Skip to main content

Applications: Nanoelectronics and Nanomagnetics

  • Chapter
  • First Online:
Nanotechnology Research Directions for Societal Needs in 2020

Part of the book series: Science Policy Reports ((SCIPOLICY,volume 1))

Abstract

In the last 10 years, the state of the art in nanoelectronics, including nanomagnetics, has rapidly gone from devices at or above 100 nm in size to the realm of 30 nm and below, with a well-defined pathway to devices (including transistors for logic and memory) of about 15 nm. In the process of reaching this size, the thickness of the critical layers in many structures is approaching 1 nm; the threshold voltage of a metal-oxide semiconductor field effect transistor (MOSFET) device is now controlled by fewer than 100 atoms, and the line edge roughness requirements are a few nanometers. All of these advances have resulted in an increased demand for near-atomic-level control for deposition, patterning, and characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)

    Google Scholar 

  2. R.H. Dennard, F.H. Gaensslen, H.-N. Yu, V.L. Rideout, E. Bassous, A.R. LeBlanc, Design for ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid State Circ. SC-9(5), 256–268 (1974)

    Article  Google Scholar 

  3. D.J. Frank, Power-constrained device and technology design for the end of scaling. Int. Electron. Devices. Meet. (IEDM) 2002 Dig, 643–646 (2002). doi: 10.1109/IEDM.2002.1175921

  4. B.H. Lee, S.C. Song, R. Choi, P. Kirsch, Metal electrode/high-k dielectric gate-stack technology for power management. IEEE Trans. Electron Devices 55(1), 8–20 (2008). doi:10.1109/TED.2007.911044

    Article  CAS  Google Scholar 

  5. S. Sivakumar, Lithography challenges for 32 nm technologies and beyond. Int. Electron. Device. Meet. 2006, 1–4 (2006). doi:10.1109/IEDM.2006.346952

    Article  Google Scholar 

  6. B. Wu, A. Kumar, Extreme ultraviolet lithography: a review. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 25(6), 1743–1761 (2007). doi:10.1116/1.2794048

    Article  CAS  Google Scholar 

  7. H. Schift, Nanoimprint lithography: an old story in modern times? A review. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 26(2), 458–480 (2008). doi:10.1116/1.2890972

    Article  CAS  Google Scholar 

  8. D. Pires, J.L. Hedrick, A. De Silva, J. Frommer, B. Gotsmann, H. Wolf, D. Michel, U. Duerig, A.W. Knoll, Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 328, 732–735 (2010)

    Article  CAS  Google Scholar 

  9. G.S. Craig, P.F. Nealey, Exploring the manufacturability of using block copolymers as resist materials in conjunction with advanced lithographic tools. J. Vac. Sci. Technol. B 25(6), 1969–1975 (2007). doi:10.1116/1.2801888

    Article  CAS  Google Scholar 

  10. W. Lu, A.M. Sastry, Self-assembly for semiconductor industry. IEEE Trans. Semicond. Manuf. 20(4), 421–431 (2007). doi:10.1109/TSM.2007.907622

    Article  Google Scholar 

  11. S. Tiwari, F. Rana, K. Chan, H. Hanafi, Wei Chan, D. Buchanan, Int. Electron. Devices. Meet., 521–524 (1995). doi: 10.1109/IEDM.1995.499252

  12. K.-M. Chang, Silicon nanocrystal memory: technology and applications. Int Solid-State Integr Circ Technol (ICSICT ’06), 25–728 (2006). doi: 10.1109/ICSICT.2006.306469

    Google Scholar 

  13. Freescale Semiconductor, Inc, Thin film storage (TFS) with flex memory technology (2010), Available at: http://www.freescale.com/webapp/sps/site/overview.jsp?nodeId=0ST287482188DB3.Accessed 14 May 2010

  14. G.W. Burr, M.J. Breitwisch, M.F. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L.A. Lastras, A. Padilla, B. Rajendran, S. Raoux, R.S. Shenoy, Phase change memory technology. J. Vac. Sci. Technol. B 28, 223–262 (2010). doi:10.1116/1.3301579

