Skip to main content

Scaling Laws and Complexity in Fire Regimes

  • Chapter
  • First Online:
The Landscape Ecology of Fire

Part of the book series: Ecological Studies ((ECOLSTUD,volume 213))

Abstract

Use of scaling terminology and concepts in ecology evolved rapidly from rare occurrences in the early 1980s to a central idea by the early 1990s (Allen and Hoekstra 1992; Levin 1992; Peterson and Parker 1998). In landscape ecology, use of “scale” frequently connotes explicitly spatial considerations (Dungan et al. 2002), notably grain and extent. More generally though, scaling refers to the systematic change of some biological variable with time, space, mass, or energy. Schneider (2001) further specifies ecological scaling sensu Calder (1983) and Peters (1983) as “the use of power laws that scale a variable (e.g., respiration) to body size, usually according to a nonintegral exponent” while noting that this is one of many equally common technical definitions. He further notes that “the concept of scale is evolving from verbal expression to quantitative expression” (p. 545), and will continue to do so as mathematical theory matures along with quantitative methods for extrapolating across scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     Wikipedia contributors, “Emergence,” Wikipedia, the Free Encyclopedia, http://en.wikipedia.org/wiki/Emergence. Accessed 25 Jan 2010.

References

  • Adamic, L.A., and B.A. Huberman. 2000. The nature of markets in the World Wide Web. Quarterly Journal of Electronic Commerce 1: 512.

    Google Scholar 

  • Agee, J.K. 1993. Fire ecology of Pacific Northwest forests. Washington: Island Press.

    Google Scholar 

  • Allen, T.F.H., and T.W. Hoekstra. 1992. Toward a unified ecology. New York: Columbia University Press.

    Google Scholar 

  • Bak, P., C. Tang, and K. Wiesenfeld. 1988. Self-organized criticality. Physical Review A 38: 364–374.

    Article  CAS  Google Scholar 

  • Bak, P.C., K. Chen, and C. Tang. 1990. A forest-fire model and some thoughts on turbulence. Physics Letters A 147: 297–300.

    Article  Google Scholar 

  • Brown, J.H., V.K. Gupta, B.L. Li, B.T. Milne, C. Restrepo, and G.B. West. 2002. The fractal nature of nature: power laws, ecological complexity, and biodiversity. Philosophical Transactions of the Royal Society B 357: 619–626.

    Article  Google Scholar 

  • Calder, W.A. 1983. Ecological scaling: mammals and birds. Annual Review of Ecology and Systematics 14: 213–230.

    Article  Google Scholar 

  • Carlson, J.M., and J. Doyle. 2002. Complexity and robustness. Proceedings of the National Academy of Sciences 99: 2538–2545.

    Article  Google Scholar 

  • Cello, G., and B.D. Malamud. eds. 2006. Fractal analysis for natural hazards. Special publication 261. London: Geological Society.

    Google Scholar 

  • Clauset, A., C.R. Shalizi, and M.E.J. Newman. 2007. Power law distributions in empirical data. (http://arXiv:0706.1062v1).

    Google Scholar 

  • Cohen, J.D., and J.E. Deeming. 1985. The national fire danger rating system: basic equations. General Technical Report PSW-82. Berkeley: Forest Service.

    Google Scholar 

  • Collins, B.M., J.D. Miller, A.E. Thode, M. Kelly, J.W. van Wagtendonk, and S.L. Stephens. 2009. Interactions among wildland fires in a long-established Sierra Nevada natural fire area. Ecosystems 12: 114–128.

    Article  Google Scholar 

  • Cumming, S.G. 2001. A parametric model of the fire-size distribution. Canadian Journal of Forest Research 31: 1297–1303.

    Article  Google Scholar 

  • Diggle, P.J. 2003. Statistical analysis of spatial point patterns, 2nd ed. London: Arnold.

    Google Scholar 

  • Doyle, J., and J.M. Carlson. 2000. Power laws, HOT, and generalized source coding. Physics Review Letters 84: 5656–5659.

    Article  CAS  Google Scholar 

  • Dungan, J.L., J.N. Perry, M.R.T. Dale, P. Legendre, S. Citron-Pousty, M.-J. Fortin, A. Jakomulska, M. Miriti, and M.S. Rosenberg. 2002. A balanced view of scale in spatial statistical analysis. Ecography 25: 626–640.

