary VM et al (2007) Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resour Manag 21:427–467

    Article  Google Scholar 

  • Kaheil YH, Creed IF (2009) Detecting and downscaling wet areas on boreal landscapes. IEEE Geosci Remote Sens 6:179–183

    Article  Google Scholar 

  • Kaheil YH, Rosero E, Gill MK et al (2008) Downscaling and forecasting evapotranspiration using a synthetic model of wavelets and support vector machines. IEEE Trans Geosci Remote Sens 46:2692–2707

    Article  Google Scholar 

  • Kalma JD, McVicar TR, McCabe MF (2008) Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surv Geophys 29:421–469

    Article  Google Scholar 

  • Kasischke ES, Melack JM, Dobson MC (1997) The use of imaging radars for ecological applications - A review. Remote Sens Environ 59:141–156

    Article  Google Scholar 

  • Kirchner JW (2006) Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology. Water Resour Res 42:W03S04

    Article  Google Scholar 

  • Kite GW, Pietroniro A (1996) Remote sensing applications in hydrological modeling. Hydrol Sci J 41:563–591

    Article  Google Scholar 

  • Klein AG, Hall DK, Riggs GA (1998) Improving snow-cover mapping in forests through the use of a canopy reflectance model. Hydrol Process 12:1723–1744

    Article  Google Scholar 

  • Kustas WP, Norman JM (1996) Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrol Sci J 41:495–516

    Article  Google Scholar 

  • Lang MW, Kasischke ES (2008) Using C-band synthetic aperture radar data to monitor forested wetland hydrology in Maryland’s coastal plain, USA. IEEE Trans Geosci Remote Sens 46:535–546

    Article  Google Scholar 

  • Lang MW, McCarty GW (2009) LiDAR intensity for improved detection of inundation below the forest canopy. Wetlands 29:1166–1178

    Article  Google Scholar 

  • Lemmetyinen J, Derksen C, Pullianinen J et al (2009) A comparison of airborne microwave brightness temperatures and snowpack properties across the boreal forests of Finland and western Canada. IEEE Trans Geosci Remote Sens 47:965–978

    Article  Google Scholar 

  • Li X, Li X, Li Z et al (2009a) Watershed allied telemetry experimental research. J Geophys Res 114:D22103

    Article  Google Scholar 

  • Li ZL, Tang RL, Wan ZM et al (2009b) A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors 9:3801–3853

    Article  Google Scholar 

  • Lindsay JB, Creed IF, Beall FD (2004) Drainage basin morphometrics for depressional landscapes. Water Resour Res 40:W09307

    Article  Google Scholar 

  • Liu J, Chen JM, Cihlar J (2003) Mapping evapotranspiration based on remote sensing: an application to Canada’s landmass. Water Resour Res 39:1189

    Article  Google Scholar 

  • Lu Z, Kwoun O (2008) Radarsat-1 and ERS lnSAR analysis over southeastern coastal Louisiana: implications for mapping water-level changes beneath swamp forest. IEEE Trans Geosci Remote Sens 46:2167–2184

    Article  Google Scholar 

  • Lundberg A, Nakai Y, Thunehed H et al (2004) Snow accumulation in forests from ground and remote-sensing data. Hydrol Process 18:1941–1955

    Article  Google Scholar 

  • Lunetta RS, Balogh ME (1999) Application of multi-temporal Landsat 5 TM imagery for wetland identification. Photogram Eng Remote Sens 65:1303–1310

    Google Scholar 

  • Mackay DS, Ahl DE, Ewers BE et al (2002) Effects of aggregated classifications of forest composition on estimates of evapotranspiration in a northern Wisconsin forest. Global Change Biol 8:1253–1265

    Article  Google Scholar 

  • Meijerink AMJ (1996) Remote sensing applications to hydrology: groundwater. Hydrol Sci J 41:549–561

    Article  Google Scholar 

  • Meijerink AMJ (2000) Groundwater. In: Schultz GA, Engman ET (eds) Remote sensing in hydrology and water management. Springer, Berlin, pp 305–325

    Google Scholar 

  • Min Q, Lin B (2006) Remote sensing of evapotranspiration and carbon uptake at Harvard Forest. Remote Sens Environ 100:379–387

    Article  Google Scholar 

  • Molotch NP (2009) Reconstructing snow water equivalent in the Rio Grande headwaters using remotely sensed snow cover data and a spatially distributed snowmelt model. Hydrol Process 23:1076–1089

    Article  Google Scholar 

  • Moran M, Clarke T, Inoue U et al (1994) Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens Environ 49:246–263

    Article  Google Scholar 

  • Moran MS, Peters-Lidard CD, Watts JM et al (2004) Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Can J Remote Sens 30:805–826

    Article  Google Scholar 

  • Mu Q, Heinsch FA, Zhao M et al (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111:519–536

    Article  Google Scholar 

  • Murphy PNC, Ogilvie J, Connor K et al (2007) Mapping wetlands: a comparison of two different approaches for New Brunswick, Canada. Wetlands 27:846–854

    Article  Google Scholar 

  • Murphy PNC, Ogilvie J, Castonguay M et al (2008) Improving forest operations planning through high-resolution flow-channel and wet-areas mapping. Forest Chron 84:568–574

    Google Scholar 

  • Nemani R, Pierce L, Running S et al (1993) Forest ecosystem processes at the watershed scale - sensitivity to remotely-sensed leaf-area index estimates. Int J Remote Sens 14:2519–2534

    Google Scholar 

  • Petty GW (1995) The status of satellite-based rainfall estimation over land. Remote Sens Environ 51:125–137

    Article  Google Scholar 

  • Petty GW, Krajewski WF (1996) Satellite estimation of precipitation overland. Hydrol Sci J 41:433–451

