Skip to main content

The Ethical Ramifications of Biomarker Use for Mood Disorders

  • Chapter
  • First Online:
Handbook of Schizophrenia Spectrum Disorders, Volume III

Abstract

Over the past 20 years, researchers have made considerable progress in the search for diagnostic and prognostic biomarkers of psychiatric disorders, including major depressive disorder, bipolar disorder, and anxiety. Advocates of this research contend that identifying biomarkers will aid in the diagnosis and treatment of these disorders, as well as in the development of more effective psychiatric medications. However, the concept of biomarker testing generates significant ethical concerns, including the testing of non-symptomatic individuals, the potential for health insurance or employment discrimination, and the collection and use of genetic information. Genetic biomarkers are especially controversial since heredity information is uniquely personal – it can reveal an individual’s likely medical future; divulge personal information about one’s parents, siblings and children; and has a history of being used to stigmatize and victimize individuals. Some legal protections are already in place; however, they are far from comprehensive. For example, the US Genetic Information Nondiscrimination Act of 2008 only encompasses tests that analyze DNA, RNA, or chromosomal changes. This means that tests for non-genetic biomarkers, like those based on protein expression or post-translational modifications, are exempt. In the rush toward developing etiological screening tools, it is pertinent to remember that patients are at the heart of the medical profession, not their DNA or protein profile. Any new diagnostic tools should confer a significant benefit to patients without promoting confusion, discrimination, or stigma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5HTT:

5-hydroxytryptamine

ABCB1:

ATB-binding cassette subfamily B member 1

ACTH:

Adrenocorticotropic hormone

BDNF:

Brain derived neurotrophic factor

BRCA:

Breast cancer gene

CRF:

Corticotropin releasing factor

DNA:

Deoxyribonucleic acid

DNMT:

DNA methyltransferase

DSM-IV:

Diagnostic and statistical manual of mental disorders

GABA:

γ-aminobutyric acid receptor

GAD-7:

Generalized anxiety disorder-7

GINA:

Genetic Information Non-discrimination Act

GR:

Glucocorticoid receptor

GWA:

Genome wide analysis

HIV:

Human immunodeficiency virus

HPA:

Hypothalamic-pituitary adrenal

MDQ:

Mood disorder questionnaire

MDR1:

Multidrug resistance 1

MR:

Mineralcorticoid receptor

mRNA:

Messenger RNA

NEO-PI:

NEO personality inventory

NPY:

Neuropeptide Y

NR3C1:

Nuclear receptor subfamily 3, group C, member 1

PHQ:

Patient health questionnaire

PPD:

Purified protein derivative

RNA:

Ribonucleic acid

SCID:

Structured clinical interview for DSM-IV

SNPs:

Single nucleotide polymorphisms

SSRIs:

Serotonin reuptake inhibitors

TB:

Tuberculosis

References

  1. Kessler RC, Chiu WT, Demler O et al (2005) Prevalence, severity, and comorbidity of 12-month dsm-iv disorders in the national comorbidity survey replication. Arch Gen Psychiatry 62(6):617–627

    Article  PubMed  Google Scholar 

  2. Illes J, Bird SJ (2006) Neuroethics: a modern context for ethics in neuroscience. Trends Neurosci 29(9):511–517

    Article  PubMed  CAS  Google Scholar 

  3. Cepoiu M, McCusker J, Cole MG et al (2008) Recognition of depression by non-psychiatric physicians – a systematic literature review and meta-analysis. J Gen Intern Med 23(1):25–36

    Article  PubMed  Google Scholar 

  4. Hirschfeld RM, Keller MB, Panico S et al (1997) The national depressive and manic-depressive association consensus statement on the undertreatment of depression. J Am Med Assoc 277(4):333–340

    Article  CAS  Google Scholar 

  5. Mitchell AJ, Vaze A, Rao S (2009) Clinical diagnosis of depression in primary care: a meta-analysis. Lancet 374(9690):609–619

    Article  PubMed  Google Scholar 

  6. Hirschfeld RM, Williams JB, Spitzer RL et al (2000) Development and validation of a screening instrument for bipolar spectrum disorder: the mood disorder questionnaire. Am J Psychiatry 157(11):1873–1875

    Article  PubMed  CAS  Google Scholar 

  7. Lewis FT, Kass E, Klein RM (2004) An overview of primary care assessment and management of bipolar disorder. J Am Osteopath Assoc 104(Suppl 6):S2–S8