    Article  Google Scholar 

  • Evans, M., N. Hastings, and B. Peacock. 2000. Statistical distributions, 3rd ed. New York: Wiley.

    Google Scholar 

  • Everett, R.L., R. Schelhaas, D. Keenum, D. Spubeck, and P. Ohlson. 2000. Fire history in the ponderosa pine/Douglas-fir forests on the east slope of the Washington Cascades. Forest Ecology and Management 129: 207–225.

    Article  Google Scholar 

  • Falk, D.A. 2004. Scale dependence of probability models for fire intervals in a ponderosa pine ecosystem. Ph.D. dissertation. Tucson: University of Arizona.

    Google Scholar 

  • Falk, D.A., C. Miller, D. McKenzie, and A.E. Black. 2007. Cross-scale analysis of fire regimes. Ecosystems 10: 809–823.

    Article  Google Scholar 

  • Gardner, R.H., and D.L. Urban. 2007. Neutral models for testing landscape hypotheses. Landscape Ecology 22: 15–29.

    Article  Google Scholar 

  • Gwozdz, R., and D. McKenzie. (unpublished data) Effects of topography, humidity, and model parameters on the spatial structure of simulated fine-fuel moisture. Seattle: Pacific Wildland Fire Sciences Lab, U.S. Forest Service (manuscript on file with: Don McKenzie).

    Google Scholar 

  • Habeeb, R.L., J. Trebilco, S. Witherspoon, and C.R. Johnson. 2005. Determining natural scales of ecological systems. Ecological Monographs 75: 467–487.

    Article  Google Scholar 

  • Hessburg, P.F., and J.K. Agee. 2005. Dry forests and wildland fires of the inland Northwest USA: contrasting the landscape ecology of the pre–settlement and modern eras. Forest Ecology and Management 211: 117–139.

    Article  Google Scholar 

  • Hessl, A.E., D. McKenzie, and R. Schellhaas. 2004. Drought and Pacific decadal oscillation linked to fire occurrence in the inland Pacific Northwest. Ecological Applications 14: 425–442.

    Article  Google Scholar 

  • Hessl, A.E., J. Miller, J. Kernan, and D. McKenzie. 2007. Mapping wildfire boundaries from binary point data: comparing approaches. Professional Geographer 59: 87–104.

    Article  Google Scholar 

  • Isaaks, E.H., and R.M. Srivastava. 1989. An introduction to applied geostatistics. New York: Oxford University Press.

    Google Scholar 

  • Johnson, E.A., and S.L. Gutsell. 1994. Fire frequency models, methods, and interpretations. Advances in Ecological Research 25: 239–287.

    Article  Google Scholar 

  • Kellogg, L.-K.B., D. McKenzie, D.L. Peterson, and A.E. Hessl. 2008. Spatial models for inferring topographic controls on low-severity fire in the eastern Cascade Range of Washington, USA. Landscape Ecology 23: 227–240.

    Article  Google Scholar 

  • Kennedy, M.C., and D. McKenzie. 2010. Using a stochastic model and cross-scale analysis to evaluate controls on historical low-severity fire regimes. Landscape Ecology. doi:10.1007/s10980-010-9527-5.

    Article  Google Scholar 

  • Legendre, P., and L. Legendre. 1998. Numerical ecology, 2nd ed. Amsterdam: Elsevier Science B.V.

    Google Scholar 

  • Levin, S.A. 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967.

    Article  Google Scholar 

  • Levin, S.A. 2005. Self-organization and the emergence of complexity in ecological systems. Bioscience 55: 1075–1079.

    Article  Google Scholar 

  • Littell, J.S., D. McKenzie, D.L. Peterson, and A.L. Westerling. 2009. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecological Applications 19: 1003–1021.

    Article  Google Scholar 

  • Loehle, C. 2004. Applying landscape principles to fire hazard reduction. Forest Ecology and Management 198: 261–267.

    Article  Google Scholar 

  • Malamud, B.D., G. Morein, and D.L. Turcotte. 1998. Forest fires: an example of self-organized critical behavior. Science 281: 1840–1842.

    Article  CAS  Google Scholar 

  • Malamud, B.D., Millington, J.D.A., and G.L.W. Perry. 2005. Characterizing wildfire regimes in the United States. Proceedings of the National Academy of Sciences, USA 102:4694–4699.

    Google Scholar 

  • McKenzie, D. [N.d.]. Unpublished data. Seattle: Pacific Wildland Fire Sciences Lab (On file with: Don McKenzie).

    Google Scholar 

  • McKenzie, D., D.L. Peterson, and E. Alvarado. 1996. Extrapolation problems in modeling fire effects at large spatial scales: a review. International Journal of Wildland Fire 6: 65–76.

    Article  Google Scholar 

  • McKenzie, D., D.L. Peterson, and J.K. Agee. 2000. Fire frequency in the Columbia River Basin: building regional models from fire history data. Ecological Applications 10: 1497–1516.

    Article  Google Scholar 

  • McKenzie, D., A.E. Hessl, and Lara-Karena B. Kellogg. 2006a. Using neutral models to identify constraints on low-severity fire regimes. Landscape Ecology 21: 139–152.

    Article  Google Scholar 

  • McKenzie, D., L-K.B. Kellogg, D.A. Falk, C. Miller, and A.E. Black. 2006b. Scaling laws and ­fire-size distributions in historical low-severity fire regimes. Geophysical Research Abstracts, 8: 1607–7962/gra/EGU06–A–01436.

    Google Scholar 

  • Miller, J.R., M.G. Turner, E.A.H. Smithwick, C.L. Dent, and E.H. Stanley. 2004. Spatial extrapolation: the science of predicting ecological patterns and processes. Bioscience 54: 310–320.

    Article  Google Scholar 

  • Millington, J.D.A., G.L.W. Perry, and B.D. Malamud. 2006. Models, data, and mechanisms: quantifying wildfire regimes. In Fractal analysis for natural hazards, eds. G. Cello, and B.D. Malamud, 155–167. Special Publication 261. London: Geological Society.

    Google Scholar 

  • Milne, B.T. 1998. Motivation and benefits of complex systems approaches in ecology. Ecosystems 1: 449–456.

    Article  Google Scholar 

  • Minnich, R.A. 1983. Fire mosaics in southern California and northern Baja California. Science 219: 1287–1294.

    Article  CAS  Google Scholar 

  • Moritz, M.A. 2003. Spatio-temporal analysis of controls of shrubland fire regimes: age dependency and fire hazard. Ecology 84: 351–361.

    Article  Google Scholar 

  • Moritz, M.A., M.E. Morais, L.A. Summerell, J.M. Carlson, and J. Doyle. 2005. Wildfires, complexity, and highly optimized tolerance. Proceedings of the National Academy of Sciences 102: 17912–17917.

    Article  CAS  Google Scholar 

  • National Geophysical Data Center. 2010. NGDC: natural hazards databases at NGDC. http://www.ngdc.noaa.gov/hazard/hazards.shtml. Accessed 25 Jan 2010.

  • NOAA. 2010. International multiproxy paleofire database. http://www.ncdc.noaa.gov/paleo/impd/paleofire.html. Accessed 25 Jan 2010.

  • Newman, M.E.J. 2005. Power laws, Pareto distributions, and Zipf’s law. Contemporary Physics 46: 323–351.

    Article  Google Scholar 

  • O’Neill, R.V., D.L. deAngelis, J.B. Waide, and T.F.H. Allen. 1986. A hierarchical concept of ecosystems. Princeton: Princeton University Press.

    Google Scholar 

  • Parody, J.M., and B.T. Milne. 2004. Implications of rescaling rules for multi-scaled habitat models. Landscape Ecology 19: 691–701.

    Article  Google Scholar 

  • Pascual, M., and F. Guichard. 2005. Criticality and disturbance in spatial ecological systems. Trends in Ecology & Evolution 20: 88–95.

    Article  Google Scholar 

  • Peters, R.H. 1983. The ecological implications of body size. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Peterson, G.D. 2002. Contagious disturbance, ecological memory, and the emergence of landscape pattern. Ecosystems 5: 329–338.

    Article  Google Scholar 

  • Peterson, D.L., and V.T. Parker, eds. 1998. Ecological scale: theory and applications. New York: Columbia University Press.

    Google Scholar 

  • R Foundation. 2003. The R Project for statistical computing. http://www.r-project.org. Accessed 25 Jan 2010.

  • Rastetter, E.B., A.W. King, B.J. Cosby, G.M. Hornberger, R.V. O’Neill, and J.E. Hobbie. 1992. Aggregating finescale ecological knowledge to model coarser scale attributes of ecosystems. Ecological Applications 2: 55–70.