    Article  CAS  Google Scholar 

  15. L.O. Chua, Memristor: the missing circuit element. IEEE Trans. Circuit Theory CT18, 507–519 (1971). doi:0.1109/TCT.1971.1083337

    Article  Google Scholar 

  16. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found [Letter]. Nature 453(7191), 80–83 (2008). doi:10.1038/nature06932

    Article  CAS  Google Scholar 

  17. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal-oxide-metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008)

    Article  CAS  Google Scholar 

  18. P. Vontobel, W. Robinett, J. Straznicky, P.J. Kuekes, R.S. Williams, Writing to and reading from a nano-scale crossbar memory based on memristors. Nanotechnology 20, 425204 (2009)

    Article  Google Scholar 

  19. J. Borghetti, Z. Li, J. Strasnicky, X. Li, D.A.A. Ohlberg, W. Wu, D.R. Stewart, R.S. Williams, A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proc. Natl. Acad. Sci. U.S.A. 106, 1699–1703 (2009)

    Article  CAS  Google Scholar 

  20. J. Borghetti, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, R.S. Williams, ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010). doi:10.1038/nature08940

    Article  CAS  Google Scholar 

  21. J.A. Katine, F.J. Albert, R.A. Buhrman, E.B. Myers, D.C. Ralph, Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000)

    Article  CAS  Google Scholar 

  22. M. Jurczak, N. Collaert, A. Veloso, T. Hoffmann, S. Biesemans, Review of FINFET technology. IEEE Int. SOI Conf, 1–4 (2009). doi:10.1109/SOI.2009.5318794

  23. W. Lu, Nanowire based electronics: challenges and prospects. IEDM 2009, 1–4 (2009). doi:10.1109/IEDM.2009.5424283

    Google Scholar 

  24. P. Avouris, J. Appenzeller, R. Martel, S. Wind, Carbon nanotube electronics. Proc. IEEE 91(11), 1772–1784 (2003). doi:10.1109/JPROC.2003.818338

    Article  CAS  Google Scholar 

  25. R.K. Cavin, V.V. Zhirnov, Silicon nanoelectronics and beyond: reflections from a semiconductor industry-government workshop. J. Nanopart. Res. 8, 137–147 (2004)

    Article  Google Scholar 

  26. R.K. Cavin, V.V. Zhirnov, G.I. Bourianoff, J.A. Hutchby, D.J.C. Herr, H.H. Hosack, W.H. Joyner, T.A. Wooldridge, A long-term view of research targets in nanoelectronics. J. Nanopart. Res. 7, 573–586 (2005)

    Article  Google Scholar 

  27. R.K. Cavin, V.V. Zhirnov, D.J.C. Herr, A. Avila, J. Hutchby, Research directions and challenges in nanoelectronics. J. Nanopart. Res. 8, 841–858 (2006)

    Article  Google Scholar 

  28. J.J. Welser, G.I. Bourianoff, V.V. Zhirnov, R.K. Cavin, The quest for the next information processing technology. J. Nanopart. Res. 10(1), 1–10 (2008)

    Article  Google Scholar 

  29. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). doi:10.1126/science.1102896

    Article  CAS  Google Scholar 

  30. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003)

    Article  CAS  Google Scholar 

  31. M.I. D’yakonov, V.I. Perel’, Possibility of orientating electron spins with current. JETP Lett. 13, 467–469 (1971)

    Google Scholar 

  32. Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Observation of the spin Hall effect in semiconductors. Science 306, 1910 (2004)

    Article  CAS  Google Scholar 

  33. J. Wunderlich, B. Kaestner, J. Sinova, T. Jungwirth, Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005)

    Article  CAS  Google Scholar 

  34. B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314(5806), 1757 (2006). doi:10.1126/science.1133734

    Article  CAS  Google Scholar 

  35. Y.L. Chen, J.G. Analytis, J.-H. Chu, Z.K. Liu, S.-K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, Z.-X. Shen, Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2009). doi:10.1126/science.1173034

    Article  CAS  Google Scholar 

  36. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang, Quantum spin hall insulator state in HgTe quantum wells. Science 318(5851), 766–770 (2007). doi:10.1126/science.1148047

