Skip to main content

Evidence for a Multi-scale Aurora

  • Chapter
  • First Online:
The Dynamic Magnetosphere

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 3))

Abstract

Auroral arc widths are observed to extend from 100 s of kilometers down to several 10 s of meters. The largest widths mapped outward along auroral field-lines correspond to that of plasma gradients and flow shears in the equatorial magnetosphere. The smallest widths correspond to the fundamental plasma length scales along auroral field-lines. Larger scale arcs invariably have smaller scale features imbedded within them. The physics of auroral arcs is therefore multi-scale in nature. In this brief report we review some recent results from the FAST spacecraft characterizing the k-spectra of Alfvénic electromagnetic fluctuations associated with electron fluxes which drive visible aurora. These results suggest a nearly scale-invariant quality to the acceleration process over much of the range of scales reported for auroral arc widths. We then present a case study using observations from the REIMEI spacecraft to qualitatively demonstrate that the broad scale-range of variations observed in electromagnetic fields is represented in the multi-scale structuring of auroral forms. Together, observations from these spacecraft suggest that auroral arc structuring is a consequence of energy transport across scales facilitated by non-linear coupling similar to that which occurs in large Reynolds number fluid flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan W, Wright A (2000) Magnetotail waveguide: fast and Alfvén waves in the plasma sheet boundary layer and lobe. J Geophys Res 105:317

    Article  Google Scholar 

  • Angelopoulos et al (2008) Tail reconnection triggering substorm onset. Science 1160495:10.1126

    Google Scholar 

  • Asamura K et al (2003) Auroral particle instrument onboard the INDEX satellite. Adv Space Res 32:375–378

    Article  Google Scholar 

  • Borovsky JE (1993) Auroral arc thickness as predicted by various theories. J Geophys Res 98:6101–6138

    Article  Google Scholar 

  • Borovsky JE, Funsten HO (2003) MHD turbulence in the Earth’s plasma sheet: dynamics, dissipation, and driving. J Geophys Res 108:1284. doi:10.1029/2002JA009625

    Article  Google Scholar 

  • Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Clarendon, Oxford

    Google Scholar 

  • Chaston C, Peticolas L, Bonnell J, Carlson C, Ergun R, McFadden J, Strangeway R (2003) Width and brightness of auroral arcs driven by inertial Alfvén waves. J Geophys Res 108:1091. doi:10.1029/2001JA007537

    Article  Google Scholar 

  • Chaston CC, Genot V, Bonnell JW, Carlson CW, McFadden JP, Ergun RE, Strangeway RJ, Lund EJ, Hwang KJ (2006) Ionospheric erosion by Alfvén waves. J Geophys Res 111:A03206. doi:10.1029/2005JA011367

    Article  Google Scholar 

  • Chaston CC, Hull AJ, Bonnell JW, Carlson CW, Ergun RE, Strangeway RJ, McFadden JP (2007) Large parallel electric fields, currents, and density cavities in dispersive Alfvén waves above the aurora. J Geophys Res 112:A05215. doi:10.1029/2006JA012007

    Article  Google Scholar 

  • Chaston CC, Salem C, Bonnell JW, Carlson CW, Ergun RE, Strangeway RJ, McFadden JP (2008) The turbulent Alfvénic aurora. Phys Rev Lett 100:175003

    Article  Google Scholar 

  • Chaston CC, Seki K (2010) Small-scale auroral current sheet structuring. J Geophys Res 115:A11221. doi:10.1029/2010JA015536

    Article  Google Scholar 

  • Dahlgren H, Ivchenko N, Sullivan J, Lanchester BS, Marklund G, Whiter D (2008) Morphology and dynamics of aurora at fine scale: first results from the ASK instrument. Ann Geophys 26:1041–1048

    Article  Google Scholar 

  • Dahlgren H, Aikio A, Kaila K, Ivchenko N, Lanchester BS, Whiter DK, Marklund GT (2010) Simultaneous observations of small multi-scale structures in an auroral arc. J Atmos Sol Terr Phys 72(7–8):633–637

    Article  Google Scholar 

  • Elphinstone RD, Murphree JS, Hearn D, Cogger LL, Sandahl I, Newell PT, Klumpar DM, Ohtani S, Sauvaud JA, Potemra TA, Mursula K, Wright A, Shapshak M (1995) The double oval UV auroral distribution. 1. Implications for the mapping of auroral arcs. J Geophys Res 100:12093

    Article  Google Scholar 

  • Ergun RE, Carlson CW, McFadden JP, Mozer FS, Delory GT, Peria W, Chaston CC, Temerin M, Elphic RC, Strangeway R, Pfaff R, Cattell CA, Klumpar D, Shelley E, Petersen WK, Moebius E, Kistler L (1998) FAST satellite observations of electric field structures in the auroral zone. Geophys Res Lett 25:2025

    Article  Google Scholar 

  • Genot V, Louarn P, Le Queau D (1999) A study of the propagation of Alfvén waves in auroral density cavities. J Geophys Res 104:22649

    Article  Google Scholar 

  • Goldreich P, Sridhar S (1995) Toward a theory of interstellar turbulence, 2. Strong Alfvénic turbulence. Astrophys J 438:763

    Article  Google Scholar 

  • Golovchanskaya IV, Ostapenko AA, Kozelov BV (2006) Relationship between the high-latitude electric and magnetic turbulence and the Birkeland field‐aligned currents. J Geophys Res 111:A12301. doi:10.1029/2006JA011835

    Article  Google Scholar 

  • Haerendel G (2007) Auroral arcs as sites of magnetic stress release. J Geophys Res 112:A09214. doi:10.1029/2007JA012378

    Article  Google Scholar 

  • Hallinan TJ, Davis TN (1970) Small‐scale auroral arc distortions. Planet Space Sci 18:1735

    Article  Google Scholar 

  • Howes GG, Cowley SC, Dorland W, Hammett GW, Quataert E, Schekochihin AA (2008) A model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind. J Geophys Res 113:A05103. doi:10.1029/2007JA012665

    Article  Google Scholar 

  • Johansson T, Marklund G, Karlsson T, Lileo S, Lindqvist P-A, Nilsson H, Buchert S (2007) Scale sizes of intense auroral electric fields observed by CLUSTER. Ann Geophys 25:2413–2425

    Article  Google Scholar 

  • Knudsen DJ, Donovan EF, Cogger LL, Jackel B, Shaw WD (2001) Width and structure of mesoscale optical auroral arcs. Geophys Res Lett 28:705–708

    Article  Google Scholar 

  • Kozelov BV, Uritsky VM, Klimas AJ (2004) Power law probability distributions of multiscale auroral dynamics from ground – based TV observations. Geophys Res Lett 31:L20804. doi:10.1029/2004GL020962

    Article  Google Scholar 

  • Kozelov BV, Golovchanskaya IV (2006) Scaling of electric field fluctuations associated with the aurora during northward IMF. Geophys Res Lett 33:L20109. doi:10.1029/2006GL027798

    Article  Google Scholar 

  • Lotko W, Sonnerup B, Lysak RL (1987) Nonsteady boundary layer flow including ionospheric drag and parallel electric fields. J Geophys Res 92:8635

    Article  Google Scholar 

  • Lysak RL (1990) Electrodynamic coupling of the magnetosphere and the ionosphere. Space Sci Rev 52:33268

    Article  Google Scholar 

  • Lysak RL (1991) Feedback instability of the ionospheric resonant cavity. J Geophys Res 96:1553. doi:10.1029/90JA02154

    Article  Google Scholar 

  • Lysak R, Lotko W (1996a) On the kinetic dispersion relation for shear Alfvén waves. J Geophys Res 101(A3):5085–5094

    Article  Google Scholar 

  • Lysak RL, Song Y (1996b) Coupling of Kelvin – Helmholtz and current sheet instabilities to the ionosphere: a dynamic theory of auroral spirals. J Geophys Res 101:15411

    Article  Google Scholar 

  • Lysak RL, Song Y (1999) The role of Alfvén waves in the formations of parallel electric fields. In: Ohtani S, Fujii R, Hesse M, Lysak RL (eds) Magnetospheric current systems. AGU Geophysical Monograph, Washington, DC, p 147

    Google Scholar 

  • Lysak RL, Song Y (2002) Energetics of the ionospheric feedback interaction. J Geophys Res 107:1160

    Article  Google Scholar 

  • Lysak RL, and Song Y (2008) Propagation of kinetic Alfvén waves in the ionospheric Alfvén resonator in the presence of density cavities, Geophys Res Lett 35:L20101. doi:10.1029/2008GL035728

    Article  Google Scholar 

  • Maggs JE, Davis TN (1968) Measurements of the thickness of auroral structures. Planet Space Sci 216:205–209

    Article  Google Scholar 

  • Paschmann G, Haaland S, Treumann R (2003) Auroral plasma physics. Kluwer, Dordrecht, p 94

    Google Scholar 

  • Peria W, Carlson C, Ergun R, McFadden J, Bonnell J, Elphic R, Strangeway R (2000) Characteristics of field-aligned currents near the auroral acceleration region: FAST observations. In: Ohtani S et al (eds) Magnetospheric Current Systems. AGU Geophys Monogr Series, Washington, DC, Vol. 118, pp. 181–189

    Google Scholar 

  • Pilipenko V, Fedorov E, Engebretson M, Yumoto K (2004) Energy budget of Alfvén wave interactions with the auroral acceleration region. J Geophys Res 109:A10204. doi:10.1029/2004JA010440

    Article  Google Scholar 

  • Sakanoi T et al (2003) Development of the multi-spectral auroral camera onboard the 238 INDEX satellite. Adv Space Res 32:379–384

    Article  Google Scholar 

  • Seyler CE (1990) A mathematical model of the structure and evolution of small‐scale discrete auroral arcs. J Geophys Res 95:17199

    Article  Google Scholar 

  • Stasiewicz K, Holmgren G, Zanetti L (1998) Density depletions and current singularities observed by Freja. J Geophys Res 103:4251

    Article  Google Scholar 

  • Stasiewicz K et al (2000) Identification of widespread turbulence of dispersive Alfvén waves. Geophys Res Lett 27:173

    Article  Google Scholar 

  • Stenbaek-Nielsen HC, Hallinan TJ, Osborne DL, Kimball J, Chaston C, McFadden J, Delory G, Temerin M, Carlson CW (1998) Aircraft observations conjugate to FAST: auroral are thicknesses. Geophys Res Lett 25(12):2073–2076

    Article  Google Scholar 

  • Streltsov AV, Lotko W (2008) Coupling between density structures, electromagnetic waves and ionospheric feedback in the auroral zone. J Geophys Res 113:A05212. doi:10.1029/2007JA012594

    Article  Google Scholar 

  • Trondsen TS, Cogger LL (1998) A survey of small‐scale spatially periodic distortions of auroral forms. J Geophys Res 103:9405

    Article  Google Scholar 

  • Uritsky VM, Klimas AJ, Vassiliadis D, Chua D, Parks G (2002) Scale-free statistics of spatiotemporal auroral emissions as depicted by POLAR UVI images: dynamic magnetosphere is an avalanching system. J Geophys Res 107:1426. doi:10.1029/2001JA000281

    Article  Google Scholar 

  • Vogt J, Haerendel G (1998) Reflection and transmission of Alfvén waves at the auroral acceleration region. Geophys Res Lett 25(3):277–280

    Article  Google Scholar 

  • Wahlund J-E, et al (1998) Broadband ELF plasma emission during auroral energization 1. Slow ion acoustic waves. J Geophys Res 103:4343

    Article  Google Scholar 

  • Weimer DR, Goertz CK, Gurnett DA, Maynard NC, Burch JL (1985) Auroral zone electric fields from DE 1 and DE 2 at magnetic conjunctions. J Geophys Res 90:7479–7494

    Article  Google Scholar 

  • Wu K, Seyler CE (2003) Instability of inertial Alfvén waves in transverse sheared flow. J Geophys Res 108:1236. doi:10.1029/2002JA009631

    Article  Google Scholar 

  • Wygant JR, Keiling A, Cattell CA, Lysak RL, Temerin M, Mozer FS, Kletzing CA, Scudder JD, Streltsov AV, Lotko W, Russell CT (2002) Evidence for kinetic Alfven waves and parallel electron energization at 4–6 RE altitudes in the plasma sheet boundary layer. J Geophys Res 107(A8):1201. doi:10.1029/2001JA900113

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by STEL visiting professor program, the global COE program ‘Quest for Fundamental Principles in the Universe: from Particles to the Solar System and the Cosmos’ of Nagoya University, NSF grant ATM-0602728 and NASA grant number NNG06GG63G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. Chaston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chaston, C.C., Seki, K., Sakanoi, T., Asamura, K., Hirahara, M. (2011). Evidence for a Multi-scale Aurora. In: Liu, W., Fujimoto, M. (eds) The Dynamic Magnetosphere. IAGA Special Sopron Book Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0501-2_15

Download citation

Publish with us

Policies and ethics