Skip to main content

Seismic Response of RC Framed Buildings Designed According to Eurocodes

  • Chapter
  • First Online:
Computational Methods in Earthquake Engineering

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 21))

  • 2160 Accesses

Abstract

In order to ensure that a structure does not collapse when subjected to the action of strong ground motions, modern codes include prescriptions in order to guarantee the ductile behavior of the elements and of the whole structure. Obviously, it would be of special importance for the designer to know during the design process the extent of damage that the structure will suffer under the seismic action specified by the design spectrum and also the probability of occurrence of different states of behaviour. The incremental nonlinear static analysis procedure used in this paper allows formulating a new, simplified, seismic damage index and damage thresholds associated with five limit states. The seismic behavior of a set of regular reinforced concrete buildings designed according to the EC-2/EC-8 prescriptions for a high seismic hazard level is then studied using the proposed damage index and damage states. Fragility curves and damage probability matrices corresponding to the performance point are calculated for the studied buildings. The obtained results show that the collapse damage state is not reached in the buildings designed according the prescriptions of EC-2/EC-8 and also that the damage does not exceed the irreparable damage limit state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mwafi AM, Elnashai A (2002) Overstrength and force reduction factors of multistory reinforced-concrete buildings. Struct Des Tall Buil 11:329–351

    Article  Google Scholar 

  2. Mwafi AM, Elnashai A (2002) Calibration of force reduction factors of RC buildings. J Earthquake Eng 6(2):239–273

    Article  Google Scholar 

  3. Sanchez AM, Plumier L (2008) Parametric study of ductile moment-resisting steel frames: a first step towards Eurocode 8 calibration. Earthquake Eng Struct Dynam 37:1135–1155

    Article  Google Scholar 

  4. PLCd (2009) Non-linear thermo mechanic finite element oriented to PhD student education, code developed at CIMNE, Barcelona, Spain

    Google Scholar 

  5. Comité Européen de Normalisation (2001) Eurocode 2: Design of concrete structures BS EN 1992, Brussels

    Google Scholar 

  6. Comité Européen de Normalisation (2001) Eurocode 8: Design of structures for earthquake resistance EN 2004-1-1, Brussels

    Google Scholar 

  7. Priestley MJN, Calvi GM, Kowalsky MJ (2007) Displacement-based seismic design of structures. IUSS Press, Pavia, Italy

    Google Scholar 

  8. Park R (1998) State-of-the-art report: ductility evaluation from laboratory and analytical testing. In: Proceedings 9th WCEE. IAEE, Tokyo, Japan

    Google Scholar 

  9. Vielma JC, Barbat AH, Oller S (2009) Seismic performance of Waffled-Slab floor buildings. Proc P I Civil Eng Str 16(3):169–182

    Google Scholar 

  10. Barbat AH, Oller S, Oñate E, Hanganu A (1997) Viscous damage model for Timoshenko beam structures. Int J Solid Struct 34(30):3953–3976

    Article  MATH  Google Scholar 

  11. Car E, Oller S, Oñate E (2000) Seismic performance of Waffled-Slab floor buildings. Comput Meth Appl Mech Eng 185(2–4):245–277

    Article  MATH  Google Scholar 

  12. Vielma JC, Barbat AH, Oller S (2008) An objective seismic damage index for the evaluation of the performance of RC buildings. In: Proceedings 14th WCEE. IAEE, Beijing, China

    Google Scholar 

  13. Oller S, Barbat AH (2006) Moment-curvature damage model for bridges subjected to seismic loads. Comput Meth Appl Mech Eng 195:4490–4511

    Article  MATH  Google Scholar 

  14. Car E, Oller S, Oñate E (2001) A large strain plasticity for anisotropic materials: composite material application. Int J Plast 17(1):1437–1463

    Article  MATH  Google Scholar 

  15. Mata P, Oller S, Barbat AH (2007) Static analysis of beam structures under nonlinear geometric and constitutive behaviour. Comput Meth Appl Mech Eng 196:4458–4478

    Article  MATH  MathSciNet  Google Scholar 

  16. Mata P, Oller S, Barbat AH (2007) Dynamic analysis of beam structures under nonlinear geometric and constitutive behaviour. Comput Meth Appl Mech Eng 197:857–878

    Article  MathSciNet  Google Scholar 

  17. Oller S, Oliver J, Oñate E, Lubliner J (1990) Finite element non-linear analysis of concrete structures using a plastic-damage model. Eng Fract Mech 35(1-3):219–231

    Article  Google Scholar 

  18. Lubliner J, Oliver J, Oller S, Oñate E (1989) A plastic-damage model for concrete. Int J Solid Struct 25(3):299–326

    Article  Google Scholar 

  19. Faleiro J, Oller S, Barbat AH (2008) Plastic-damage seismic model for reinforced concrete frames. Comput Struct 86:581–597

