Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 61))

Abstract

In this lecture different aspects of frequency conversion in semiconductor heterostructures are reviewed. Thanks to the very high degree of control of growth and technology of thin layers of semiconductors, both electronic wavefunction and optical mode properties can be tailored, through band gap engineering and refractive index engineering. These two aspects lead to the possibility of optimization of nonlinear susceptibilities on the one hand, and nonlinear phase matching on the other hand, which are the two most important parameters for nonlinear frequency conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a non linear dielectric,” Phys. Rev. 127, 1918–1939 (1962).

    Article  ADS  Google Scholar 

  2. M. M. Fejer, “Nonlinear optical frequency conversion,” Phys. Today May 1994, 25–32 (1994).

    Article  Google Scholar 

  3. A. Yariv, Quantum electronics (John Wiley & sons, 1989).

    Google Scholar 

  4. G. Bastard, Wave mechanics applied to semiconductor heterostructures (Les Editions de Physique CNRS, 1988).

    Google Scholar 

  5. C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic Press, 1991).

    Google Scholar 

  6. C. Weisbuch, “The Future of Physics of Heterostructures: A Glance Into the Crystal (Quantum) Ball,” Physica Scripta T68, 102–112 (1996).

    Article  ADS  Google Scholar 

  7. F. Capasso, Science 235, 172 (1987).

    Article  ADS  Google Scholar 

  8. F. Capasso, J. Faist, and C. Sirtori, “Mesoscopic phenomena in semiconductor nanostructures by quantum design,” J. of Math. Phys. 37, 4775–4792 (1996).

    Article  ADS  MATH  Google Scholar 

  9. B. F. Levine, “Quantum Well Infrared Photodetectors,” J. of Appl. Phys. 74, R1–R81 (1993).

    Article  ADS  Google Scholar 

  10. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).

    Article  ADS  Google Scholar 

  11. Microcavities and Photonic Band Gaps: Physics and Applications, J. Rarity and C. Weisbuch, eds., (Kluwer Academic Publishers, Dordrecht, 1996).

    Google Scholar 

  12. T. Tamir, Guided-Wave Optoelectronics (Springer-Verlag, 1990).

    Google Scholar 

  13. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-Cavity Surface-Emitting Lasers: Design, Growth, Fabrication, Characterization,” IEEE J. of Quant. Elec. 27, 1332 (1991).

    Article  ADS  Google Scholar 

  14. R. P. Stanley, R. Houdre, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883 (1994).

    Article  ADS  Google Scholar 

  15. U. Mohideen, W. S. Hobson, S. J. Pearton, F. Ren, and R. E. Slusher, “GaAs/AlGaAs microdisks lasers,” Appl. Phys. Lett. 64, 1911 (1994).

    Article  ADS  Google Scholar 

  16. J. M. Gerard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).

    Article  ADS  Google Scholar 

  17. J. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-Wire Laser,” Phys. Rev. Lett. 75, 2678 (1995).

    Article  ADS  Google Scholar 

  18. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-Band-Gap Microcavities in Optical Waveguides,” Nature, accepted for publication (1997).

    Google Scholar 

  19. D. Labilloy, H. Benisty, C. Weisbuch, V. Bardinal, T. Krauss, R. Houdre, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflexion and diffraction of two-dimensional photonic bandgap structures at near-infrared wavelengths,” Phys. Rev. Lett., submitted for publication (1997).

    Google Scholar 

  20. C. C. Cheng, A. Sherer, V. Arbet-Engels, and E. Yablonovitch, “Lithographic band gap tuning in photonic band gap crystals,” J. Vac. Sei. Technol. B 14, 4110 (1996).

    Google Scholar 

  21. V. Berger, “From photonic band gaps to refractive index engineering,” Optical Materials, to be published (1997).

    Google Scholar 

  22. N. Bloembergen, Nonlinear Optics (Benjamin, 1977).

    Google Scholar 

  23. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

    Google Scholar 

  24. E. Rosencher, B. Vinter, and B. Levine, Intersubband Transitions in Quantum Wells (Plenum, New York, 1992).

    Book  Google Scholar 

  25. H. C. Liu, B. F. Levine, and J. Y. Andersson, Quantum Well Intersubband Transition Physics and Devices (Plenum, Dordrecht, 1994).

    Book  Google Scholar 

  26. E. Rosencher and P. Bois, “Model system for optical nonlinearities: Asymmetric quantum wells,” Phys. Rev. B 44, 11315 (1991).