    Article  Google Scholar 

  37. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blend magnetic semiconductors. Science 287, 1019 (2000)

    Article  CAS  Google Scholar 

  38. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, (Ga, Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363 (1996). doi:10.1063/1.118061

    Article  CAS  Google Scholar 

  39. K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Quantized conductance atomic switch. Nature 433, 47–49 (2005)

    Article  CAS  Google Scholar 

  40. P.R. Wallace, The band theory of graphite. Phys. Rev. 71, 622–634 (1947). doi:10.1103/PhysRev.71.622

    Article  CAS  Google Scholar 

  41. J.W. May, Platinum surface LEED rings. Surf. Sci. 17, 267–270 (1969). doi:10.1016/0039-6028(69)90227-1

    Article  CAS  Google Scholar 

  42. A.J. Van Bommel, J.E. Crombeen, A. Van Tooren, LEED and Auger electron observations of the SiC(0001) surface. Surf. Sci. 48, 463–472 (1975). doi:10.1016/0039-6028(75)90419-7

    Article  Google Scholar 

  43. H.P. Boem, A. Clauss, G.O. Fischer, U. Hofmann, Thin carbon leaves. Z. Naturforsch. 17b, 150–153 (1962)

    Google Scholar 

  44. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). doi:10.1038/nature04233

    Article  CAS  Google Scholar 

  45. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)

    Article  CAS  Google Scholar 

  46. A.K. Geim, A.K. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). doi:10.1038/nmat1849

    Article  CAS  Google Scholar 

  47. K.I. Bolotin, K.J. Sikes, Z. Jiang, G. Fundenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008). doi:10.1016/j.ssc.2008.02.024

    Article  CAS  Google Scholar 

  48. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009). doi:10.1126/science.1158877

    Article  CAS  Google Scholar 

  49. E. McCann, Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74, 161403(R) (2006). doi:10.1103/PhysRevB.74.161403

    Article  Google Scholar 

  50. J.B. Oostinga, H.B. Heersche, X. Liu, A.F. Morpurgo, L.M.K. Vandersypen, Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7, 151–157 (2008). doi:10.1038/nmat2082

    Article  CAS  Google Scholar 

  51. F. Xia, D.B. Farmer, Y.-M. Lin, P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010). doi:10.1021/nl9039636

    Article  CAS  Google Scholar 

  52. C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004). doi:10.1021/jp040650f

    Article  CAS  Google Scholar 

  53. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009). doi:10.1021/nl801827v

    Article  CAS  Google Scholar 

  54. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009). doi:10.1126/science.1171245

    Article  CAS  Google Scholar 

  55. Y.-M. Lin, H.-Y. Chiu, K.A. Jenkins, D.B. Farmer, P. Avouris, A. Valdes-Garcia, Dual-gate graphene FETs with of 50 GHz. IEEE Electron Device Lett. 31, 68–70 (2010). doi:0.1109/LED.2009.2034876

    Article  CAS  Google Scholar 

  56. J.S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P.M. Campbell, G. Jernigan, J.L. Tedesco, B. VanMil, R. Myers-Ward, C. Eddy, D.K. Gaskill, Epitaxial-graphene RF rield-effect transistors on Si-face 6 H-SiC substrates. IEEE Electron Device Lett. 30, 650–652 (2009). doi:10.1109/LED.2009.2020699

    Article  CAS  Google Scholar 

  57. Y.-M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.-Y. Chiu, A. Grill, Ph Avouris, 100-GHz transistors from wafer-scale epitaxial graphene. Science 327(5966), 662 (2010). doi:10.1126/science.1184289

    Article  CAS  Google Scholar 

  58. F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, Ph Avouris, Ultrafast graphene photodetector [Letter]. Nat. Nanotechnol. 4, 839–843 (2009). doi:10.1038/nnano.2009.292

    Article  CAS  Google Scholar 

  59. T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications [Letter]. Nat. Photonics 4, 297–301 (2010). doi:10.1038/nphoton.2010.40

    Article  CAS  Google Scholar 

  60. V.V. Chelanov, V. Fal’ko, B. Altshuler, The focusing of electron flow and a Veselago lens in graphene p-n junctions. Science 315, 1252–1255 (2007)

    Article  Google Scholar 

  61. S.K. Banerjee, L.F. Register, E. Tutuc, D. Reddy, A.H. MacDonald, Bilayer pseudospin field-effect transistor (BiSFET): a proposed new logic device. IEEE Electron Devices. Lett. 30(2), 158–160 (2009)

    Article  Google Scholar 

  62. H.Min, G. Borghi, M. Polini, A.H. MacDonald, Pseudospin magnetism in graphene. Phys. Rev. B 77(17 Jan), 041407–1 (2008). doi: 10.1103/PhysRevB.77.041407

    Google Scholar 

  63. J.-J. Su, A.H. MacDonald, How to make a bilayer exciton condensate flow. Nat. Phys. 4, 799–802 (2008)

    Article  CAS  Google Scholar 

  64. T. Miyazaki, N. Tezuka, Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995)

    CAS  Google Scholar 

  65. J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey, Large magnetoresistance at room-temperature in ferromagnetic thin-film tunnel-junctions. Phys. Rev. Lett. 74, 3273–3276 (1995)

    Article  CAS  Google Scholar 

  66. S. Tehrani, J.M. Slaughter, E. Chen, M. Durlam, J. Shi, M. DeHerrera, Progress and outlook for MRAM technology. IEEE Trans. Magn. 35, 2814–2819 (1999)

    Article  Google Scholar 

  67. B.N. Engel, J. Akerman, B. Butcher, R.W. Dave, M. DeHerrera, M. Durlam, G. Grynkewich, J. Janesky, S.V. Pietambaram, N.D. Rizzo, J.M. Slaughter, K. Smith, J.J. Sun, S. Tehrani, A 4-Mb toggle MRAM based on a novel bit and switching method. IEEE Trans. Magn. 41, 132–136 (2005)

    Article  Google Scholar 

  68. W.H. Butler, X.G. Zhang, T.C. Shulthess, J.M. MacLaren, Spin-dependent tunneling conductance of Fe/Mg.OFe sandwiches. Phys. Rev. B 63, 0544416 (2001)

    Google Scholar 

  69. S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain wall racetrack memory. Science 320, 209–211 (2008)

    Article  Google Scholar 

  70. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. Von Molnar, M.L. Roukes, A.Y. Chelkanova, D.M. Treger, Spintronics: a spin based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  CAS  Google Scholar 

  71. H.M. Saavedra, T.J. Mullen, P.P. Zhang, D.C. Dewey, S.A. Claridge, P.S. Weiss, Hybrid approaches in nanolithography. Rep. Prog. Phys. 73, 036501 (2010). doi:10.1088/0034-4885/73/3/036501

    Article  Google Scholar 

  72. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442(17), 759–765 (2006). doi:10.1038/nature05023

    Article  CAS  Google Scholar 

  73. D. Jorgenson, Moore’s law and the emergence of the new economy. Semiconductor Industry Association 2005 annual report: 2020 is closer than you think, pp. 16–20 (2005), Available online: http://www.sia-online.org/galleries/annual_report/Annual%20Report%202005.pdf

  74. U.S. Environmental Protection Agency (U.S. EPA). (August 2). Report to Congress on server and data center energy efficiency Public Law 109–431 (2007), Available online: http://www.energystar.gov/

  75. American Council for an Energy-Efficient Economy, Semiconductor technologies: the potential to revolutionize U.S. energy productivity (ACEEE, Washington, D.C, 2009), Available online: http://www.aceee.org/pubs/e094.htm

  76. S.A. Wolf, J. Lu, M. Stan, E. Chen, D.M. Treger, The promise of nanomagnetics and spintronics for future logic and universal memory. Proc. IEEE. 98, 2155–2168 (2010), Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05640335. Accessed 12 Dec 2010

  77. A. Orlov, A. Imre, G. Csaba, L. Ji, W. Porod, G.H. Bernstein, Magnetic quantum-dot cellular automata: recent developments and prospects. J. Nanoelectron. Optoelectron. 3, 55–68 (2008)

    Article  Google Scholar 

  78. R. Hanson, D.D. Awschalom, Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008)

    Article  CAS  Google Scholar 

  79. J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)

    Article  CAS  Google Scholar 

  80. S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph, Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003)

    Article  CAS  Google Scholar 

  81. T. Durkop, S.A. Getty, E. Cobas, M.S. Fuhrer, Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004)

    Article  Google Scholar 

  82. A.D. Franklin, G. Tulevski, J.B. Hannon, Z. Chen, Can carbon nanotube transistors be scaled without performance degradation? IEEE IEDM Tech. Dig. 561–564 (2009)

    Google Scholar 

  83. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003)

    Article  CAS  Google Scholar 

  84. S.J. Wind, Appenzeller, Ph Avouris, Lateral scaling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 91, 058301-1–058301-4 (2003)

    Google Scholar 

  85. J. Appenzeller, Y.-M. Lin, J. Knoch, Ph Avouris, Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196805-1–196805-4 (2004)

    Article  Google Scholar 

  86. J. Appenzeller, Y.-M. Lin, J. Knoch, Ph Avouris, Comparing carbon nanotube transistors – the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52, 2568–2576 (2005)

    Article  CAS  Google Scholar 

  87. S.O. Koswatta, D.E. Nikonov, M.S. Lundstrom, Computational study of carbon nanotube p-i-n tunneling FETs. IEDM Tech. Dig. 2005, 518–521 (2004)

    Google Scholar 

  88. J. Knoch, J. Appenzeller, Carbon nanotube field-effect transistors—The importance of being small, in AmIware, hardware technology drivers of ambient intelligence, ed. by S. Mukherjee, E. Aarts, R. Roovers, F. Widdershoven, M. Ouwerkerk (Springer, New York, 2006), pp. 371–402

    Chapter  Google Scholar 

  89. J. Knoch, W. Riess, J. Appenzeller, Outperforming the conventional scaling rules in the quantum capacitance limit. IEEE Electron Devices Lett. 29, 372–374 (2008)

    Article  CAS  Google Scholar 

  90. Z. Chen, J. Appenzeller, Y.-M. Lin, J.S. Oakley, A.G. Rinzler, J. Tang, S. Wind, P. Solomon, Ph Avouris, An integrated logic circuit assembled on a single carbon nanotube. Science 311, 1735 (2006)

    Article  CAS  Google Scholar 

  91. S. Bae, H.K. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, D. Im, T. Lei, Y.I. Song, Y.J. Kim, K.S. Kim, B. Özyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, 30-inch roll-based production of high-quality graphene films for flexible transparent electrodes. Mater. Sci. (2010). doi:arXiv:0912.5485 [cond-mat.mtrl-sci]. Forthcoming

    Google Scholar 

  92. D.B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G.S. Tulevski, J.C. Tsang, P. Avouris, Chemical doping and electron  −  hole conduction asymmetry in graphene devices. Nano Lett. 9, 388–392 (2009). doi:10.1021/nl803214a

    Article  CAS  Google Scholar 

  93. D.H. Chae, B. Krauss, K. von Klitzing, J.H. Smet, Hot phonons in an electrically biased graphene constriction. Nano Lett. 10, 466–471 (2010). doi:10.1021/nl903167f

    Article  CAS  Google Scholar 

  94. M. Freitag, M. Steiner, Y. Martin, V. Perebeinos, Z. Chen, J.C. Tsang, P. Avouris, Energy dissipation in graphene field-effect transistors. Nano Lett. 9, 1883–1888 (2009). doi:10.1021/nl803883h

    Article  CAS  Google Scholar 

  95. L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Welser .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business B.V.

About this chapter

Cite this chapter

Welser, J., Wolf, S.A., Avouris, P., Theis, T. (2011). Applications: Nanoelectronics and Nanomagnetics. In: Nanotechnology Research Directions for Societal Needs in 2020. Science Policy Reports, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1168-6_9

Download citation

Publish with us

Policies and ethics