    Article  Google Scholar 

  • Puech C, Gineste P (2003) Radar imagery and saturated areas: decreasing model equifinality. Can J Remote Sens 29:729–733

    Article  Google Scholar 

  • Ramillien G, Famiglietti JS, Wahr J (2008) Detection of continental hydrology and glaciology signals from GRACE: a review. Surv Geophys 29:361–374

    Article  Google Scholar 

  • Rango A (1996) Spaceborne remote sensing for snow hydrology applications. Hydrol Sci J 41:477–494

    Article  Google Scholar 

  • Remmel TK, Todd KW, Buttle J (2008) A comparison of existing surficial hydrological data layers in a low-relief forested Ontario landscape with those derived from a LiDAR DEM. Forest Chron 84:850–865

    Google Scholar 

  • Ritchie JC (1996) Remote sensing applications to hydrology: airborne laser altimeters. Hydrol Sci J 41:625–636

    Article  Google Scholar 

  • Robinson DA, Binley A, Crook N et al (2008) Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods. Hydrol Process 22:3604–3635

    Article  Google Scholar 

  • Rosenqvist A, Shimada M, Watanabe M (2007) ALOS PALSAR: a pathfinder mission for global-scale monitoring of the environment. IEEE Trans Geosci Remote Sens 45:3307–3316

    Article  Google Scholar 

  • Roth BE, Slatton KCS, Cohen MJ (2007) On the potential for high-resolution lidar to improve rainfall interception estimates in forest ecosystems. Front Ecol Environ 5:421–428

    Google Scholar 

  • Sass GZ, Creed IF (2008) Characterizing hydrodynamics on boreal landscapes using archived synthetic aperture radar imagery. Hydrol Process 22:1687–1699

    Article  Google Scholar 

  • Schultz GA (1996) Remote sensing applications to hydrology: runoff. Hydrol Sci J 41:453–475

    Article  Google Scholar 

  • Singh VP, Woolhiser DA (2002) Mathematical modeling of watershed hydrology. J Hydrol Eng 7:270–292

    Article  Google Scholar 

  • Smith LC (1997) Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrol Process 11:1427–1439

    Article  Google Scholar 

  • Stewart JB, Finch JW (1993) Application of remote-sensing to forest hydrology. J Hydrol 150:701–716

    Article  Google Scholar 

  • Szaro RC, Peterson CE (2004) Evolving approaches toward science-based forest management. For Snow Landsc Res 78(1/2):9–20

    Google Scholar 

  • Tague CL, Band LE (2004) RHESSys: regional hydro-ecologic simulation system – an object-oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interact 8:1–42

    Article  Google Scholar 

  • Tang QH, Gao HL, Lu H, Lettenmaier DP (2009) Remote sensing: hydrology. Prog Phys Geog 33:490–509. doi:10.1177/0309133309346650

    Article  Google Scholar 

  • Townsend PA (2001) Mapping seasonal flooding in forested wetlands using multitemporal Radarsat SAR. Photogram Eng Remote Sens 67:857–864

    Google Scholar 

  • van der Sanden JJ (2004) Anticipated applications potential of RADARSAT-2 data. Can J Remote Sens 30:369–379

    Article  Google Scholar 

  • van Zyl JJ (2001) The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography. Acta Astronaut 48:559–565

    Article  Google Scholar 

  • Vereecken H, Huisman JA, Bogena H et al (2008) On the value of soil moisture measurements in vadose zone hydrology: a review. Water Resour Res 44:W00D06

    Article  Google Scholar 

  • Verhoest NEC, Lievens H, Matgen P et al (2008) Soil moisture retrieval from ALOS PALSAR in the Alzette (Luxembourg) and Zwalm (Belgium) catchments. The International Workshop on Microwave Remote Sensing for Land Hydrology Research and Applications. October 20–22, 2008, Oxnard, California, USA

    Google Scholar 

  • Verhoest NEC, Troch PA, Paniconi C et al (1998) Mapping basin scale variable source areas from multitemporal remotely sensed observations of soil moisture behavior. Water Resour Res 34:3235–3244

    Article  Google Scholar 

  • Verstraeten WW, Veroustraete F, Feyen J (2008) Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors 8:70–117

    Article  Google Scholar 

  • Vorosmarty CJ, Willmott CJ, Choudhury BJ et al (1996) Analyzing the discharge regime of a large tropical river through remote sensing, ground-based climatic data, and modeling. Water Resour Res 32:3137–3150

    Article  Google Scholar 

  • Wagner W, Bloschl G, Pampaloni P et al (2007) Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Nord Hydrol 38:1–20

    Article  Google Scholar 

  • Whitcomb J, Moghaddam M, McDonald K et al (2009) Mapping vegetated wetlands of Alaska using L-band radar satellite imagery. Can J Remote Sens 35:54–72

    Article  Google Scholar 

  • Wu W, Hall CAS, Scatena FN et al (2006) Spatial modelling of evapotranspiration in the Luquillo experimental forest of Puerto Rico using remotely-sensed data. J Hydrol 328:733–752

    Article  Google Scholar 

  • Yang F, White MA, Michaelis AR et al (2006) Prediction of continental-scale evapotranspiration by combining MODIS and AmeriFlux data through support vector machine. IEEE Trans Geosci Remote Sens 44:3452–3461

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by an NSERC discovery grant to IFC and an NSERC postdoctoral fellowship to GZS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor Z. Sass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sass, G.Z., Creed, I.F. (2011). Bird’s-Eye View of Forest Hydrology: Novel Approaches Using Remote Sensing Techniques. In: Levia, D., Carlyle-Moses, D., Tanaka, T. (eds) Forest Hydrology and Biogeochemistry. Ecological Studies, vol 216. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1363-5_3

Download citation

Publish with us

Policies and ethics