    ADS  Google Scholar 

  27. F. Capasso, C. Sirtori, and A. Y. Cho, “Quantum well quasimolecules with nonlinear optical properties and new heterostructures with bound states in the continuum,” Optoelectronics. Devices and Technology 8, 479 (1993).

    Google Scholar 

  28. J. N. Heyman, K. Craig, B. Galdrikian, M. S. Sherwin, K. Campman, P. F. Hopkins, S. Fafard, and A. C. Gossard, “Resonant harmonic generation and dynamic screening in a double quantum well,” Phys. Rev. Lett. 72, 2183 (1994).

    Article  ADS  Google Scholar 

  29. E. Rosencher and B. Vinter, Optoélectronique (Masson, 1997).

    Google Scholar 

  30. V. Berger, P. Bois, and E. Rosencher, “Comment on surface emitting second harmonic generator by intersubband transition in asymmetric quantum wells with slab waveguide (Appl. Phys. Lett. 62, 1502 (1993)),” Appl. Phys. Lett. 64, 800 (1994).

    Article  ADS  Google Scholar 

  31. S. Li and J. Khurgin, “Second order nonlinear optical susceptibility in p-doped asymmetric quantum wells quantum wells,” Appl. Phys. Lett. 62, 1727 (1993).

    Article  ADS  Google Scholar 

  32. X. Qu and H. Ruda, “Structure dependence of second harmonic generation in asymmetric quantum well structures,” IEEE J. of Quant. Electron. 31, 228 (1995).

    Article  ADS  Google Scholar 

  33. M. K. Gurnick and T. A. DeTemple, “Synthetic nonlinear semiconductors,” IEEE J. Quantum Electron. QE-19, 791 (1983).

    Article  ADS  Google Scholar 

  34. L. C. West and S. J. Eglash, “First observation of an extremely large dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).

    Article  ADS  Google Scholar 

  35. L. Tsang, D. Ahn, and S. L. Chuang, “Electric field control of optical second harmonic generation in a quantum well,” App. Phys. Lett. 52, 697 (1988).

    Article  ADS  Google Scholar 

  36. J. Khurgin, “Second-order intersubband nonlinear optical susceptibilities of asymmetric quantum well structures,” In Quantum Wells for Optics and Optoelectronics, (Washington DC, 1989).

    Google Scholar 

  37. J. Khurgin, “Second order intersubband nonlinear optical susceptibilities of asymmetric quantum well structures,” J. of Opt. Soc. Am. B 6, 1673 (1989).

    Article  ADS  Google Scholar 

  38. Z. Ikonic, V. Milanovic, and D. Tjapkin, “Resonant second harmonic generation by a semiconductor quantum wells in electric field,” IEEE J. of Quant. Elec. 25, 54 (1989).

    Article  ADS  Google Scholar 

  39. M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. S. Harris, “Observation of extremely large quadratic susceptibility at 9.6 — 10.8 µm. in electric-field-biased quantum wells,” Phys. Rev. Lett. 62, 1041 (1989).

    Article  ADS  Google Scholar 

  40. E. Rosencher, P. Bois, J. Nagle, and S. Delaitre, “Second harmonic generation by intersubband transitions in compositionally asymmetrical MQWs,” Electron. Lett. 25, 1063 (1989).

    Article  Google Scholar 

  41. P. Boucaud, F. H. Julien, D. D. Yang, J. M. Lourtioz, E. Rosencher, P. Bois, and J. Nagle, “Detailed analysis of second harmonic generation near 10.6 µ in GaAs/AlGaAs asymmetric quantum wells,” App. Phys. Lett. 57, 215 (1990).

    Article  ADS  Google Scholar 

  42. P. Boucaud, F. H. Julien, D. D. Yang, J. M. Lourtioz, E. Rosencher, and P. Bois, “Saturation of the second harmonic generation in GaAs/AlGaAs asymmetric quantum wells,” Opt.. Lett. 16, 199 (1991).

    Article  ADS  Google Scholar 

  43. C. Sirtori, F. Capasso, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Observation of large second order susceptibility via intersubband transitions at λ = 10µm in asymmetric coupled AlInAs/GaInAs quantum wells,” Appl. Phys. Lett. 59, 2302 (1991).

    Article  ADS  Google Scholar 

  44. C. Sirtori, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Resonant stark tuning of second-order susceptibility in coupled quantum wells,” Appl. Phys. Lett. 60, 151 (1992).

    Article  ADS  Google Scholar 

  45. F. Capasso, C. Sirtori, and A. Y. Cho, “Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared,” IEEE Electron Device Lett. 30, 1313 (1994).