    Article  Google Scholar 

  • Redner, S. 1998. How popular is your paper? An empirical study of the citation distribution. The European Physical Journal B 4: 131–134.

    Article  CAS  Google Scholar 

  • Reed, W.J. 2001. The Pareto, Zipf, and other power laws. Economics Letters 74: 15–19.

    Article  Google Scholar 

  • Reed, W.J. 2006. A note on fire frequency concepts and definitions. Canadian Journal of Forest Research 36: 1884–1888.

    Article  Google Scholar 

  • Reed, W.J., and E.A. Johnson. 2004. Statistical methods for estimating historical fire frequency from multiple fire-scar data. Canadian Journal of Forest Research 34: 2306–2313.

    Article  Google Scholar 

  • Reed, W.J., and K.S. McKelvey. 2002. Power-law behaviour and parametric models for the size distribution of forest fires. Ecological Modelling 150: 239–254.

    Article  Google Scholar 

  • Ricotta, C. 2003. Fractal size distributions of wildfires in hierarchical landscapes: Natura facit saltus? Comments on Theoretical Biology 8: 93–101.

    Article  Google Scholar 

  • Roberts, D.C., and D.L. Turcotte. 1998. Fractality and self-organized criticality of wars. Fractals 6: 351–357.

    Article  Google Scholar 

  • Rossi, R.E., D.J. Mulla, A.G. Journel, and E.H. Franz. 1992. Geostatistical tools for modeling and interpreting spatial dependence. Ecological Monographs 62: 277–314.

    Article  Google Scholar 

  • Scanlon, T.M., K.K. Caylor, S.A. Levin, and I. Rodriguez-Iturbe. 2007. Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449: 209–213.

    Article  CAS  Google Scholar 

  • Schneider, D.C. 2001. The rise of the concept of scale in ecology. Bioscience 51: 545–553.

    Article  Google Scholar 

  • Simard, A.J. 1991. Fire severity, changing scales, and how things hang together. International Journal of Wildland Fire 1: 23–34.

    Article  Google Scholar 

  • Sole, R. 2007. Scaling laws in the drier. Nature 447: 151–152.

    Article  Google Scholar 

  • Solow, A.R. 2005. Power laws without complexity. Ecology Letters 8: 361–363.

    Article  Google Scholar 

  • Song, W., F. Weicheng, W. Binghong, and Z. Jianjun. 2001. Self-organized criticality of forest fire in China. Ecological Modelling 145: 61–68.

    Article  Google Scholar 

  • Stauffer, D., and A. Aharony. 1994. Introduction to percolation theory, 2nd ed. London: Taylor and Francis.

    Google Scholar 

  • Turcotte, D.L., B.D. Malamud, F. Guzzetti, and P. Reichenbach. 2002. Self-organization, the cascade model, and natural hazards. Proceedings of the National Academy of Sciences 99: 2530–2537.

    Article  Google Scholar 

  • Turner, M.G., and W.H. Romme. 1994. Landscape dynamics in crown fire ecosystems. Landscape Ecology 9: 59–77.

    Article  Google Scholar 

  • West, G.B., J.H. Brown, and B.J. Enquist. 1997. A general model for the origin of allometric scaling laws in biology. Science 276: 122–126.

    Article  CAS  Google Scholar 

  • West, G.B., J.H. Brown, and B.J. Enquist. 1999. A general model for the structure of plant vascular systems. Nature 400: 664–667.

    Article  CAS  Google Scholar 

  • West, G.B., W.H. Woodruff, and J.H. Brown. 2002. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proceedings of the National Academy of Sciences 99: 2473–2478.

    Article  Google Scholar 

  • White, E.P., B.J. Enquist, and J.L. Green. 2008. On estimating the exponent of power-law frequency distributions. Ecology 89: 905–912.

    Article  Google Scholar 

  • Wu, J. 1999. Hierarchy and scaling: extrapolating information along a scaling ladder. Canadian Journal of Remote Sensing 25: 367–380.

    Article  Google Scholar 

  • Zipf, G.K. 1949. Human behavior and the principle of least effort: an introduction to human ecology. Reading: Addison-Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald McKenzie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

McKenzie, D., Kennedy, M.C. (2011). Scaling Laws and Complexity in Fire Regimes. In: McKenzie, D., Miller, C., Falk, D. (eds) The Landscape Ecology of Fire. Ecological Studies, vol 213. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0301-8_2

Download citation

Publish with us

Policies and ethics