    PubMed  Google Scholar 

  8. Carney CE, Ulmer C, Edinger JD et al (2009) Assessing depression symptoms in those with insomnia: an examination of the beck depression inventory second edition (bdi-ii). J Psychiatr Res 43(5):576–582

    Article  PubMed  Google Scholar 

  9. Chaudron LH, Szilagyi PG, Tang W et al (2010) Accuracy of depression screening tools for identifying postpartum depression among urban mothers. Pediatrics 125(3):e609–e617

    Article  PubMed  Google Scholar 

  10. Zimmerman M, Galione JN, Ruggero CJ et al (2010) Screening for bipolar disorder and finding borderline personality disorder. J Clin Psychiatry 71(9):1212–1217

    Article  PubMed  Google Scholar 

  11. Eack SM, Greeno CG, Lee B-J (2006) Limitations of the patient health questionnaire in identifying anxiety and depression in community mental health: many cases are undetected. Res Soc Work Pract 16(6):625–631

    Article  Google Scholar 

  12. Skodol AE, Rosnick L, Kellman D et al (1988) Validating structured dsm-iii-r personality disorder assessments with longitudinal data. Am J Psychiatry 145(10):1297–1299

    PubMed  CAS  Google Scholar 

  13. Ghaemi SN, Sachs GS, Chiou AM et al (1999) Is bipolar disorder still underdiagnosed? Are antidepressants overutilized? J Affect Disord 52(1–3):135–144

    Article  PubMed  CAS  Google Scholar 

  14. Binder EB, Salyakina D, Lichtner P et al (2004) Polymorphisms in fkbp5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 36(12):1319–1325

    Article  PubMed  CAS  Google Scholar 

  15. Papiol S, Arias B, Gasto C et al (2007) Genetic variability at hpa axis in major depression and clinical response to antidepressant treatment. J Affect Disord 104(1–3):83–90

    Article  PubMed  CAS  Google Scholar 

  16. Kirchheiner J, Lorch R, Lebedeva E et al (2008) Genetic variants in fkbp5 affecting response to antidepressant drug treatment. Pharmacogenomics 9(7):841–846

    Article  PubMed  CAS  Google Scholar 

  17. Lavebratt C, Aberg E, Sjoholm LK et al (2010) Variations in fkbp5 and bdnf genes are suggestively associated with depression in a Swedish population-based cohort. J Affect Disord 125(1–3):249–255

    Article  PubMed  CAS  Google Scholar 

  18. Zobel A, Schuhmacher A, Jessen F et al (2010) DNA sequence variants of the fkbp5 gene are associated with unipolar depression. Int J Neuropsychopharmacol 13(5):649–660

    Article  PubMed  CAS  Google Scholar 

  19. Xie P, Kranzler HR, Poling J et al (2010) Interaction of fkbp5 with childhood adversity on risk for post-traumatic stress disorder. Neuropsychopharmacology 35(8):1684–1692

    PubMed  CAS  Google Scholar 

  20. Hauck S, Gomes F, Silveira Junior Ede M et al (2009) Serum levels of brain-derived neurotrophic factor in acute and posttraumatic stress disorder: a case report study. Rev Bras Psiquiatr 31(1):48–51

    Article  PubMed  Google Scholar 

  21. Dell’osso L, Carmassi C, Del Debbio A et al (2009) Brain-derived neurotrophic factor plasma levels in patients suffering from post-traumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 33(5):899–902

    Article  PubMed  Google Scholar 

  22. Rasmusson AM, Shi L, Duman R (2002) Downregulation of bdnf mrna in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock. Neuropsychopharmacology 27(2):133–142

    Article  PubMed  CAS  Google Scholar 

  23. Bath KG, Lee FS (2006) Variant bdnf (val66met) impact on brain structure and function. Cogn Affect Behav Neurosci 6(1):79–85

    Article  PubMed  Google Scholar 

  24. Taylor WD, Zuchner S, McQuoid DR et al (2007) Allelic differences in the brain-derived neurotrophic factor val66met polymorphism in late-life depression. Am J Geriatr Psychiatry 15(10):850–857

    Article  PubMed  Google Scholar 

  25. Lin E, Hong CJ, Hwang JP et al (2009) Gene-gene interactions of the brain-derived neurotrophic-factor and neurotrophic tyrosine kinase receptor 2 genes in geriatric depression. Rejuvenation Res 12(6):387–393

    Article  PubMed  CAS  Google Scholar 

  26. Sen S, Nesse RM, Stoltenberg SF et al (2003) A bdnf coding variant is associated with the neo personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology 28(2):397–401

    Article  PubMed  CAS  Google Scholar 

  27. Chung S, Chung HY, Jung J et al (2010) Association among aggressiveness, neurocognitive function, and the val66met polymorphism of brain-derived neurotrophic factor gene in male schizophrenic patients. Compr Psychiatry 51(4):367–372

    Article  PubMed  Google Scholar 

  28. Montag C, Basten U, Stelzel C et al (2010) The bdnf val66met polymorphism and anxiety: support for animal knock-in studies from a genetic association study in humans. Psychiatry Res 179(1):86–90

    Article  PubMed  CAS  Google Scholar 

  29. Adkins DE, Aberg K, McClay JL et al (2010) A genomewide association study of citalopram response in major depressive disorder-a psychometric approach. Biol Psychiatry 68(6):e25–27

    Article  PubMed  Google Scholar 

  30. Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 49(5):391–404

    Article  PubMed  CAS  Google Scholar 

  31. Juruena MF, Cleare AJ, Papadopoulos AS et al (2006) Different responses to dexamethasone and prednisolone in the same depressed patients. Psychopharmacology (Berl) 189(2):225–235

    Article  CAS  Google Scholar 

  32. Carvalho LA, Garner BA, Dew T et al (2010) Antidepressants, but not antipsychotics, modulate gr function in human whole blood: An insight into molecular mechanisms. Eur Neuropsychopharmacol 20(6):379–387

    Article  PubMed  CAS  Google Scholar 

  33. Dong C, Wong ML, Licinio J (2009) Sequence variations of abcb1, slc6a2, slc6a3, slc6a4, creb1, crhr1 and ntrk2: association with major depression and antidepressant response in mexican-americans. Mol Psychiatry 14(12):1105–1118

    Article  PubMed  CAS  Google Scholar 

  34. Marazziti D, Dell’Osso B, Baroni S et al (2006) Common alterations in the serotonin transporter in platelets and lymphocytes of psychotic patients. Pharmacopsychiatry 39(1):35–38

    Article  PubMed  CAS  Google Scholar 

  35. Barkan T, Peled A, Modai I et al (2006) Characterization of the serotonin transporter in lymphocytes and platelets of schizophrenia patients treated with atypical or typical antipsychotics compared to healthy individuals. Eur Neuropsychopharmacol 16(6):429–436

    Article  PubMed  CAS  Google Scholar 

  36. Barkan T, Peled A, Modai I et al (2006) Serotonin transporter characteristics in lymphocytes and platelets of male aggressive schizophrenia patients compared to non-aggressive schizophrenia patients. Eur Neuropsychopharmacol 16(8):572–579

    Article  PubMed  CAS  Google Scholar 

  37. Mata S, Urbina M, Manzano E et al (2005) Noradrenaline transporter and its turnover rate are decreased in blood lymphocytes of patients with major depression. J Neuroimmunol 170(1–2):134–140

    Article  PubMed  CAS  Google Scholar 

  38. Hood L, Heath JR, Phelps ME et al (2004) Systems biology and new technologies enable predictive and preventative medicine. Science 306(5696):640–643

    Article  PubMed  CAS  Google Scholar 

  39. Paige LA, Mitchell MW, Krishnan KR et al (2007) A preliminary metabolomic analysis of older adults with and without depression. Int J Geriatr Psychiatry 22(5):418–423

    Article  PubMed  Google Scholar 

  40. Andersen AE, McHugh PR (1971) Oat cell carcinoma with hypercortisolemia presenting to a psychiatric hospital as a suicide attempt. J Nerv Ment Dis 152(6):427–431

    Article  PubMed  CAS  Google Scholar 

  41. Claustrat B, Chazot G, Brun J et al (1984) A chronobiological study of melatonin and cortisol secretion in depressed subjects: plasma melatonin, a biochemical marker in major depression. Biol Psychiatry 19(8):1215–1228

    PubMed  CAS  Google Scholar 

  42. Joyce PR, Mulder RT, Cloninger CR (1994) Temperament and hypercortisolemia in depression. Am J Psychiatry 151(2):195–198

    PubMed  CAS  Google Scholar 

  43. Carroll BJ, Cassidy F, Naftolowitz D et al (2007) Pathophysiology of hypercortisolism in depression. Acta Psychiatr Scand Suppl 433:90–103

    Article  PubMed  CAS  Google Scholar 

  44. Duval F, Mokrani MC, Monreal-Ortiz JA et al (2006) Cortisol hypersecretion in unipolar major depression with melancholic and psychotic features: dopaminergic, noradrenergic and thyroid correlates. Psychoneuroendocrinology 31(7):876–888

    Article  PubMed  CAS  Google Scholar 

  45. Romer B, Lewicka S, Kopf D et al (2009) Cortisol metabolism in depressed patients and healthy controls. Neuroendocrinology 90(3):301–306

    Article  PubMed  Google Scholar 

  46. Thakore JH, Dinan TG (1995) Cortisol synthesis inhibition: a new treatment strategy for the clinical and endocrine manifestations of depression. Biol Psychiatry 37(6):364–368

    Article  PubMed  CAS  Google Scholar 

  47. Wilder J (1947) Cholesterol metabolism in melancholic and reactive depressions. Am J Psychother 1(4):495–499

    PubMed  CAS  Google Scholar 

  48. Whittier JR, Korenyi C, Goldschmidt L et al (1964) The serum cholesterol “Sign” test in depression. Psychosomatics 5:27–33

    PubMed  CAS  Google Scholar 

  49. Bauer LK, Huffman JC (2010) Is low cholesterol associated with depression in cardiac patients?. Int J Cardiol 145(3):537–539. [serial online] May 17. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0167-5273(10)00301-3. Accessed 3 Aug 2010

    Google Scholar 

  50. Lehto SM, Niskanen L, Tolmunen T et al (2010) Low serum hdl-cholesterol levels are associated with long symptom duration in patients with major depressive disorder. Psychiatry Clin Neurosci 64(3):279–283

    Article  PubMed  CAS  Google Scholar 

  51. Dinan TG (2009) Inflammatory markers in depression. Curr Opin Psychiatry 22(1):32–36

    Article  PubMed  Google Scholar 

  52. Paez-Pereda M, Panhuysen M (2009) Strategies to identifying biomarkers for depression. In: Turk CW (ed) Biomarkers for psychiatric disorders. Springer, New York, NY, pp 299–314

    Google Scholar 

  53. Kim YK, Lee SW, Kim SH et al (2008) Differences in cytokines between non-suicidal patients and suicidal patients in major depression. Prog Neuropsychopharmacol Biol Psychiatry 32(2):356–361

    Article  PubMed  CAS  Google Scholar 

  54. Tonelli LH, Stiller J, Rujescu D et al (2008) Elevated cytokine expression in the orbitofrontal cortex of victims of suicide. Acta Psychiatr Scand 117(3):198–206

    Article  PubMed  CAS  Google Scholar 

  55. Renthal W, Maze I, Krishnan V et al (2007) Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56(3):517–529

    Article  PubMed  CAS  Google Scholar 

  56. Tsankova NM, Berton O, Renthal W et al (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9(4):519–525

    Article  PubMed  CAS  Google Scholar 

  57. Olsson CA, Foley DL, Parkinson-Bates M et al (2010) Prospects for epigenetic research within cohort studies of psychological disorder: a pilot investigation of a peripheral cell marker of epigenetic risk for depression. Biol Psychol 83(2):159–165

    Article  PubMed  CAS  Google Scholar 

  58. Poulter MO, Du L, Weaver IC et al (2008) Gabaa receptor promoter hypermethylation in suicide brain: implications for the involvement of epigenetic processes. Biol Psychiatry 64(8):645–652

    Article  PubMed  CAS  Google Scholar 

  59. Alexopoulos GS, Kiosses DN, Choi SJ et al (2002) Frontal white matter microstructure and treatment response of late-life depression: a preliminary study. Am J Psychiatry 159(11):1929–1932

    Article  PubMed  Google Scholar 

  60. Alexopoulos GS, Murphy CF, Gunning-Dixon FM et al (2008) Microstructural white matter abnormalities and remission of geriatric depression. Am J Psychiatry 165(2):238–244

    Article  PubMed  Google Scholar 

  61. Taylor WD, MacFall JR, Payne ME et al (2004) Late-life depression and microstructural abnormalities in dorsolateral prefrontal cortex white matter. Am J Psychiatry 161(7):1293–1296

    Article  PubMed  Google Scholar 

  62. Bae JN, MacFall JR, Krishnan KR et al (2006) Dorsolateral prefrontal cortex and anterior cingulate cortex white matter alterations in late-life depression. Biol Psychiatry 60(12):1356–1363

    Article  PubMed  Google Scholar 

  63. Pavuluri MN, Herbener ES, Sweeney JA (2005) Affect regulation: a systems neuroscience perspective. Neuropsychiatr Dis Treat 1(1):9–15

    Article  PubMed  Google Scholar 

  64. Brunoni AR, Teng CT, Correa C et al (2010) Neuromodulation approaches for the treatment of major depression: challenges and recommendations from a working group meeting. Arq Neuropsiquiatr 68(3):433–451

    Google Scholar 

  65. Steiger A, Kimura M (2010) Wake and sleep EEG provide biomarkers in depression. J Psychiatr Res 44(4):242–252

    Article  PubMed  Google Scholar 

  66. Veen G, van Vliet IM, DeRijk RH et al (2010) Basal cortisol levels in relation to dimensions and DSM-IV categories of depression and anxiety. Psychiatry Res 185(1–2):121–128. [serial online] May 26. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0165-1781(09)00276-5. Accessed 3 Aug 2010

    Google Scholar 

  67. Muller MB, Holsboer F (2006) Mice with mutations in the hpa-system as models for symptoms of depression. Biol Psychiatry 59(12):1104–1115

    Article  PubMed  Google Scholar 

  68. Tasan RO, Nguyen NK, Weger S et al (2010) The central and basolateral amygdala are critical sites of neuropeptide y/y2 receptor-mediated regulation of anxiety and depression. J Neurosci 30(18):6282–6290

    Article  PubMed  CAS  Google Scholar 

  69. Amstadter AB, Koenen KC, Ruggiero KJ et al (2010) Npy moderates the relation between hurricane exposure and generalized anxiety disorder in an epidemiologic sample of hurricane-exposed adults. Depress Anxiety 27(3):270–275

    Article  PubMed  Google Scholar 

  70. Domschke K, Dannlowski U, Hohoff C et al (2010) Neuropeptide y (npy) gene: impact on emotional processing and treatment response in anxious depression. Eur Neuropsychopharmacol 20(5):301–309

    Article  PubMed  CAS  Google Scholar 

  71. Mrazek DA (2010) Psychiatric pharmacogenomic testing in clinical practice. Dialogues Clin Neurosci 12(1):69–76

    PubMed  Google Scholar 

  72. Hoop JG, Lapid MI, Paulson RM et al (2010) Clinical and ethical considerations in pharmacogenetic testing: views of physicians in 3 “Early adopting” Departments of psychiatry. J Clin Psychiatry 71(6):745–753

    Article  PubMed  Google Scholar 

  73. Agard A, Bolmsjo IA, Hermeren G et al (2005) Familial hypercholesterolemia: ethical, practical and psychological problems from the perspective of patients. Patient Educ Couns 57(2):162–167

    Article  PubMed  Google Scholar 

  74. Andersen LK, Jensen HK, Juul S et al (1997) Patients’ attitudes toward detection of heterozygous familial hypercholesterolemia. Arch Intern Med 157(5):553–560

    Article  PubMed  CAS  Google Scholar 

  75. Clifton JM, VanBeuge SS, Mladenka C et al (2010) The genetic information nondiscrimination act 2008: what clinicians should understand. J Am Acad Nurse Pract 22(5):246–249

    Article  PubMed  Google Scholar 

  76. Appelbaum PS (2010) Law & psychiatry: genetic discrimination in mental disorders: the impact of the genetic information nondiscrimination act. Psychiatr Serv 61(4):338–340

    Article  PubMed  Google Scholar 

  77. West EL, Gadkowski LB, Ostbye T et al (2008) Tuberculosis knowledge, attitudes, and beliefs among north carolinians at increased risk of infection. N C Med J 69(1):14–20

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaheen E. Lakhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lakhan, S.E., Vieira, K.F. (2011). The Ethical Ramifications of Biomarker Use for Mood Disorders. In: Ritsner, M. (eds) Handbook of Schizophrenia Spectrum Disorders, Volume III. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0834-1_18

Download citation

Publish with us

Policies and ethics