    Article  Google Scholar 

  46. C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Giant, Triply Resonant, Third-Order Nonlinear Susceptibility χ (3)3w in Coupled Quantum wells,” Phys. Rev. Lett. 68, 1010 (1992).

    Article  ADS  Google Scholar 

  47. H. C. Chui, E. L. Martinet, G. L. Woods, M. M. Fejer, J. S. Harris, C. A. Rella, B. I. Richman, and H. A. Schwettman, “Doubly resonant second harmonic generation of 2.0µp? light in coupled InGaAs/AlAs quantum wells,” Appl. Phys. Lett. 64, 3365 (1994).

    Article  ADS  Google Scholar 

  48. E. Martinet, H. C. Chui, G. L. Woods, M. M. Fejer, J. S. Harris, C. A. Rella, B. A. Richman, and H. A. Schwettman, “Short wavelength (5.36-1.85µm) nonlinear spectroscopy of coupled InGaAs/AlAs intersubband quantum wells,” Appl. Phys. Lett. 65, 2630 (1994).

    Article  ADS  Google Scholar 

  49. W. W. Bewley, C. L. Felix, J. J. Plombon, M. S. Sherwin, M. Sundaram, P. F. Hopkins, and A. C. Gossard, “Far-infrared second harmonic generation in GaAs/AlGaAs heterostructures: perturbative and nonperturbative response,” Phys. Rev. B 48, 2376 (1993).

    Article  ADS  Google Scholar 

  50. C. Sirtori, F. Capasso, J. Faist, L. N. Pfeiffer, and K. W. West, “Far-infrared generation by doubly resonant difference frequency mixing in a coupled quantum well two-dimensional electron gas system,” Appl. Phys. Lett. 65, 445 (1994).

    Article  ADS  Google Scholar 

  51. H. C. Liu, E. Costard, E. Rosencher, and J. Nagle, “Sum frequency generation by intersubband transition in step quantum wells,” IEEE J. of Quant. Electr. 31, 1659 (1995).

    Article  ADS  Google Scholar 

  52. H. C. Chui, G. L. Woods, M. M. Fejer, E. L. Martinet, and J. S. Harris, “Tunable mid-infrared generation by difference frequency mixing of diode laser wavelengths in intersubband InGaAs/AlAs quantum wells,” Appl. Phys. Lett. 66, 265 (1995).

    Article  ADS  Google Scholar 

  53. H. C. K. Chui, Ph.D. thesis, Stanford University, 1994.

    Google Scholar 

  54. S. J. B. Yoo, Ph.D. thesis, Standford University, 1991.

    Google Scholar 

  55. E. Rosencher, “Two photon optical nonlinearities in a resonant quantum well system,” J. of Appl. Phys. 73, 1909 (1992).

    Article  ADS  Google Scholar 

  56. G. Almogy and A. Yariv, “Second harmonic generation in absorptive media,” Optics Lett. 19, 1828 (1994).

    Article  ADS  Google Scholar 

  57. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Intersubband second harmonic generation with voltage controlled phase matching,” Appl. Phys. Lett. 67, 608 (1995).

    Article  ADS  Google Scholar 

  58. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, E. R. Youngdale, and L. R. Ram-Mohan, “Momentum space reservoir for enhancement of intersubband second harmonic generation,” IEEE J. of Quant. Electron. 31, 706 (1995).

    Article  ADS  Google Scholar 

  59. I. Vurgaftman, J. Meyer, and L. R. Ram-Mohan, “Optimized second-harmonic generation in asymmetric double quantum wells,” IEEE J. of Quant. Electr. 32, 1334 (1996).

    Article  ADS  Google Scholar 

  60. S. J. ?. ???, ?. ?. Fejer, and R. L. ?. ans S. J. Harris, “Second order susceptibility in asymmetric quantum wells and its control by proton bombardment,” Appl. Phys. Lett. 58, 1724 (1991).

    Article  ADS  Google Scholar 

  61. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609 (1996).

    Article  ADS  Google Scholar 

  62. K. Vodopyanov, Appl. Phys. Lett., submitted for publication (1998).

    Google Scholar 

  63. G. L. Woods, Ph.D. thesis, Stanford University, 1997.

    Google Scholar 

  64. G. Almogy, M. Segev, and A. Yariv, “Intersubband transitions induced phase matching,” Optics Lett. 19, 1192 (1994).

    Article  ADS  Google Scholar 

  65. E. B. Dupont, D. Delacourt, and M. Papuchon, “Mid-infrared Phase Modulation via Stark Effect on Intersubband Transitions in GaAs/GaAlAs Quantum Wells,” IEEE J. Quant. Electron. 29, 2313 (1993).

    Article  ADS  Google Scholar 

  66. V. Berger, E. Dupont, D. Delacourt, B. Vinter, N. Vodjdani, and M. Papuchon, “Triple Quantum Well Electron Transfer Infrared Modulator,” Appl. Phys. Lett. 61, 2072 (1992).

    Article  ADS  Google Scholar 

  67. E. B. Dupont, D. Delacourt, V. Berger, N. Vodjdani, and M. Papuchon, “Phase and Amplitude Modulation Based on Intersubband Transitions in Electron Transfer Double Quantum Wells.,” Appl. Phys. Lett. 62, 1907 (1993).

    Article  ADS  Google Scholar 

  68. V. Berger, N. Vodjdani, D. Delacourt, and J. Schnell, “Room-temperature quantum well infrared modulator using a Schottky diode,” Appl. Phys. Lett. 68, 1904 (1996).

    Article  ADS  Google Scholar 

  69. V. Berger, N. Vodjdani, B. Vinter, E. Costard, and E. Böckenhoff, “Optically induced intersubband absorption in biased double quantum wells.,” Appl. Phys. Lett. 60, 1869–1871 (1992).

    Article  ADS  Google Scholar 

  70. J. Khurgin, “Large-scale quantum well domain structures,” J. Appl. Phys. 64, 5026–5029 (1988).

    Article  ADS  Google Scholar 

  71. S. Janz, F. Chatenoud, and R. Normandin, “Quasi phase matched second harmonic generation from asymmetric coupled quantum wells,” Optics Letters 19, 622 (1994).

    Article  ADS  Google Scholar 

  72. X. Qu, H. Ruda, S. Janz, and A. J. S. Thorpe, “Enhancement of second harmonic generation at 1.06µm using a quasi phase matched AlGaAs/GaAs asymmetric quantum well structure,” Appl. Phys. Lett. 65, 3176 (1994).

    Article  ADS  Google Scholar 

  73. J. Khurgin, “Second-order nonlinear effects in asymmetric quantum-well structures.,” Phys. Rev. B 38, 4056–4066 (1988).

    Article  ADS  Google Scholar 

  74. P. J. Harshman and S. Wang, “Asymmetric AlGaAs quantum wells for second-harmonic generation and quasiphase matching of visible light in surface emitting waveguides,” Appl. Phys. Lett. 60, 1277–1279 (1992).

    Article  ADS  Google Scholar 

  75. D. C. Hutchings and J. M. Arnold, “Determination of second order nonlinear coefficients in semiconductors using pseudo spin equations for three level systems,” Phys. Rev. B 56, 4056 (1997).

    Article  ADS  Google Scholar 

  76. A. Shimizu, “Optical Nonlinearity induced by giant dipole moment of Wannier excitons,” Phys. Rev. Lett. 61, 613 (1988).

    Article  ADS  Google Scholar 

  77. L. Tsang and S. L. Chuang, “Exciton effects on second-order nonlinear susceptibility in a quantum well with an applied electric field,” Phys. Rev. B 42, 5229 (1990).

    Article  ADS  Google Scholar 

  78. R. Atanasov, F. Bassani, and V. M. Agranovich, “Second order nonlinear susceptibility of asymmetric quantum wells,” Phys. Rev. B 50, 7809 (1994).

    Article  ADS  Google Scholar 

  79. H. Kuwatsuka and H. Ishikawa, “Calculation of the second order optical order optical susceptibility in biased AlxGa1-xAs quantum wells,” Phys. Rev. B 50, 5323 (1994).

    Article  ADS  Google Scholar 

  80. Y. L. Xie, Z. H. Chen, D. F. Cui, S. H. Pan, D. Q. Deng, and Y. L. Zhou, “Optical second-order susceptibility of GaAs/AlxGal-xAs asymmetric coupled-quantum-well structures in the exciton region,” Phys. Rev. B 43, 12477–12479 (1991).

    Article  ADS  Google Scholar 

  81. V. Pellegrini, A. Parlangeli, ?. Borger, R. D. Atanasov, F. Beltram, L. Vanzetti, and A. Franciosi, “Interband second harmonic generation in ZnCdSe/ZnSe strained quantum wells,” Phys. Rev. B 52, 5527 (1995).

    Article  ADS  Google Scholar 

  82. A. Fiore, Y. Beaulieu, S. Janz, J. P. McCaffrey, Z. R. Wasilewski, and D. X. Xu, “Quasiphase matched surface emitting second harmonic generation in periodically reversed asymmetric GaAs/AlGaAs quantum well waveguide,” Appl. Phys. Lett. 70, 2655 (1997).

    Article  ADS  Google Scholar 

  83. J. Khurgin, “Second-order susceptibility of asymmetric coupled quantum-well structures.,” Appl. Phys. Lett. 51, 2100 (1987).

    Article  ADS  Google Scholar 

  84. L. Tsang, S. L. Chuang, and S. M. Lee, “Second-order nonlinear susceptibility of a quantum well with an applied electric field,” Phys. Rev. B 41, 5942 (1990).

    Article  ADS  Google Scholar 

  85. A. Fiore, E. Rosencher, B. Vinter, D. Weill, and V. Berger, “Second order optical susceptibilty of biased quantum wells in the interband regime,” Phys. Rev. B 51, 13192 (1995).

    Article  ADS  Google Scholar 

  86. A. Fiore, E. Rosencher, V. Berger, and J. Nagle, “Electric field induced interband second harmonic generation in GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 67, 3765 (1995).

    Article  ADS  Google Scholar 

  87. A. Fiore, Ph.D. thesis, Université d’Orsay, 1997.

    Google Scholar 

  88. F. Bogani, S. Cioncolini, E. Lugagne-Delpon, P. Roussignol, P. Voisin, and J. P. Andre, “Resonant second harmonic generation in type II heterostructures of InP/Al0.48Ino.52As,” Phys. Rev. B 50, 4554 (1994).

    Article  ADS  Google Scholar 

  89. S. Scandolo, A. Baldereschi, and F. Capasso, “Interband near-infrared second-harmonic generation with very large |χ(2)(2w)| in AlSb/GaSb-InAsSb/AlSb asym-metric quantum wells,” Appl. Phys. Lett. 62, 3138 (1993).

    Article  ADS  Google Scholar 

  90. X. Qu, D. J. Bottomley, H. Ruda, and A. J. S. Thorpe, “Second harmonic generation from a AlGaAs/GaAs asymmetric quantum well structure,” Phys. Rev. B 50, 5703 (1994).

    Article  ADS  Google Scholar 

  91. R. Normandin and G. I. Stegeman, 36, 253 (1980).

    Google Scholar 

  92. D. Vakhshoori and S. Wang, Appl. Phys. Lett. 53, 347 (1988).

    Article  ADS  Google Scholar 

  93. A. Fiore, private communication.

    Google Scholar 

  94. A. Bonvalet, J. Nagle, V. Berger, A. Migus, J. L. Martin, and M. Joffre, “Femtosecond infrared emission resulting from coherent charge oscillations in quantum wells,” Phys. Rev. Lett. 76, 4392 (1996).

    Article  ADS  Google Scholar 

  95. H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. Schmitt-Rink, and K. K. hler, “Coherent Submillimeter-Wave Emission from Charge Oscillations in a Double-Well Potentiel,” Phys. Rev. Lett. 68, 2216–2219 (1992).

    Article  ADS  Google Scholar 

  96. P. C. M. Planken, M. C. Nuss, I. Brener, K. W. Goossen, M. S. C. Luo, S. L. Chuang, and L. Pfeiffer, “Terahertz emission in single quantum wells after coherent optical excitation of light hole and heavy holes excitons,” Phys. Rev. Lett. 69, 3800 (1992).

    Article  ADS  Google Scholar 

  97. A. Shimizu, M. Kuwata-Gonokami, and H. Sakaki, “Enhanced second-order optical nonlinearity using inter-and intra-band transitions in low dimensional semiconductors,” Appl. Phys. Lett. 61, 399 (1992).

    Article  ADS  Google Scholar 

  98. X. Qu and H. Ruda, “Microwave and millimeter wave generation using nonlinear optical mixing in asymmetric quantum wells,” J. of Appl. Phys. 75, 54 (1994).

    Article  ADS  Google Scholar 

  99. A. Bonvalet, Ph.D. thesis, Ecole polytechnique, 1997.

    Google Scholar 

  100. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. of Quant. Elec. 28, 2631 (1992).

    Article  ADS  Google Scholar 

  101. D. E. Thomson, J. D. McMullen, and D. B. Anderson, “Second-Harmonic Generation in GaAs Stack of Plates using High Power CO2 Laser Radiation,” Appl. Phys. Lett. 29, 113–115 (1976).