    Article  Google Scholar 

  20. Oller S, Car E, Lubliner J (2003) Definition of a general implicit orthotropic yield criterion. Comput Meth Appl Mech Eng 192(7–8):895–912

    Article  MATH  Google Scholar 

  21. Martinez X, Oller S, Rastellini F, Barbat AH (2008) A numerical procedure simulating RC structures reinforced with FRP using the serial/parallel mixing theory. Comput Struct 86:1604–1618

    Article  Google Scholar 

  22. Bayrak O, Sheikh SA (2001) Plastic hinge analysis. J Struct Eng (ASCE) 127:1092–1100

    Article  Google Scholar 

  23. Spacone E, El Tawil S (2000) Nonlinear analysis of steel-concrete composite structures: state of the art. J Struct Eng (ASCE) 126:159–168

    Google Scholar 

  24. Faleiro J, Oller S, Barbat AH (2010) Plastic-damage analysis of reinforced concrete frames. Eng Computations 27(1):57–83

    Article  Google Scholar 

  25. Shao Y, Aval S, Mirmiran A (2005) Fiber-element model for cyclic analysis of concrete-filled fiber reinforced polymer tubes. J Struct Eng (ASCE) 131:292–303

    Article  Google Scholar 

  26. Simo JC (1985) A finite strain beam formulation. The three-dimensional dynamic problem Part I. Comput Meth Appl Mech Eng 49:55–70

    MATH  Google Scholar 

  27. Mander JB, Priestley MJN, Park R (1988) Observed stress-strain behaviour of confined concrete. J Struct Eng (ASCE) 114:1827–1849

    Article  Google Scholar 

  28. Vamvatsikos D, Cornell, CA (2002) Incremental dynamic analysis. Earthquake Eng Struct Dynam 31(3):491–514

    Article  Google Scholar 

  29. Kunnath, S (2005) Performance-based seismic design and evaluation of buildings structures. In: Chen WF, Lui EM (eds), Earthquake engineering for structural design. CRC, Boca Raton Press

    Google Scholar 

  30. Vielma JC, Barbat AH, Oller S (2009) Reserva de resistencia de edificios porticados de concreto armado diseados conforme al ACI-318/IBC-2006. Revista de Ingeniera de la Universidad de Costa Rica 18(1,2):121–131

    Google Scholar 

  31. Vielma JC, Barbat AH, Oller S (2010) Seismic safety of low ductility structures used in Spain. Bull Earthquake Eng 8:135–155

    Article  Google Scholar 

  32. Han SW, Chopra A (2006) Approximate incremental dynamic analysis using the modal pushover analysis procedure. Earthquake Eng Struct Dynam 35(3):1853–1873

    Article  Google Scholar 

  33. Fajfar PA (2000) Nonlinear analysis method for performance based seismic design. Earthquake Spectra 16(3):573–591

    Article  Google Scholar 

  34. SEAOC (1995) Vision 2000 report on performance based seismic engineering of buildings. Structural Engineers Association of California, vol I. Sacramento, California

    Google Scholar 

  35. Vielma JC, Barbat AH, Oller S (2008) Umbrales de daño para estados lmite de edificios porticados de concreto armado diseados conforme al ACI-318/IBC-2006. Revista Internacional de Desastres Naturales, Accidentes e Infraestructura 8:119–134

    Google Scholar 

  36. Vielma JC (2008) Caracterizacin de la respuesta ssmica de edificios de hormign armado mediante la respuesta no lineal, PhD Thesis, Barcelona, Spain

    Google Scholar 

  37. Pinto PE, Giannini R, Franchin P (2006) Seismic reliability analysis of structures. IUSS Press, Pavia, Italy

    Google Scholar 

  38. Barbat AH, Pujades LG, Lantada N (2008) Seismic damage evaluation in urban areas using the capacity spectrum method: application to Barcelona. Soil Dyn Earthquake Eng 28:851–865

    Article  Google Scholar 

  39. Barbat AH, Pujades LG, Lantada N (2006) Performance of buildings under earthquakes in Barcelona, Spain. Comput-Aided Civ Infrastruct Eng 21:573–593

    Article  Google Scholar 

  40. Lantada N, Pujades LG, Barbat AH (2009) Vulnerability index and capacity spectrum based methods for urban seismic risk evaluation. A comparison. Nat Hazards 51:501–524

    Article  Google Scholar 

  41. Vielma JC, Barbat AH, Oller S (2010) Non-linear structural analysis. Application for evaluating the seismic safety. In: Structural analysis. Nova Science Publishers, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Vielma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vielma, J.C., Barbat, A., Oller, S. (2011). Seismic Response of RC Framed Buildings Designed According to Eurocodes. In: Papadrakakis, M., Fragiadakis, M., Lagaros, N. (eds) Computational Methods in Earthquake Engineering. Computational Methods in Applied Sciences, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0053-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0053-6_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0052-9

  • Online ISBN: 978-94-007-0053-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics