Skip to main content

Advanced Applications of Nonlinear Plasmonics

  • Chapter
  • First Online:
Plasmon-enhanced light-matter interactions

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 31))

  • 1195 Accesses

Abstract

The nonlinear optical effects originating from the light-matter interaction under intense light excitations have enabled numerous novel applications, such as frequency conversion, all-optical modulation, and ultrafast optical switching. Recent years, the development of metamaterials, photonic crystals, and topological optics allow unconventional enhanced nonlinear effects that may potentially exceed traditional nonlinear materials. In this chapter, we discuss the concepts of nonlinear optical effects and introduce several nonlinear optical applications, including broadband terahertz source based on plasmonic metasurfaces, nonlinear Fano resonances, and nonlinear interaction of topological graphene plasmons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Nature, 424, 824.

    Article  ADS  Google Scholar 

  2. Zayats, A. V., Smolyaninov, I. I., & Maradudin, A. A. (2005). Physics Reports, 408, 131.

    Article  ADS  Google Scholar 

  3. Bozhevolnyi, S. I. (Ed.). (2009). Plasmonic nanoguides and cirquits. Pan Stanford Publishing Pte. Ltd..

    Google Scholar 

  4. Zayats, A. V., & Maier, S. (Eds.). (2013). Active plasmonics and tuneable plasmonic metamaterials (1st ed.). Wiley.

    Google Scholar 

  5. Cai, W., & Shalaev, V. (Eds.). (2009). Optical metamaterials: Fundamentals and applications. Springer.

    Google Scholar 

  6. Maradudin, A. A., Sambles, J. R., & Barnes, W. L. (Eds.). (2014). Modern plasmonics. Elsevier.

    Google Scholar 

  7. Schuller, J. A., Barnard, E. S., Cai, W. S., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010). Nature Materials, 9, 193.

    Article  ADS  Google Scholar 

  8. Kauranen, M., & Zayats, A. V. (2012). Nature Photonics, 6, 737.

    Article  ADS  Google Scholar 

  9. Boardman, A. D., & Zayats, A. V. (2014). In A. A. Maradudin, J. R. Sambles, & W. L. Barnes (Eds.), Modern plasmonics (p. 329). Elsevier.

    Chapter  Google Scholar 

  10. Luo, L., Chatzakis, I., Wang, J., Niesler, F. B. P., Wegener, M., Koschny, T., & Soukoulis, C. M. (2014). Nature Communications, 5, 3055.

    Article  ADS  Google Scholar 

  11. Feng, K., Streyer, W., Zhong, Y., Hoffman, A. J., & Wasserman, D. (2015). Optics Express, 23(24), A1418–A1433.

    Article  ADS  Google Scholar 

  12. Yee, K. S. (1966). IEEE Transactions on Antennas and Propagation, 14(3), 302–307.

    Article  ADS  Google Scholar 

  13. Taflove, A., & Hagness, S. C. (2005). Computational electrodynamics: The finite-difference time-domain method (3rd ed.). Artech House.

    MATH  Google Scholar 

  14. Fang, M., Huang, Z., Sha, W. E. I., Xiong, X. Y. Z., & Wu, X. (2016). Progress in Electromagnetics Research, 157, 63–78.

    Article  Google Scholar 

  15. Liu, J., Brio, M., Zeng, Y., Zakharian, A. R., Hoyer, W., Koch, S. W., & Moloney, J. V. (2010). Journal of Computational Physics, 229(17), 5921–5932.

    Article  ADS  Google Scholar 

  16. Fang, M., Huang, Z., Sha, W. E. I., & Wu, X. (2017). IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2, 194–201.

    Article  ADS  Google Scholar 

  17. Fang, M., Niu, K., Huang, Z., Wei, E. I., Wu, X., Koschny, T., & Soukoulis, C. M. (2018). Optics Express, 26(11), 14241–14250.

    Article  ADS  Google Scholar 

  18. Fang, M., Shen, N. H., Wei, E. I., Huang, Z., Koschny, T., & Soukoulis, C. M. (2019). Physical Review Letters, 122(2), 027401.