    Article  ADS  Google Scholar 

  102. M. S. Ünlü, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607 (1995).

    Article  ADS  Google Scholar 

  103. N. Hunt and E. F. Schubert, “High efficiency resonant cavity LED’s,” In Microcav-ities and Photonic bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, eds., (Kluwer Academic Publishers, Dordrecht, 1996).

    Google Scholar 

  104. V. Berger, X. Marcadet, and J. Nagle, “Doubly resonant frequency conversion processes in semiconductor microcavities,” Pure and Applied Optics, to be published (1997).

    Google Scholar 

  105. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. of Quant. Electron. 2, 109–124 (1966).

    Article  ADS  Google Scholar 

  106. R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. of Quant. Electron. 6, 215–223 (1970).

    Article  ADS  Google Scholar 

  107. V. Berger, “Second-harmonic generation in monolithic cavities,” J. of Opt. Soc. Am. B 14, 1351 (1997).

    Article  ADS  Google Scholar 

  108. D. J. Lovering, G. Fino, C. Simonneau, R. Kuszelewicz, R. Azoulay, and J. A. Levenson, “Optimisation of dual-wavelength Bragg mirrors,” Electron. Lett. 32, 1782 (1996).

    Article  Google Scholar 

  109. C. Simonneau, J. P. Debray, J. C. Harmand, P. Vidakovic, D. J. Lovering, and J. A. Levenson, “Second harmonic generation in a doubly-resonant semiconductor microcavity,” submitted for publication (1997).

    Google Scholar 

  110. L. A. Gordon, “Diffusion-bonded stacked GaAs for quasi-phase matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942 (1993).

    Article  Google Scholar 

  111. K. Yang and L. J. Schowalter, Appl. Phys. Lett. 60, 1851 (1991). au1]12._X. Marcadet, J. Olivier, and J. Nagle, “Stability of the step distribution and MBE growth mechanisms on vicinal GaAs(-l-l-l) substrates,” Appl. Surf. Sci., to be published (1997).

    Article  ADS  Google Scholar 

  112. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear material,” Nature (1997).

    Google Scholar 

  113. M. Born and E. Wolf, Principle of Optics (Pergamon Press, Oxford, 1980).

    Google Scholar 

  114. P. Yeh, Optical Waves in Layered media (John Wiley & Sons, New York, 1988).

    Google Scholar 

  115. J. V. der Ziel, “Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers,” Appl. Phys. Lett. 26, 60 (1975).

    Article  ADS  Google Scholar 

  116. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143 (1997).

    Article  ADS  Google Scholar 

  117. J. M. Dallesasse, J. N. Holonyak, A. R. Sugg, T. A. Richard, and N. El-Zein, “Hydrolysation Oxidation of AlGaAs-AlAs-GaAs Quantum Well Heterostructures and Superlattices,” Appl. Phys. Lett. 57, 2844 (1990).

    Article  ADS  Google Scholar 

  118. D. L. Huffaker, D. G. Deppe, and K. Kumar, “Native oxide defined ring contact for low-threshold vertical cavity lasers,” Appl. Phys. Lett. 65, 97 (1994).

    Article  ADS  Google Scholar 

  119. M. H. MacDougal, H. Zao, P. D. Dapkus, M. Ziari, and W. H. Steier, “Wide-Bandwidth Distributed Bragg Reflectors Using Oxide/GaAs Multilayers,” Electr. Lett. 30, 1147 (1994).

    Article  Google Scholar 

  120. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-IR difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett., to be published (1997).

    Google Scholar 

  121. P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier-Lafaye, “5.2 — 5.6 microns tunable source by frequency conversion in a GaAs based waveguide,” Optics Lett. (1998).

    Google Scholar 

  122. A. Fiore, V. Berger, E. Rosencher, S. Crouzy, N. Laurent, and J. Nagle, “Δn=0.22 birefringence measurement by surface emitting second harmonic generation in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 71, 2587 (1997).

    Article  ADS  Google Scholar 

  123. A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second harmonic generation at λ = 1.06µm in GaAs based waveguides using birefringence phase matching,” Appl. Phys. Lett., submitted for publication (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Berger, V. (1999). Frequency Conversion with Semiconductor Heterostructures. In: Boardman, A.D., Pavlov, L., Tanev, S. (eds) Advanced Photonics with Second-Order Optically Nonlinear Processes. NATO Science Series, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0850-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0850-1_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5316-4

  • Online ISBN: 978-94-007-0850-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics