Skip to main content

Advertisement

Log in

Different responses to dexamethasone and prednisolone in the same depressed patients

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Patients with major depression show hypothalamic–pituitary–adrenal (HPA) axis hyperactivity, but the mechanisms underlying this abnormality are still unclear.

Objectives

We have compared two synthetic glucorticoids, dexamethasone and prednisolone, in their ability to suppress the hypothalamic–pituitary–adrenal (HPA) axis in depressed patients. Dexamethasone probes glucocorticoid receptor (GR) function, while prednisolone probes both GR and mineralocorticoid receptor (MR) function.

Materials and methods

We used a single-blind, repeated-measure design. We administered placebo, prednisolone (5 mg) or dexamethasone (0.5 mg), at 22:00, to 18 severe, treatment-resistant depressed inpatients (15 of them with a history of childhood trauma) and 14 healthy volunteers. On the following days, we collected salivary cortisol from 9:00 to 22:00.

Results

Depressed patients had higher salivary cortisol levels compared with controls, at baseline and after both prednisolone and dexamethasone (p<0.001). Consistent with previous studies, depressed inpatients showed impaired suppression by dexamethasone: based on the analysis of the areas under the curve (AUCs), suppression by dexamethasone (0.5 mg) was −85% in controls vs −46% in depressed patients (p=0.018). However, the same depressed patients showed normal suppression by prednisolone (5 mg): suppression was −41% in controls and −36% in depressed patients (p=0.6).

Conclusions

We suggest that the additional effects of prednisolone on the MR explain the different responses to these glucocorticoids in the same depressed patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric, Washington, DC

    Google Scholar 

  • Arana GW, Baldessarini RJ, Ornsteen M (1985) The dexamethasone suppression test for diagnosis and prognosis in psychiatry. Commentary and review. Arch Gen Psychiatry 42:1193–1204

    PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Arana GW (1985) Does the dexamethasone suppression test have clinical utility in psychiatry? J Clin Psychiatry 46:25–29

    PubMed  CAS  Google Scholar 

  • Ballard PL, Carter JP, Graham BS, Baxter JD (1975) A radioreceptor assay for evaluation of the plasma glucocorticoid activity of natural and synthetic steroids in man. J Clin Endocrinol Metab 41:290–304

    PubMed  CAS  Google Scholar 

  • Bauer ME, Papadopoulos A, Poon L, Perks P, Lightman SL, Checkley S, Shanks N (2002) Dexamethasone-induced effects on lymphocyte distribution and expression of adhesion molecules in treatment-resistant depression. Psychiatry Res 113:1–15

    Article  PubMed  CAS  Google Scholar 

  • Bauer ME, Papadopoulos A, Poon L, Perks P, Lightman SL, Checkley S, Shanks N (2003) Altered glucocorticoid immunoregulation in treatment resistant depression. Psychoneuroendocrinology 28:49–65

    Article  PubMed  CAS  Google Scholar 

  • Beck At, Ward Ch, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571

    PubMed  CAS  Google Scholar 

  • Bhagwagar Z, Hafizi S, Cowen PJ (2002) Acute citalopram administration produces correlated increases in plasma and salivary cortisol. Psychopharmacology (Berl) 163:118–120

    Article  CAS  Google Scholar 

  • Bhagwagar Z, Hafizi S, Cowen PJ (2003) Increase in concentration of waking salivary cortisol in recovered patients with depression. Am J Psychiatry 160:1890–1891

    Article  PubMed  Google Scholar 

  • Bhagwagar Z, Hafizi S, Cowen PJ (2005) Increased salivary cortisol after waking in depression. Psychopharmacology (Berl) 182:54–57

    Article  CAS  Google Scholar 

  • Bjartmar L, Johansson IM, Marcusson J, Ross SB, Seckl JR, Olsson T (2000) Selective effects on NGFI-A, MR, GR and NGFI-B hippocampal mRNA expression after chronic treatment with different subclasses of antidepressants in the rat. Psychopharmacology (Berl) 151:7–12

    Article  CAS  Google Scholar 

  • Bschor T, Baethge C, Adli M, Eichmann U, Ising M, Uhr M, Muller-Oerlinghausen B, Bauer M (2003) Lithium augmentation increases post-dexamethasone cortisol in the dexamethasone suppression test in unipolar major depression. Depress Anxiety 17:43–48

    Article  PubMed  CAS  Google Scholar 

  • Cooney JM, Dinan TG (1996a) Preservation of hypothalamic–pituitary–adrenal axis fast-feedback responses in depression. Acta Psychiatr Scand 94:449–453

    PubMed  CAS  Google Scholar 

  • Cooney JM, Dinan TG (1996b) Type II (glucocorticoid) receptors mediate fast-feedback inhibition of the hypothalamic–pituitary–adrenal axis in man. Life Sci 59:1981–1988

    Article  PubMed  CAS  Google Scholar 

  • Cotter PA, Mulligan OF, Landau S, Papadopoulos A, Lightman SL, Checkley SA (2002) Vasoconstrictor response to topical beclomethasone in major depression. Psychoneuroendocrinology 27:475–487

    Article  PubMed  CAS  Google Scholar 

  • Cowen PJ (2002) Cortisol, serotonin and depression: all stressed out? Br J Psychiatry 180:99–100

    Article  PubMed  CAS  Google Scholar 

  • Crochemore C, Lu J, Wu Y, Liposits Z, Sousa N, Holsboer F, Almeida OF (2005) Direct targeting of hippocampal neurons for apoptosis by glucocorticoids is reversible by mineralocorticoid receptor activation. Mol Psychiatry 10:790–798

    Article  PubMed  CAS  Google Scholar 

  • Czock D, Keller F, Rasche FM, Haussler U (2005) Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet 44:61–98

    Article  PubMed  CAS  Google Scholar 

  • de Kloet ER, Vreugdenhil E, Oitzl MS, Joels M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301

    Article  PubMed  Google Scholar 

  • Gispen-de Wied CC, D’Haenen H, Verhoeven WM, Wynne HJ, Westenberg HG, Thijssen JH, van Ree JM (1993) Inhibition of the pituitary–adrenal axis with dexamethasone and cortisol in depressed patients and healthy subjects: a dose–response study. Psychoneuroendocrinology 18:191–204

    Article  PubMed  CAS  Google Scholar 

  • Gispen-de Wied CC, Jansen LM, Wynne HJ, Matthys W, van der Gaag RJ, Thijssen JH, van Engeland H (1998) Differential effects of hydrocortisone and dexamethasone on cortisol suppression in a child psychiatric population. Psychoneuroendocrinology 23:295–306

    Article  PubMed  CAS  Google Scholar 

  • Gispen-de Wied CC, Westenberg HG, Thijssen JH, van Ree JM (1987) The dexamethasone and cortisol suppression test in depression: beta-endorphin as a useful marker. Psychoneuroendocrinology 12:355–366

    Article  PubMed  CAS  Google Scholar 

  • Guthrie S (1991) The impact of dexamethasone pharmacokinetics on the DST: a review. Psychopharmacol Bull 27:565–576

    PubMed  CAS  Google Scholar 

  • Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62

    Article  PubMed  CAS  Google Scholar 

  • Harmer CJ, Bhagwagar Z, Shelley N, Cowen PJ (2003) Contrasting effects of citalopram and reboxetine on waking salivary cortisol. Psychopharmacology (Berl) 167:112–114

    CAS  Google Scholar 

  • Heim C, Newport DJ, Heit S, Graham YP, Wilcox M, Bonsall R, Miller AH, Nemeroff CB (2000) Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. JAMA 284:592–597

    Article  PubMed  CAS  Google Scholar 

  • Heuser IJ, Schweiger U, Gotthardt U, Schmider J, Lammers CH, Dettling M, Yassouridis A, Holsboer F (1996) Pituitary–adrenal–system regulation and psychopathology during amitriptyline treatment in elderly depressed patients and normal comparison subjects. Am J Psychiatry 153:93–99

    PubMed  CAS  Google Scholar 

  • Hill SA, Taylor MJ, Harmer CJ, Cowen PJ (2003) Acute reboxetine administration increases plasma and salivary cortisol. J Psychopharmacol 17:273–275

    Article  PubMed  CAS  Google Scholar 

  • Inder WJ, Prickett TC, Mulder RT, Donald RA, Joyce PR (2001) Reduction in basal afternoon plasma ACTH during early treatment of depression with fluoxetine. Psychopharmacology (Berl) 156:73–78

    Article  CAS  Google Scholar 

  • Karssen AM, Meijer OC, van der Sandt I, de Boer AG, de Lange EC, de Kloet ER (2002) The role of the efflux transporter P-glycoprotein in brain penetration of prednisolone. J Endocrinol 175:251–260

    Article  PubMed  CAS  Google Scholar 

  • Kirschbaum C, Hellhammer DH (1994) Salivary cortisol in psychoneuroendocrine research: recent developments and applications. Psychoneuroendocrinology 19:313–333

    Article  PubMed  CAS  Google Scholar 

  • Kunzel HE, Binder EB, Nickel T, Ising M, Fuchs B, Majer M, Pfennig A, Ernst G, Kern N, Schmid DA, Uhr M, Holsboer F, Modell S (2003) Pharmacological and nonpharmacological factors influencing hypothalamic–pituitary–adrenocortical axis reactivity in acutely depressed psychiatric in-patients, measured by the Dex-CRH test. Neuropsychopharmacology 28:2169–2178

    PubMed  CAS  Google Scholar 

  • Ladd CO, Huot RL, Thrivikraman KV, Nemeroff CB, Plotsky PM (2004) Long-term adaptations in glucocorticoid receptor and mineralocorticoid receptor mRNA and negative feedback on the hypothalamo–pituitary–adrenal axis following neonatal maternal separation. Biol Psychiatry 55:367–375

    Article  PubMed  CAS  Google Scholar 

  • Lan NC, Matulich DT, Morris JA, Baxter JD (1981) Mineralocorticoid receptor-like aldosterone-binding protein in cell culture. Endocrinology 109:1963–1970

    PubMed  CAS  Google Scholar 

  • Lan NC, Graham B, Bartter FC, Baxter JD (1982) Binding of steroids to mineralocorticoid receptors: implications for in vivo occupancy by glucocorticoids. J Clin Endocrinol Metab 54:332–342

    Article  PubMed  CAS  Google Scholar 

  • Liddle GW (1958) Studies of structure–function relationships of steroids. II. The 6-alpha-methylcorticosteroids. Metabolism 7:405–415

    PubMed  CAS  Google Scholar 

  • McAllister-Williams RH, Man MS, Young AH (1999) Effects of adrenalectomy on 8-OH-DPAT induced hypothermia in mice. Psychopharmacology (Berl) 142:73–77

    Article  CAS  Google Scholar 

  • McAllister-Williams RH, Anderson AJ, Young AH (2001) Corticosterone selectively attenuates 8-OH-DPAT-mediated hypothermia in mice. Int J Neuropsychopharmacol 4:1–8

    Article  PubMed  CAS  Google Scholar 

  • Muller MB, Keck ME, Binder EB, Kresse AE, Hagemeyer TP, Landgraf R, Holsboer F, Uhr M (2003) ABCB1 (MDR1)-type P-glycoproteins at the blood–brain barrier modulate the activity of the hypothalamic–pituitary–adrenocortical system: implications for affective disorder. Neuropsychopharmacology 28:1991–1999

    Article  PubMed  CAS  Google Scholar 

  • Nikisch G, Mathe AA, Czernik A, Thiele J, Bohner J, Eap CB, Agren H, Baumann P (2005) Long-term citalopram administration reduces responsiveness of HPA axis in patients with major depression: relationship with S-citalopram concentrations in plasma and cerebrospinal fluid (CSF) and clinical response. Psychopharmacology (Berl) 181:751–760

    Article  CAS  Google Scholar 

  • Orth D, Kovacs W (1998) The adrenal cortex. In: Wilson J, Foster D, Kronenberg H, Larsen P (eds) Williams textbook of endocrinology. W.B. Saunders Company, Philadelphia, pp 517–664

    Google Scholar 

  • Pariante CM (2004) Glucocorticoid receptor function in vitro in patients with major depression. Stress 7:209–219

    PubMed  CAS  Google Scholar 

  • Pariante CM (2006) The glucocorticoid receptor: part of the solution or part of the problem? J Psychopharmacol 20:79–84

    Article  PubMed  Google Scholar 

  • Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 49:391–404

    Article  PubMed  CAS  Google Scholar 

  • Pariante CM, Makoff A, Lovestone S, Feroli S, Heyden A, Miller AH, Kerwin RW (2001) Antidepressants enhance glucocorticoid receptor function in vitro by modulating the membrane steroid transporters. Br J Pharmacol 134:1335–1343

    Article  PubMed  CAS  Google Scholar 

  • Pariante CM, Papadopoulos AS, Poon L, Checkley SA, English J, Kerwin RW, Lightman S (2002) A novel prednisolone suppression test for the hypothalamic–pituitary–adrenal axis. Biol Psychiatry 51:922–930

    Article  PubMed  CAS  Google Scholar 

  • Pariante CM, Hye A, Williamson R, Makoff A, Lovestone S, Kerwin RW (2003a) The antidepressant clomipramine regulates cortisol intracellular concentrations and glucocorticoid receptor expression in fibroblasts and rat primary neurones. Neuropsychopharmacology 28:1553–1561

    Article  PubMed  CAS  Google Scholar 

  • Pariante CM, Kim RB, Makoff A, Kerwin RW (2003b) Antidepressant fluoxetine enhances glucocorticoid receptor function in vitro by modulating membrane steroid transporters. Br J Pharmacol 139:1111–1118

    Article  PubMed  CAS  Google Scholar 

  • Pariante CM, Papadopoulos AS, Poon L, Cleare AJ, Checkley SA, English J, Kerwin RW, Lightman S (2004a) Four days of citalopram increase suppression of cortisol secretion by prednisolone in healthy volunteers. Psychopharmacology (Berl) 177:200–206

    Article  CAS  Google Scholar 

  • Pariante CM, Thomas SA, Lovestone S, Makoff A, Kerwin RW (2004b) Do antidepressants regulate how cortisol affects the brain? 2003 Curt Richter Award Paper. Psychoneuroendocrinology 29:423–447

    Article  PubMed  CAS  Google Scholar 

  • Portella MJ, Harmer CJ, Flint J, Cowen P, Goodwin GM (2005) Enhanced early morning salivary cortisol in neuroticism. Am J Psychiatry 162:807–809

    Article  PubMed  Google Scholar 

  • Porter RJ, McAllister-Williams RH, Lunn BS, Young AH (1998) 5-Hydroxytryptamine receptor function in humans is reduced by acute administration of hydrocortisone. Psychopharmacology (Berl) 139:243–250

    Article  CAS  Google Scholar 

  • Porter RJ, McAllister-Williams RH, Jones S, Young AH (1999) Effects of dexamethasone on neuroendocrine and psychological responses to l-tryptophan infusion. Psychopharmacology (Berl) 143:64–71

    Article  CAS  Google Scholar 

  • Porter RJ, Gallagher P, Watson S, Young AH (2004) Corticosteroid–serotonin interactions in depression: a review of the human evidence. Psychopharmacology (Berl) 173:1–17

    Article  CAS  Google Scholar 

  • Post A, Ohl F, Almeida OF, Binder EB, Rucker M, Welt S, Binder E, Holsboer F, Sillaber I (2005) Identification of molecules potentially involved in mediating the in vivo actions of the corticotropin-releasing hormone receptor 1 antagonist, NBI30775 (R121919). Psychopharmacology (Berl) 180:150–158

    Article  CAS  Google Scholar 

  • Reul JM, Gesing A, Droste S, Stec IS, Weber A, Bachmann C, Bilang-Bleuel A, Holsboer F, Linthorst AC (2000) The brain mineralocorticoid receptor: greedy for ligand, mysterious in function. Eur J Pharmacol 405:235–249

    Article  PubMed  CAS  Google Scholar 

  • Reynolds RM, Bendall HE, Whorwood CB, Wood PJ, Walker BR, Phillips DI (1998) Reproducibility of the low dose dexamethasone suppression test: comparison between direct plasma and salivary cortisol assays. Clin Endocrinol (Oxf) 49:307–310

    Article  CAS  Google Scholar 

  • Ribeiro SC, Tandon R, Grunhaus L, Greden JF (1993) The DST as a predictor of outcome in depression: a meta-analysis. Am J Psychiatry 150:1618–1629

    PubMed  CAS  Google Scholar 

  • Ritzi EM (1996) Quantitative flow cytometry reveals a hierarchy of glucocorticoid effect on cell surface mouse mammary tumor virus gp52. J Steroid Biochem Mol Biol 57:33–42

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht R, Reul JM, van Steensel B, Spengler D, Soder M, Berning B, Holsboer F, Damm K (1993) Pharmacological and functional characterization of human mineralocorticoid and glucocorticoid receptor ligands. Eur J Pharmacol 247:145–154

    Article  PubMed  CAS  Google Scholar 

  • Sackeim HA (2001) The definition and meaning of treatment-resistant depression. J Clin Psychiatry 62(Suppl 16):10–17

    PubMed  CAS  Google Scholar 

  • Slater JD, Heffron PF, Vernet A, Nabarro JD (1959) Clinical and metabolic effects of dexamethasone. Lancet 1:173–177

    Article  PubMed  CAS  Google Scholar 

  • Smith N, Lam D, Bifulco A, Checkley S (2002) Childhood Experience of Care and Abuse Questionnaire (CECA.Q). Validation of a screening instrument for childhood adversity in clinical populations. Soc Psychiatry Psychiatr Epidemiol 37:572–579

    Article  PubMed  CAS  Google Scholar 

  • Webster MJ, Knable MB, O’Grady J, Orthmann J, Weickert CS (2002) Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Mol Psychiatry 7:985–994

    Article  PubMed  CAS  Google Scholar 

  • World Health Organisation (1994) Schedules for clinical assessment in neuropsychiatry (SCAN) Version 2.0., Geneva

  • Xing GQ, Russell S, Webster MJ, Post RM (2004) Decreased expression of mineralocorticoid receptor mRNA in the prefrontal cortex in schizophrenia and bipolar disorder. Int J Neuropsychopharmacol 7:143–153

    Article  PubMed  CAS  Google Scholar 

  • Yehuda R (2005) Neuroendocrine aspects of PTSD. Handb Exp Pharmacol 371–403

  • Young EA, Haskett RF, Murphy-Weinberg V, Watson SJ, Akil H (1991) Loss of glucocorticoid fast feedback in depression. Arch Gen Psychiatry 48:693–699

    PubMed  CAS  Google Scholar 

  • Young EA, Lopez JF, Murphy-Weinberg V, Watson SJ, Akil H (2003) Mineralocorticoid receptor function in major depression. Arch Gen Psychiatry 60:24–28

    Article  PubMed  CAS  Google Scholar 

  • Zobel AW, Nickel T, Sonntag A, Uhr M, Holsboer F, Ising M (2001) Cortisol response in the combined dexamethasone/CRH test as predictor of relapse in patients with remitted depression. a prospective study. J Psychiatr Res 35:83–94

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by a 2003 and a 2005 Young Investigator Awards from the National Alliance for Research on Schizophrenia and Depression (NARSAD), and by a Clinician Scientist Fellowship (2004) from the UK Medical Research Council (MRC), to C.M. Pariante. Dr. Pariante’s research is also funded by the Guy’s & St Thomas’ Charitable Foundation. Dr. M. Juruena is supported by a CAPES Fellowship Award and by a 2006 Young Investigator Awards from the NARSAD. The authors are particularly grateful to Dr. Jeffrey Fry (School of Biomedical Sciences, Nottingham, UK) and David Czock (Division of Nephrology, University Hospital Ulm, Ulm, Germany) for their contribution to the analysis and interpretation of pharmacokinetic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine M. Pariante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juruena, M.F., Cleare, A.J., Papadopoulos, A.S. et al. Different responses to dexamethasone and prednisolone in the same depressed patients. Psychopharmacology 189, 225–235 (2006). https://doi.org/10.1007/s00213-006-0555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0555-4

Keywords

Navigation