    Article  ADS  Google Scholar 

  19. Tassin, P., Koschny, T., & Soukoulis, C. M. (2012). Physica B (Amsterdam), 407, 4062.

    Article  ADS  Google Scholar 

  20. Kodigala, A., Lepetit, T., Gu, Q., Bahari, B., Fainman, Y., & Kanté, B. (2017). Nature, 541, 196.

    Article  ADS  Google Scholar 

  21. Rho, J., Pertsch, T., & Kivshar, Y. (2020). MRS Bulletin, 45, 210–220.

    Article  ADS  Google Scholar 

  22. Rybin, M., & Kivshar, Y. S. (2017). Nature, 541, 165.

    Article  ADS  Google Scholar 

  23. Neumann, J. V., & Wigner, E. P. (1929). Physikalishce Zeitschrift, 30, 465.

    Google Scholar 

  24. Marinica, D. C., Borisov, A. G., & Shabanov, S. V. (2008). Physical Review Letters, 100, 183902.

    Article  ADS  Google Scholar 

  25. Hsu, C. W., Zhen, B., Lee, J., et al. (2013). Nature, 499, 188.

    Article  ADS  Google Scholar 

  26. Azzam, S. I., & Kildishev, A. V. (2020). Advanced Optical Materials, 9, 2001469.

    Article  Google Scholar 

  27. Mylnikov, V., Ha, S. T., Pan, Z., Valuckas, V., Paniagua-Domínguez, R., Demir, H. V., & Kuznetsov, A. I. (2020). ACS Nano, 14, 7338–7346.

    Article  Google Scholar 

  28. Ha, S. T., Fu, Y. H., Emani, N. K., et al. (2018). Nature Nanotechnology, 13, 1042.

    Article  ADS  Google Scholar 

  29. Sadrieva, Z. F., Sinev, I. S., Koshelev, K. L., et al. (2017). ACS Photonics, 4, 723.

    Article  Google Scholar 

  30. Rybin, M. V., Koshelev, K. L., Sadrieva, Z. F., et al. (2017). Physical Review Letters, 119, 243901.

    Article  ADS  Google Scholar 

  31. Taghizadeh, A., & Chung, I. S. (2017). Applied Physics Letters, 111, 031114.

    Article  ADS  Google Scholar 

  32. Doeleman, H. M., Monticone, F., Hollander, W., Alù, A., & Koenderink, A. F. (2018). Nature Photonics, 12, 397.

    Article  ADS  Google Scholar 

  33. Seo, I. C., Kim, S., Woo, B. H., Chung, I. S., & Jun, Y. C. (2020). Nanophotonics, 9, 4565–4577.

    Article  Google Scholar 

  34. Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010). Nature Materials, 9, 193.

    Article  ADS  Google Scholar 

  35. Maier, S. A. (2007). Plasmonics: Fundamentals and applications. Springer.

    Book  Google Scholar 

  36. Törmä, P., & Barnes, W. L. (2015). Reports on Progress in Physics, 78, 013901.

    Article  ADS  Google Scholar 

  37. Sukharev, M., & Nitzan, A. (2017). Journal of Physics: Condensed Matter, 29, 443003.

    Google Scholar 

  38. Jun, Y. C., Kekatpure, R. D., White, J. S., & Brongersma, M. L. (2008). Physical Review B, 78, 153111.

    Article  ADS  Google Scholar 

  39. Jun, Y. C., Huang, K. C. Y., & Brongersma, M. L. (2011). Nature Communications, 2, 283.

    Article  ADS  Google Scholar 

  40. Min, B., Ostby, E., Sorger, V., et al. (2009). Nature, 457, 455.

    Article  ADS  Google Scholar 

  41. Zhu, W., Xu, T., Wang, H., et al. (2017). Science Advances, 3, e1700909.

    Article  ADS  Google Scholar 

  42. Monticone, F., & Alù, A. (2014). Physical Review Letters, 112, 213903.

    Article  ADS  Google Scholar 

  43. Azzam, S. I., Shalaev, V. M., Boltasseva, A., & Kildishev, A. V. (2018). Physical Review Letters, 121, 253901.

    Article  ADS  Google Scholar 

  44. Xiang, J., Xu, Y., Chen, J. D., & Lan, S. (2020). Nano, 9, 133.

    Google Scholar 

  45. Friedrich, H., & Wintgen, D. (1989). Physical Review A, 32, 3231.

    Article  ADS  Google Scholar 

  46. Paddon, P., & Young, J. F. (2000). Physical Review B, 61, 2090–2101.

    Article  ADS  Google Scholar 

  47. Tikhodeev, S. G., Yablonskii, A. L., Muljarov, E. A., et al. (2002). Physical Review B, 66, 045102.

    Article  ADS  Google Scholar 

  48. Shipman, S. P., & Venakides, S. (2005). Physical Review E, 71, 026611.

    Article  ADS  Google Scholar 

  49. Bulgakov, E. N., & Sadreev, A. F. (2014). Optics Letters, 17, 5212–5215.

    Article  ADS  Google Scholar 

  50. Bulgakov, E., Sadreev, A. F., & Maksimov, D. (2017). Applied Sciences, 7, 147.

    Article  Google Scholar 

  51. Sadrieva, Z. F., Belyakov, M. A., Balezin, M. A., Kapitanova, P. V., Nenasheva, E. A., Sadreev, A. F., & Bogdanov, A. A. (2019). Physical Review A, 99, 053804.

    Article  ADS  Google Scholar 

  52. Hsu, C. W., Zhen, B., Chua, S.-L., Johnson, S. G., Joannopoulos, J. D., & Soljačić, M. (2013). Light: Science & Applications, 2, e84.

    Article  Google Scholar 

  53. Gomis-Bresco, J., Artigas, D., & Torner, L. (2017). Nature Photonics, 11, 232.

    Article  ADS  Google Scholar 

  54. Zhong, H. H., Zhou, Z., Zhu, B., et al. (2017). Chinese Physics Letters, 34, 070304.

    Article  ADS  Google Scholar 

  55. Longhi, S. (2014). Optics Letters, 39, 1697–1700.

    Article  ADS  Google Scholar 

  56. Kartashov, Y. V., Milian, C., Konotop, V. V., et al. (2018). Optics Letters, 43, 575–578.

    Article  ADS  Google Scholar 

  57. Poddubny, A. N., & Smirnova, D. A. (2018). arXiv, 1808.04811.

    Google Scholar 

  58. Ren, Q., Feng, F., Yao, X., Xu, Q., Xin, M., Lan, Z., Xiao, X., Wei, E., & Sha, I. (2021). Optics Express, 29, 5384–5396.

    Article  ADS  Google Scholar 

  59. Liu, Y., Zhu, S., Zhou, Q., Cao, Y., Fu, Y., Gao, L., Chen, H., & Xu, Y. (2020). Optics Express, 28, 13234–13242.

    Article  ADS  Google Scholar 

  60. Smirnova, D., & Kivshar, Y. S. (2016). Optica, 3, 1241–1255.

    Article  ADS  Google Scholar 

  61. Kauranen, M. (2013). Science, 342, 1182–1183.

    Article  ADS  Google Scholar 

  62. Notomi, M. (2011). Proceedings of the IEEE, 99, 1768–1779.

    Article  Google Scholar 

  63. Carletti, L., Koshelev, K., De Angelis, C., et al. (2018). Physical Review Letters, 121, 033903.

    Article  ADS  Google Scholar 

  64. Stillinger, F. H., & Herrick, D. R. (1975). Physical Review A, 11, 446–454.

    Article  ADS  Google Scholar 

  65. Manjappa, M., Srivastava, Y. K., Cong, L., Al-Naib, I., & Singh, R. (2017). Advanced Materials, 29, 1603355.

    Article  Google Scholar 

  66. Kauranen, M., & Zayats, A. V. (2012). Nature Photonics, 6, 737–748.

    Article  ADS  Google Scholar 

  67. Ren, M. L., Liu, S. Y., Wang, B. L., Chen, B. Q., Li, J., & Li, Z. Y. (2014). Optics Express, 22, 28653–28661.

    Article  ADS  Google Scholar 

  68. Poutrina, E., Ciracì, C., Gauthier, D. J., & Smith, D. R. (2012). Optics Express, 20, 11005–11013.

    Article  ADS  Google Scholar 

  69. Le Ru, E. C., Blackie, E., Meyer, M., & Etchegoin, P. G. (2007). Journal of Physical Chemistry C, 111, 13794–13803.

    Article  Google Scholar 

  70. Stockman, M. I. (2010). Nature, 467, 541–542.

    Article  ADS  Google Scholar 

  71. Jin, D., Christensen, T., Soljacic, M., Fang, N. X., Lu, L., & Zhang, X. (2017). Physical Review Letters, 118, 245301.

    Article  ADS  Google Scholar 

  72. Pan, D., Yu, R., Xu, H., & de Abajo, F. J. G. (2017). Nature Communications, 8, 1243.

    Article  ADS  Google Scholar 

  73. You, J. W., Lan, Z., & Panoiu, N. C. (2020). Science Advances, 6, eaaz3910.

    Article  ADS  Google Scholar 

  74. Smirnova, D., Leykam, D., Chong, Y., & Kivshar, Y. (2020). Applied Physics Reviews, 7, 021306.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China (NSFC) (Nos. 61901001, U20A20164, 61971001, 61871001, 61975177) and Anhui Province (No. 1908085QF259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei E. I. Sha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fang, M., Ren, Q., You, J., Lan, Z., Huang, Z., Sha, W.E.I. (2022). Advanced Applications of Nonlinear Plasmonics. In: Yu, P., Xu, H., Wang, Z.M. (eds) Plasmon-enhanced light-matter interactions. Lecture Notes in Nanoscale Science and Technology, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-87544-2_5

Download citation

Publish with us

Policies and ethics