Skip to main content

Utilizing Soil Microbes for Biocontrol

  • Chapter
  • First Online:
Soil Microbiology and Sustainable Crop Production

Abstract

This review focuses on the potential for microbial biological control of soil-borne pests and pathogens. The range of crops affected by key soil-borne pests and pathogens, and opportunities for biocontrol using composts, organic soil ­ame­ndments and/or augmentation with selected bioactive microbes are discussed. Selected examples of biological control successes, constraints and likely future developments are also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams PB (1990) The potential of mycoparasites for biological control of plant diseases. Annu Rev Phytopathol 28:59–72

    Article  PubMed  CAS  Google Scholar 

  • Adams PB, Ayers WA (1982) Biological control of Sclerotinia lettuce drop in the field by Sporidesmium sclerotivorum. Phytopathology 72:485–488

    Article  Google Scholar 

  • Agrawal AA, Tuzan S, Bent E (1999) Induced plant defences against pathogens and herbivores; Biochemistry, ecology and agriculture. APS Press, St Paul, MN

    Google Scholar 

  • Alabouvette C, Lemanceau P, Steinberg C (1996) Biological control of fusarium wilts: ­opportunities for developing a commercial product. In: Hall R (ed) Principles and practice of managing soilborne plant pathogens. APS Press, St Paul, MN, pp 192–212

    Google Scholar 

  • Aldahmani JH, Abbasi PA, Sahin F, Hoitink HAJ, Miller SA (2005) Reduction of bacterial leaf spot severity on radish, lettuce, and tomato plants grown in compost-amended potting mixes. Can J Plant Pathol 27:186–193

    Article  Google Scholar 

  • Allan RH, Thorpe CJ, Deacon JW (1992) Differential tropism to living and dead cereal root hairs by the biocontrol fungus Idriella bolleyi. Physiol Mol Plant Pathol 41:217–226

    Article  Google Scholar 

  • Alm SR, Villani MG, Yeh T, Shutter R (1997) Bacillus thuringiensis serovar. japonensis strain Buibui for control of Japanese and oriental beetle larvae (Coleoptera: Scarabaeidae). Appl Entomol Zool 32:477–484

    Google Scholar 

  • Almeida JEM, Alves SB (1996) Mortality of Heterotermes tenuis (Hagen) attracted to traps treated with Beauveria bassiana (Bals.) Vuill. and imidacloprid. An Soc Entomol Bras 25:507–512

    Google Scholar 

  • Almeida JEM, Alves SB, Pereira RM (1997) Selection of Beauveria spp. isolates for control of the termite Heterotermes tenuis (Hagen, 1858). J Appl Entomol 121:539–543

    Article  Google Scholar 

  • Aluko MO, Hering TF (1970) The mechanisms associated with the antagonistic relationship between Corticium solani and Gliocladium virens. T Brit Mycol Soc 55:173–179

    Article  Google Scholar 

  • Alves SB, Pereria RM (1998) Produção de fungos entomopatogênicos. In: Alves SB (ed) Controle microbiano de insetos, 2nd edn. FEALQ, Piracicaba, Brazil, pp 845–869

    Google Scholar 

  • Alves SB, Almeida JEM, Moino Junior A, Stimac JL, Pereira RM (1995) Use of Metarhizium anisopliae and Beauveria bassiana for control of Cornitermes cumulans (Kollar, 1832) in pastures. Ecossistema 20:50–57

    Google Scholar 

  • Amir H, Alabouvette C (1993) Involvement of soil abiotic factors in the mechanisms of soil ­suppressiveness to Fusarium wilts. Soil Biol Biochem 25:157–164

    Article  Google Scholar 

  • Anderson JD, Bailey BA, Taylor R, Sharon A, Avni A, Mattoo AK, Fuchs Y (1993) Fungal ­xylanase elicits ethylene biosynthesis and other defense responses in tobacco. In: Pech JC, Latche A, Balague C (eds) Cellular and molecular aspects of the plant hormone ethylene. Kluwer, Dordrecht, The Netherlands, pp 197–204

    Google Scholar 

  • Ansari MA, Shah FA, Whittaker M, Prasad M, Butt TM (2007) Control of western flower thrips (Frankliniella occidentalis) pupae with Metarhizium anisopliae in peat and peat alternative growing media. Biol Control 40:293–297

    Article  Google Scholar 

  • Ansari MA, Brownbridge M, Shah FA, Butt TM (2008) Efficacy of entomopathogenic fungi against soil-dwelling life stages of western flower thrips, Frankliniella occidentalis, in ­plant-growing media. Entomol Exp Appl 127:80–87

    Article  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    PubMed  CAS  Google Scholar 

  • Asher MJC, Shipton PJ (1981) Biology and control of take-all. Academic, London, p 538

    Google Scholar 

  • Badilla F, Alves SB (1991) Control del picudo de la caña de azúcar Sphenophorus levis Vaurie (Col.: Curculionidae) con Beauveria bassiana y Beauveria brongniartii en condiciones de laboratorio y campo 20–21: 34–38

    Google Scholar 

  • Bae YS, Knudsen GR (2005) Soil microbial biomass influence on growth and biocontrol efficacy of Trichoderma harzianum. Biol Control 32:236–242

    Article  Google Scholar 

  • Barak R, Elad Y, Chet I (1986) The properties of L-fructose-binding agglutinin associated with the cell wall of Rhizoctonia solani. Arch Microbiol 144:346–349

    Article  CAS  Google Scholar 

  • Bedford GΟ (1981) Control of the rhinoceros beetle by baculovirus. In: Burges HD (ed) Microbial control of pests and plant diseases. Academic, London, pp 418–426

    Google Scholar 

  • Blanchinsky D, Antonov J, Bercovitz A, Elad B, Feldman K, Husid A, Lazore M, Marcov N, Shamai I, Keren-Zur M (2007) Bionem WP: a unique tool for nematode control. Biological control of fungi and bacterial plant pathogens. IOBC/wprs Bull 30:23–26

    Google Scholar 

  • Boland GJ (1992) Hypovirulence and double-stranded RNA in Sclerotinia sclerotiorum. Can J Plant Pathol 14:10–17

    Article  CAS  Google Scholar 

  • Bolwerk A, Lagopodi AL, Lugtenberg BJJ, Bloemberg GV (2005) Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot. Mol Plant Microbe Interact 18:710–721

    Article  PubMed  CAS  Google Scholar 

  • Boulter JI, Boland GJ, Trevors JT (2002) Assessment of compost for suppression of Fusarium Patch (Microdochium nivale) and Typhula Blight (Typhula ishikariensis) snow molds of ­turfgrass. Biol Control 25:162–172

    Article  Google Scholar 

  • Brannen PM, Kenney DS (1998) KodiakReg.-a successful biological-control product for ­suppression of soil-borne plant pathogens of cotton. J Ind Microbiol Biotechnol 19: 169–171

    Article  Google Scholar 

  • Brian PW, McGowan JC (1945) Viridin: a highly fungistatic substance produced by Trichoderma viride. Nature 156:144

    Article  CAS  Google Scholar 

  • Brian PW, Curtis PJ, Hemming HG, McGowan JC (1946) The production of viridin by ­pigment-forming strains of Trichoderma viride. Ann Appl Biol 33:190–200

    Article  PubMed  CAS  Google Scholar 

  • Brownbridge M (2006) Entomopathogenic fungi: status and considerations for their development and use in integrated pest management. Recent Res Dev Entomol 5:27–58

    Google Scholar 

  • Brownbridge M, Glare T (2007) Impact of entomopathogenic fungi on soil-dwelling invertebrates. In: Ekesi S, Maniania NK (eds) Use of entomopathogenic fungi in biological pest ­management. Research Signpost, Trivandrum, India, pp 295–312

    Google Scholar 

  • Brownbridge M, Nelson TL, Hackell DL, Eden TM, Wilson DJ, Willoughby BE, Glare TR (2006) Field application of biopolymer-coated Beauveria bassiana F418 for clover root weevil (Sitona lepidus) control in Waikato and Manawatu. NZ Plant Protection 59:304–311

    Google Scholar 

  • Bruck DJ (2005) Ecology of Metarhizium anisopliae in soilless potting media and the ­rhizosphere: implications for pest management. Biol Control 32:155–163

    Article  Google Scholar 

  • Bruck DJ (2006) Effect of potting media components on the infectivity of Metarhizium anisopliae against black vine weevil (Coleoptera: Curculionidae). J Environ Hortic 24:91–94

    Google Scholar 

  • Brust GE (1994) Natural enemies in straw-mulch reduce Colorado beetle populations and damage in potato. Biol Control 4:163–169

    Article  Google Scholar 

  • Bush LP, Fannin FF, Siegel MR, Dahlman DL, Burton HR (1993) Chemistry, occurrence and biological effects of saturated pyrrolizidine alkaloids associated with endophyte-grass ­interactions. Agric Ecosyst Environ 44:81–102

    Article  CAS  Google Scholar 

  • Butt TM, Brownbridge M (1997) Fungal pathogens of thrips. In: Lewis T (ed) Thrips as crop pests. CAB International, Wallingford, UK, pp 399–434

    Google Scholar 

  • Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of Pyochelin and Pyoverdin in Suppression of Pythium-Induced Damping-Off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    PubMed  CAS  Google Scholar 

  • Campbell LG, Eide JD, Smith LJ, Smith GA (2000) Control of sugarbeet root maggot with the fungus Metarhizium anisopliae. J Sugar Beet Res 37:57–69

    Article  Google Scholar 

  • Campbell LG, Boetel MA, Jonason NB, Jaronski ST, Smith LJ (2006) Grower-adoptable ­formulations of the entomopathogenic fungus Metarhizium anisopliae (Ascomycota: Hypocreales) for sugarbeet root maggot (Diptera: Ulidiidae) management. Environ Entomol 35:986–991

    Article  Google Scholar 

  • Cardinale F, Ferraris L, Valentino D, Tamietti G (2006) Induction of systemic resistance by a hypovirulent Rhizoctonia solani isolate in tomato. Physiol Mol Plant Pathol 69:160–171

    Article  CAS  Google Scholar 

  • Cardoza RE, Hermosa MR, Vizcaino JA, Sanz L, Monte E, Gutierrez S (2005) Secondary ­metabolites produced by Trichoderma and their importance in the biocontrol process. In: Ekesi S, Maniania NK (eds) Microorganisms for industrial enzymes and biocontrol. Research Signpost, Trivandrum, India, pp 207–228

    Google Scholar 

  • Cartwright DK, Benson MD (February 1994) Pseudomonas cepacia strain 5.5B and method of controlling Rhizoctonia solani therewith. US patent 5,288,633

    Google Scholar 

  • Chandler D, Davidson G (2005) Evaluation of the entomopathogenic fungus Metarhizium anisopliae against soil-dwelling stages of cabbage maggot (Diptera: Anthomyiidae) in glasshouse and field experiments and effect of fungicides on fungal activity. J Econ Entomol 98:1856–1862

    Article  PubMed  CAS  Google Scholar 

  • Chandler D, Davidson G, Grant WP, Greaves J, Tatchell GM (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Tech 19:275–283

    Article  CAS  Google Scholar 

  • Charnley AK (2003) Fungal pathogens of insects: cuticle degrading enzymes and toxins. Adv Bot Res 40:241–321

    Article  CAS  Google Scholar 

  • Charnley AK, Collins SA (2007) Entomopathogenic fungi and their role in pest control. In: Kubicek CP, Druzhinina IS (eds) Environmental and microbial relationships, 2nd edn, The Mycota IV. Springer, Berlin, Germany, pp 159–187

    Google Scholar 

  • Chen SY, Liu X (2005) Control of the soybean cyst nematode by the fungi Hirsutella rhossiliensis and Hirsutella minnesotensis in greenhouse studies. Biol Control 32:208–219

    Article  Google Scholar 

  • Chen S, Liu S (2007) Effects of tillage and crop sequence on parasitism of Heterodera glycines juveniles by Hirsutella spp. and on juvenile population density. Nematropica 37:93–106

    Google Scholar 

  • Chen C, Belanger RR, Benhamou N, Paulitz TC (1999) Role of salicylic acid in systemic ­resistance induced by Pseudomonas spp. against Pythium aphanidermatum in cucumber roots. Eur J Plant Pathol 105:477–486

    Article  CAS  Google Scholar 

  • Chernin L, Chet I (2002) Microbial enzymes in the biocontrol of plant pathogens and pests. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, New York, pp 171–226

    Google Scholar 

  • Chet I (1990) Mycoparasitism - Recognition, physiology and ecology. In: Barker RR, Dunn PE (eds) New directions in biological control: alternatives for suppressing, agricultural pests and diseases. Alan Liss, New York, pp 725–733

    Google Scholar 

  • Chng SF (2009) Microbial factors associated with the natural suppression of take-all in wheat in New Zealand. PhD. Thesis, Lincoln University, Lincoln, New Zealand

    Google Scholar 

  • Clarkson JP, Mead A, Payne T, Whipps JM (2004) Effect of environmental factors and Sclerotium cepivorum isolate on sclerotial degradation and biological control of white rot by Trichoderma. Plant Pathol 53:353–362

    Article  Google Scholar 

  • Claydon N, Allan M, Hanson JR, Avent AG (1987) Antifungal alkyl pyrones of Trichoderma harzianum. T Brit Mycol Soc 88:503–513

    Article  CAS  Google Scholar 

  • Clement SL, Elberson LR, Bosque-Perez NA, Schotzko DJ (2005) Detrimental and neutral effects of wild barley-Neotyphodium fungal endophyte associations on insect survival. Entomol Exp Appl 114:119–125

    Article  Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216

    Article  PubMed  CAS  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80

    Article  PubMed  CAS  Google Scholar 

  • Cook RJ (2003) Take-all of wheat. Physiol Mol Plant Pathol 62:73–86

    Article  Google Scholar 

  • Cook RJ (2007) Management of resident plant growth-promoting rhizobacteria with the cropping system: a review of experience in the US Pacific Northwest. Eur J Plant Pathol 119:255–264

    Article  Google Scholar 

  • Cook RJ, Baker KF (1983) Introduction of antagonists for biological control. In: Cook RJ, Baker KF (eds) The nature and practice of biological control of plant pathogens. APS Press, St Paul, MN, pp 281–311

    Google Scholar 

  • Coombs JT, Michelsen PP, Franco CMM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29:359–366

    Article  Google Scholar 

  • Cortes-Pentagos C, Olmedo-Monfil V, Herrera-Estrella A (2007) The nature of fungal ­mycoparasitic biocontrol agents. In: Chincholkar SB, Mukerji KG (eds) Biological control of plant diseases. The Haworth Press, New York, pp 327–353

    Google Scholar 

  • Costa JLS, Menge JA, Casale WL (1996) Investigation of some of the mechanisms by which ­bioenhanced mulches can suppress Phytophthora root rot of avocados. Microbial Res 151:183–192

    Article  Google Scholar 

  • Cotes AM, Lepoivre P, Semal J (1996) Correlation between hydrolytic enzyme activities ­measured in bean seedlings after Trichoderma koningii treatment combined with pregermination and the protective effect against Pythium splendens. Eur J Plant Pathol 102:497–506

    Article  CAS  Google Scholar 

  • Couteaudier Y, Nueveglise C, Viaud M, Riba G (1996) The fungus Beauveria for microbial ­control of soil pests: molecular ecology and strain improvement. In: The 3rd international workshop on microbial control of soil dwelling pests, Lincoln, New Zealand pp 31–37

    Google Scholar 

  • Craft CM, Nelson EB (1996) Microbial properties of composts that suppress damping-off and root rot of creeping bentgrass caused by Pythium graminicola. Appl Environ Microbiol 62:1550–1557

    PubMed  CAS  Google Scholar 

  • Crickmore N (2005) Using worms to better understand how Bacillus thuringiensis kills insects. Trends Microbiol 13:347–350

    Article  PubMed  CAS  Google Scholar 

  • Dababat AEA, Sikora RA (2007) Induced resistance by the mutualistic endophyte, Fusarium ­oxysporum strain 162, toward Meloidogyne incognita on tomato. Biocontrol Sci Technol 17:969–975

    Article  Google Scholar 

  • Danielson RM, Davey C (1973) Carbon and nitrogen nutrition of Trichoderma. Soil Biol Biochem 5:505–515

    Article  CAS  Google Scholar 

  • Das BC, Basu MM, Chaterjee GC (1978) Studies on the mode of action of agrocin 84. J Antibiot 31:490–492

    Article  PubMed  CAS  Google Scholar 

  • Davidson G, Chandler D (2005) Laboratory evaluation of entomopathogenic fungi against larvae and adults of onion maggot (Diptera: Anthomyiidae). J Econ Entomol 98:1848–1855

    Article  PubMed  CAS  Google Scholar 

  • Davies KG (2005) Interactions between nematodes and microorganisms: bridging ecological and molecular approaches. Adv Appl Microbiol 57:53–78

    Article  PubMed  CAS  Google Scholar 

  • Davies KG, Opperman CH (2006) A potential role for collagen in the attachment of Pasteuria penetrans to nematode cuticle. Bull OILB/SROP 29:11–15

    Google Scholar 

  • Davies KG, Fargette M, Balla G, Daudi A, Duponnois R, Gowen SR, Mateille T, Phillips MS, Sawadogo A, Trivino C, Vouyoukalou E, Trudgill DL (2001) Cuticle heterogeneity as ­exhibited by Pasteuria spore attachment is not linked to the phylogeny of parthenogenetic root-knot nematodes (Meloidogyne spp.). Parasitology 122:111–120

    Article  PubMed  Google Scholar 

  • de Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  CAS  Google Scholar 

  • de Wit PJGM, Brandwagt BF, van der Burg HA, Cai X, van der Hoorn RAL, de Jong CF, van ‘t Klooster J, de Kock MJD, Kruijt M, Lindhout WH, Luderer R, Takken FLW, Westerink N, Vervoort JJM, Joosten MHAJ (2002) The molecular basis of co-evolution between Cladosporium fulvum and tomato. Antonie Leeuwenhoek 81:409–412

    Article  PubMed  Google Scholar 

  • Dodd SL, Hill RA, Stewart A (2004) A duplex-PCR bioassay to detect a Trichoderma virens biocontrol isolate in non-sterile soil. Soil Biol Biochem 36:1955–1965

    Article  CAS  Google Scholar 

  • Domenech J, Reddy MS, Kloepper JW, Ramos B, Gutierrez-Manero J (2006) Combined ­application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Biocontrol 51:245–258

    Article  CAS  Google Scholar 

  • Dong LQ, Zhang KQ (2006) Microbial control of plant-parasitic nematodes: a five-party ­interaction. Plant Soil 288:31–45

    Article  CAS  Google Scholar 

  • Duffy BK, Ownley BH, Weller DM (1997) Soil chemical and physical properties associated with suppression of take-all of wheat by Trichoderma koningii. Phytopathology 87:1118–1124

    Article  PubMed  CAS  Google Scholar 

  • Eastburn DM, Butler EE (1988a) Microhabitat characterization of Trichoderma harzianum in natural soil: evaluation of factors affecting population density. Soil Biol Biochem 20:541–545

    Article  Google Scholar 

  • Eastburn DM, Butler EE (1988b) Microhabitat characterization of Trichoderma harzianum in natural soil: evaluation of factors affecting distribution. Soil Biol Biochem 20:547–553

    Article  Google Scholar 

  • Ekesi S, Maniania NK, Mohamed SA, Lux SA (2005) Effect of soil application of different ­formulations of Metarhizium anisopliae on African tephritid fruit flies and their associated endoparasitoids. Biol Control 35:83–91

    Article  Google Scholar 

  • Ekesi S, Dimbi S, Maniania NK (2007) The role of entomopathogenic fungi in the integrated management of fruit flies (Diptera: Tephritidae) with emphasis on species occurring in Africa. In: Ekesi S, Maniania NK (eds) Use of entomopathogenic fungi in biological pest ­management. Research Signpost, Trivandrum, India, pp 239–274

    Google Scholar 

  • Elad Y, Barak R, Chet I (1983a) Possible role of lectins in mycoparasitism. J Bacteriol 154:1431–1435

    PubMed  CAS  Google Scholar 

  • Elad Y, Chet I, Boyle P, Henis Y (1983b) Parasitism of Trichoderma spp. on Rhizoctonia solani and Sclerotium rolfsii – SEM studies and fluorescence microscopy. Phytopathology 73:85–88

    Article  Google Scholar 

  • Engler KM, Gold RE (2004) Effects of multiple generations of Metarhizium anisopliae on ­subterranean termites feeding and mortality. Sociobiology 44:211–240

    Google Scholar 

  • Enkerli J, Kolliker R, Keller S, Widmer F (2005) Isolation and characterization of microsatellite ­markers from the entomopathogenic fungus Metarhizium anisopliae. Mol Ecol Notes 5:384–386

    Article  CAS  Google Scholar 

  • Enkerli J, Schwarzenbach K, Widmer F (2008) Assessing potential effects of the Beauveria brongniartii biological control agent on fungal community structures in soil microcosms. In: Proceedings of the 41st annual meeting of the society for invertebrate pathology [Abstracts], Warwick University, UK, p 81

    Google Scholar 

  • Entz SC, Johnson DL, Kawchuk LM (2005) Development of a PCR-based diagnostic assay for the specific detection of the entomopathogenic fungus Metarhizium anisopliae var. acridum. Mycol Res 109:1302–1312

    Article  PubMed  CAS  Google Scholar 

  • Fenton AM, Stephens PM, Crowley J, O’Callaghan M, O’Gara F (1992) Exploitation of gene(s) involved in 2, 4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Environ Microbiol 58:3873–3878

    CAS  Google Scholar 

  • Fernandes EKK, Rangel DEN, Moraes AML, Bittencourt VREP, Roberts DW (2008) Cold a­ctivity of Beauveria and Metarhizium, and thermotolerance of Beauveria. J Invertebr Pathol 98:69–78

    Article  PubMed  Google Scholar 

  • Fleming WE (1968) Biological control of the Japanese beetle. USDA Technical Bulletin No 1383. United States Department of Agriculture, Washington, DC, p 78

    Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91

    Article  CAS  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:377–359

    Article  CAS  Google Scholar 

  • Fravel DR, Davis JR, Sorensen LH (1986) Effect of Talaromyces flavus and metham on Verticillium wilt incidence and potato yield, 1984–1985. Biol Cult Tests 1:7

    Google Scholar 

  • Freitas LG, Ferraz S, Muchovej JJ (1995) Effectiveness of different isolates of Paecilomyces lilacinus and an isolate of Cylindrocarpon destructans on the control of Meloidogyne javanica. Nematropica 25:109–115

    Google Scholar 

  • Georgis R, Gaugler R (1991) Predictability in biological control using entomopathogenic ­nematodes. J Econ Entomol 84:713–720

    Google Scholar 

  • Gerard PJ (2001) Dependence of Sitona lepidus (Coleoptera: Curculionidae) larvae on abundance of white clover Rhizobium nodules. Bull Entomol Res 91:149–152

    PubMed  CAS  Google Scholar 

  • Gerlagh M, Goossen-van de Geijn HM, Hoogland AE, Vereijken PFG (2003) Quantitative aspects of infection of Sclerotinia sclerotiorum sclerotia by Coniothyrium minitans – timing of ­application, concentration and quality of conidial suspension of the mycoparasite. Eur J Plant Pathol 109:489–502

    Article  Google Scholar 

  • Ghisalberti EL, Narbey MJ, Dewan MM, Sivasithamparam K (1990) Variability among strains of Trichoderma harzianum in their ability to reduce take-all and to produce pyrones. Plant Soil 121:287–291

    Article  CAS  Google Scholar 

  • Gimsing AL, Kirkegaard JA (2006) Glucosinolate and isothiocyanate concentration in soil ­following incorporation of Brassica biofumigants. Soil Biol Biochem 38:2255–2264

    Article  CAS  Google Scholar 

  • Glare TR, Corbett GE, Sadler TJ (1993) Association of a large plasmid with amber disease of the New Zealand grass grub, Costelytra zealandica, caused by Serratia entomophila and Serratia proteamaculans. J Invertebr Pathol 62:165–170

    Article  CAS  Google Scholar 

  • Glare TR, Townsend RJ, Young SD (1994) Temperature limitations on field effectiveness of Metarhizium anisopliae against Costelytra zealandica (White) (Coleoptera: Scarabidae) in Canterbury. N Z Plant Protection 47:266–270

    Google Scholar 

  • Green SJ, Inbar E, Michel FC, Hadar Y, Minz D (2006) Succession of bacterial communities ­during early plant development: transition from seed to root and effect of compost amendment. Appl Environ Microbiol 72:3975–3983

    Article  PubMed  CAS  Google Scholar 

  • Hanson LE (2000) Red of Vertical wilt symptoms in cotton following seed treatment with T. virens. J Cotton Sci 4:224–231

    Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease 84:377–393

    Article  Google Scholar 

  • Harman GE, Bjorkman T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium: enzymes biological control and commercial applications, vol 2. Taylor & Francis, London, pp 229–265

    Google Scholar 

  • Harman GE, Taylor AG (1990) Development of an effective biological seed treatment system. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CABI, Wallingford, UK, pp 415–426

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  PubMed  CAS  Google Scholar 

  • Harris AR (2000) Solid formulations of binucleate Rhizoctonia isolates suppress Rhizoctonia solani and Pythium ultimum in potting medium. Microbiol Res 154:333–337

    Article  PubMed  CAS  Google Scholar 

  • Henis Y, Lewis JA, Papavizas GC (1984) Interactions between Sclerotium rolfsii and Trichoderma spp relationship between antagonism and disease control. Soil Biol Biochem 16:391–395

    Article  Google Scholar 

  • Herr LJ (1995) Biological control of Rhizoctonia solani by binucleate Rhizoctonia spp. and ­hypovirulent R. solani agents. Crop Prot 14:179–186

    Article  Google Scholar 

  • Hill DS, Stein JI, Torkewitz NR, Morse AM, Howell CR, Pachlatko JP, Becker JO, Ligon JM (1994) Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas ­fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl Environ Microbiol 60:78–85

    PubMed  CAS  Google Scholar 

  • Hill RA, Eden MA, Cutler HG, Elmer PAG, Reglinski T, Parker SR (1999) Practical natural ­solutions for plant disease control. In: Biologically active natural products: agrichemicals. CRC Press, St Paul, MN, p 210

    Google Scholar 

  • Hiraoka H, Asaka O, Ano T, Shoda M (1992) Characterization of Bacillus subtilis RB14, ­coproducer of peptide antibiotics iturin and surfactin. J Gen Appl Microbiol 38:635–640

    Article  CAS  Google Scholar 

  • Hoffland E, Hakulinen J, van Pelt JA (1996) Comparison of systemic resistance induced by ­avirulent and nonpathogenic Pseudomonas species. Phytopathology 86:757–762

    Article  Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  PubMed  CAS  Google Scholar 

  • Hoitink HAJ, Grebus ME (1994) Status of biological control of plant diseases with composts. Compost Sci Util 2:6–12

    Google Scholar 

  • Hoitink HAJ, Madden LV, Boehm MJ (1996a) Relationships among organic matter decomposition level, microbial species diversity, and soilborne disease severity. In: Society TAP (ed) Principles and practises of managing soilborne plant pathogens. R. Hall, St. Paul, MN

    Google Scholar 

  • Hoitink HAJ, Stone AG, Grebus ME (1996b) Suppression of plant diseases by composts. In: The science of composting: part 1. Blackie Academic & Professional, Glasgow, UK, pp 373–381

    Google Scholar 

  • Hoper H, Steinberg C, Alabouvette C (1995) Involvement of clay type and pH in the mechanisms of soil suppressiveness to Fusarium wilt of flax. Soil Biol Biochem 27:955–967

    Article  CAS  Google Scholar 

  • Hornby D, Bateman GL, Gutteridge RJ, Ward E, Yarham DJ (1998) Take-all disease of cereals: a regional perspective. CAB International, Wallingford, UK, p 384

    Google Scholar 

  • Howell CR (2007) Effect of seed quality and combination fungicide-Trichoderma spp. seed ­treatments on pre- and postemergence damping-off in cotton. Phytopathology 97:66–71

    Article  PubMed  Google Scholar 

  • Howell CR, Stipanovic RD (1983) Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Can J Microbiol 29:321–324

    Article  CAS  Google Scholar 

  • Howell CR, Stipanovic RD (1984) Phytotoxicity to crop plants and herbicidal effects on weeds of viridiol produced by Gliocladium virens. Phytopathology 74:1346–1349

    Article  Google Scholar 

  • Howell CR, DeVay JE, Garber RH, Batson WE (1997) Field control of cotton seedling diseases with Trichoderma virens in combination with fungicide seed treatments. J Cotton Sci 1:15–20

    CAS  Google Scholar 

  • Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252

    Article  PubMed  CAS  Google Scholar 

  • Howie WJ, Suslow T (1991) Role of antibiotic synthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Mol Plant Microbe Interact 4:393–399

    Article  CAS  Google Scholar 

  • Hoynes CD, Lewis JA, Lumsden RD, Bean GA (1999) Biological control agents in combination with fertilization or fumigation to reduce sclerotial viability of Sclerotium rolfsii and disease of snap beans in the greenhouse. J Phytopathol 147:175–182

    CAS  Google Scholar 

  • Hubbard JP, Harman GE, Hadar Y (1983) Effect of soilborne Pseudomonas species on the ­biocontrol agent Trichoderma harzianum on pea seeds. Phytopathology 73:655–659

    Article  Google Scholar 

  • Hurst MRH, Glare TR, Jackson TA, Ronson CW (2000) Plasmid-located pathogenicity ­determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J Bacteriol 182:5127–5138

    Article  PubMed  CAS  Google Scholar 

  • Hurst MRH, Young SD, Nelson TL, Jackson TA, Becher A, Glare TR (2007) Species ­identification and host range testing of a new entomopathogenic member of the Enterobacteriaceae. In: Proceedings of the 40th annual meeting of SIP, Quebec City, Canada

    Google Scholar 

  • Inbar I, Chet I (1992) Biomics of fungal-cell recognition by the use of lectin-coated nylon fibres. J Bacteriol 174:1055–1059

    PubMed  CAS  Google Scholar 

  • Inglis GD, Duke GM, Goettel MS, Kabaluk JT (2008) Genetic diversity of Metarhizium anisopliae var. anisopliae in southwestern British Columbia. J Invertebr Pathol 98:101–113

    Article  PubMed  CAS  Google Scholar 

  • Jackson TA (2003) Environmental safety of inundative application of a naturally occurring ­biocontrol agent, Serratia entomophila. In: Hokkanken HMT, Hajek AE (eds) Environmental impacts of microbial insecticides: need and methods for risk assessment. Kluwer, Dordrecht, The Netherlands, pp 169–176

    Google Scholar 

  • Jackson TA (2007) A novel bacterium for control of grass grub. In: Vincent C, Goettel MS, Lazarovits G (eds) Biological control: a global perspective. CABI Publishing, Wallingford, UK, pp 160–168

    Chapter  Google Scholar 

  • Jackson TA, Chinn WG (1993) The effect of Metarhizium anisopliae formulations, and their combination with Serratia entomophila, on grass grub larvae. N Z Plant Protection 46:206–209

    Google Scholar 

  • Jackson TA, Glare T (eds) (1992) Use of pathogens in scarab pest management. Intercept, Andover, UK, p 298

    Google Scholar 

  • Jackson TA, Klein MG (2006) Scarabs as pests: a continuing problem. Coleopt Bull 60:102–119

    Article  Google Scholar 

  • Jackson TA, O’Callaghan M (1997) Environmental competence – an essential characteristic of successful microbial control agents for soil-dwelling pests. In: Proceedings of the 3rd Brisbane workshop on soil invertebrates. Bureau of sugar experimental stations, Brisbane, Australia, pp 74–77

    Google Scholar 

  • Jackson TA, Pearson JF, O’Callaghan M, Mahanty HK, Willocks M (1992) Pathogen to product – development of Serratia entomophila (Enterobacteriaceae) as a commercial biological ­control agent for the New Zealand grass grub (Costelytra zealandica). In: Jackson TA, Glare TR (eds) Use of pathogens in scarab pest management. Intercept, Andover, UK, pp 191–198

    Google Scholar 

  • Jackson TA, Boucias DG, Thaler JO (2001) Pathobiology of amber disease, caused by Serratia spp., in the New Zealand grass grub, Costelytra zealandica. J Invertebr Pathol 78:232–243

    Article  PubMed  CAS  Google Scholar 

  • Jaffee BA (2000) Augmentation of soil with the nematophagous fungi Hirsutella rhossiliensis and Arthrobotrys haptotyla. Phytopathology 90:498–504

    Article  PubMed  CAS  Google Scholar 

  • Jaffee BA, Ferris H, Stapleton JJ, Norton MVK, Muldoon AE (1994) Parasitism of nematodes by the fungus Hirsutella rhossiliensis as affected by certain organic amendments. J Nematol 26:152–161

    PubMed  CAS  Google Scholar 

  • Jaffee BA, Muldoon AE, Westerdahl BB (1996) Failure of a mycelial formulation of the ­nematophagous fungus Hirsutella rhossiliensis to suppress the nematode Heterodera schachtii. Biol Control 6:340–346

    Article  Google Scholar 

  • Jaronski ST (2007) Soil ecology of the entomopathogenic Ascomycetes: a critical examination of what we (think) we know. In: Ekesi S, Maniania NK (eds) Use of entomopathogenic fungi in biological pest management. Research Signpost, Trivandrum, India, pp 91–143

    Google Scholar 

  • Jaronski ST, Jackson MA (2008) Efficacy of Metarhizium anisopliae microsclerotial granules. Biocontrol Sci Technol 18:849–863

    Article  Google Scholar 

  • Jeffries P, Young TWK (1994) Interfungal parasitic relationships. CAB International, Wallingford, UK

    Google Scholar 

  • Jiang Z-Q, Guo Y-H, Li S-M, Qi H-Y, Guo J-H (2006) Evaluation of biocontrol efficiency of ­different Bacillus preparations and field application methods against Phytophthora blight of bell pepper. Biol Control 36:216–223

    Article  Google Scholar 

  • Jin X, Harman GA, Taylor AG (1991) Conidial biomass and desiccation tolerance of Trichoderma harzarium produced at different water potentials. Biol Control 1:237–243

    Article  Google Scholar 

  • Johnson VW, Pearson JF, Jackson TA (2001) Formulation of Serratia entomophila for biological control of grass grub. N Z Plant Protection 54:125–127

    Google Scholar 

  • Jones RW, Hancock JG (1987) Conversion of viridin to viridiol by viridin-producing fungi. Can J Microbiol 33:963–966

    Article  PubMed  CAS  Google Scholar 

  • Kannangara T, Utkhede RS, Bactawar B (2004) Compost effect on greenhouse cucumbers and suppression of Fusarium oxysporum. Compost Sci Util 12:308–313

    Google Scholar 

  • Keller S (1992) The Beauveria-Melolontha project: experiences with regard to locust and ­grasshopper control. In: Lomer CJ, Prior C (eds) Biological control of locusts and ­grasshoppers. CAB International, Wallingford, UK, pp 279–286

    Google Scholar 

  • Keller S (2000) Use of Beauveria brongniartii in Switzerland and its acceptance by farmers. Bull OILB/SROP 23:67–71

    Google Scholar 

  • Keller S, Kessler P, Schweizer C (2003) Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metharhizium anisopliae. Biocontrol 48:307–319

    Article  Google Scholar 

  • Kepler RM, Bruck DJ (2006) Examination of the interaction between the black vine weevil (Coleoptera: Curculionidae) and an entomopathogenic fungus reveals a new tritrophic ­interaction. Environ Entomol 35:1021–1029

    Article  Google Scholar 

  • Kerr A (1980) Biological control of crown gall through production of agrocin 84. Plant Dis 64:25–30

    Google Scholar 

  • Kerry B, Hidalgo-Diaz L (2004) Application of Pochonia chlamydosporia in the integrated ­control of root-knot nematodes on organically grown vegetable crops in Cuba. Bull OILB/SROP 27:123–126

    Google Scholar 

  • Kessler P, Enkerli J, Schweizer C, Keller S (2004) Survival of Beauveria brongniartii in the soil after application as a biocontrol agent against the European cockchafer Melolontha ­melolontha. Biocontrol 49:563–581

    Article  Google Scholar 

  • Kiewnick S (2004) Biological control of plant parasitic nematodes with Paecilomyces lilacinus, strain 251. Bull OILB/SROP 27:133–136

    Google Scholar 

  • Kiewnick S, Sikora RA (2006) Biological control of the root-knot nematode Meloidogyne ­incognita by Paecilomyces lilacinus strain 251. Biol Control 38:179–187

    Article  Google Scholar 

  • King EB, Parke JL (1993) Biocontrol of Aphanomyces root rot and Pythium damping-off by Pseudomonas cepacia AMMD on four pea cultivars. Plant Dis 77:1185–1188

    Article  Google Scholar 

  • Kirk JJ, Deacon JW (1987) Control of the take-all fungus by Microdochium bolleyi, and ­interactions involving M. bolleyi, Phialophora graminicola and Periconia macrospinosa on cereal roots. Plant Soil 98:231–237

    Article  Google Scholar 

  • Kirkland BH, Eisa A, Keyhani NO (2005) Oxalic acid as a fungal acaricidal virulence factor. J Med Entomol 42:346–351

    Article  PubMed  CAS  Google Scholar 

  • Klein MG (1992) Use of Bacillus popilliae in scarab control. In: Jackson TA, Glare TR (eds) Use of pathogens in scarab pest management. Intercept, Andover, UK, pp 179–189

    Google Scholar 

  • Klein MG, Jackson TA (1992) Bacterial diseases of scarabs. In: Jackson TJ, Glare T (eds) Use of pathogens in scarab pest management. Intercept, Andover, UK, pp 43–61

    Google Scholar 

  • Knudsen GR, Eschen DJ, Dandurand LM, Bin L (1991) Potential for control of Sclerotinia ­sclerotiorum through colonization of sclerotia by Trichoderma harzianum. Plant Dis 75:466–470

    Article  Google Scholar 

  • Kraus J, Loper JE (1995) Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 61:849–854

    PubMed  CAS  Google Scholar 

  • Kredics L, Antal Z, Manczinger L, Szekeres A, Kevei F, Nagy E (2003) Influence of environmental parameters on Trichoderma strains with biocontrol potential. Food Technol Biotechnol 41:37–42

    Google Scholar 

  • Kredics L, Manczinger L, Antal Z, Pénzes Z, Szekeres A, Kevei F, Nagy E (2004) In vitro water activity and pH dependence of mycelial growth and extracellular enzyme activities of Trichoderma strains with biocontrol potential. J Appl Microbiol 96:491–498

    Article  PubMed  CAS  Google Scholar 

  • Kubicek CP, Mach RL, Peterbauer CK, Lorito M (2001) Trichoderma: from genes to biocontrol. J Plant Pathol 83:11–23

    CAS  Google Scholar 

  • Laing SAK, Deacon JW (1991) Video microscopical comparison of mycoparasitism by Pythium oligandrum, P. nunn and an unnamed Pythium species. Mycol Res 95:469–479

    Article  Google Scholar 

  • Larkin RP, Fravel DR (2002) Effects of varying environmental conditions on biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology 92:1160–1166

    Article  PubMed  Google Scholar 

  • Larkin RP, Hopkins DL, Martin FN (1996) Suppression of Fusarium wilt of watermelon by ­nonpathogenic Fusarium oxysporum and other microorganisms recovered from a disease-suppressive soil. Phytopathology 86:812–819

    Article  Google Scholar 

  • Lartey RT, Conway KE (2004) Novel considerations in biological control of plant pathogens: microbial interactions. In: Lartey RT, Caesar AJ (eds) Emerging concepts in plant health ­management. Research Signpost, Trivandrum, India, pp 141–157

    Google Scholar 

  • Lascaris D, Deacon JW (1991) Colonization of wheat roots from seed-applied spores of Idriella (Microdochium) bolleyi: a biocontrol agent of take-all. Biocontrol Sci Technol 1:229–240

    Article  Google Scholar 

  • Lazarovits G (2001) Management of soil-borne plant pathogens with organic soil amendments: a disease control strategy salvaged from the past. Can J Plant Pathol 23:1–7

    Article  Google Scholar 

  • Lehr NA, Schrey SD, Hampp R, Tarkka MT (2008) Root inoculation with a forest soil ­streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytol 177:965–976

    Article  PubMed  Google Scholar 

  • Lemenceau P, Bakker PAHM, De Kogel WJ, Alabouvette C, Schippers B (1993) Antagonistic effect of nonpathogenic Fusarium oxysporum strain Fo47 and pseudobactin 358 upon ­pathogenic Fusarium oxysporum f. sp. dianthi. Appl Environ Microbiol 59:74–82

    Google Scholar 

  • Li DP, Holdom DG (1995) Effects of nutrients on colony formation, growth, and sporulation of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes). J Invertebr Pathol 65:253–260

    Article  CAS  Google Scholar 

  • Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ, van Pee, KH (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manage Sci 56:688–695

    Article  CAS  Google Scholar 

  • Litterick AM, Harrier LA, Wallace P, Watson CA, Wood M (2004) The role of uncomposted materials, composts, manures and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production – A review. Crit Rev Plant Sci 23:453–479

    Article  Google Scholar 

  • Lodha S (1995) Soil solarization, summer irrigation and amendments for the control of Fusarium oxysporum f.sp. cumini and Macrophomina phaseolina in arid soils. Crop Prot 14:215–219

    Article  Google Scholar 

  • Loper JE (1988) Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78:166–172

    Article  CAS  Google Scholar 

  • Lorang JM, Tuori RP, Martinez JP, Sawyer TL, Redman RS, Rollins JA, Wolpert TJ, Johnson KB, Rodriguez RJ, Dickman MB, Ciuffetti LM (2001) Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol 67:1987–1994

    Article  PubMed  CAS  Google Scholar 

  • Lorito M (1998) Chitnolytic enzymes and their genes. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium. Taylor & Francis, London, pp 73–99

    Google Scholar 

  • Lumsden RD, Knauss JF (2007) Commercial development of Gliocladium virens for damping-off disease. In: Vincent C, Goettel MS, Lazarovits G (eds) Biological control: a global perspective. CAB International, Kew, UK, pp 203–210

    Chapter  Google Scholar 

  • Lumsden RD, Locke JC, Adkins ST, Walter JF, Ridout CJ (1992) Isolation and localisation of the antibiotic gliotoxin produced by Gliocladium virens from alginate prill in soil and soilless media. Phytopathology 82:230–235

    Article  CAS  Google Scholar 

  • Lumsden RD, Lewis JA, Fravel D (1995) Formulation and delivery of biocontrol agents for use against soilborne plant pathogens. In: Hall FR, Barry JW (eds) Biorational pest control agents: formulation and delivery. American Chemical Society, Washington, DC, pp 166–182

    Chapter  Google Scholar 

  • Lumsden RD, Walter JF, Baker CP (1996) Development of Gliocladium virens for damping-off control. Can J Plant Pathol 18:463–468

    Article  Google Scholar 

  • Luth P (2001) The control of Sclerotinia spp. and Sclerotium cepivorum with the biological ­fungicide Contrans(R)WG – experiences from field trials and commercial use. In: Proceedings of the XI international Sclerotinia workshop, Central Science Laboratory, York, England, pp 37–38

    Google Scholar 

  • MacSpadden Gardener BB, Weller DM (2001) Changes in populations of rhizosphere bacteria associated with Take-all disease of wheat. Appl Environ Microbiol 67:4414–4425

    Article  Google Scholar 

  • Maniania NK, Ekesi S, Songa JM (2002) Managing termites in maize with the entomopathogenic fungus Metarhizium anisopliae. Insect Sci Appl 22:41–46

    Google Scholar 

  • Manocha MS, Govindsamy V (1998) Chitinolytic enzymes of fungi and their involvement in biocontrol of plant pathogens. In: Boland GJ, Kuykendall LD (eds) Plant-microbe interactions and biological control. Marcel Dekker, New York, pp 309–327

    Google Scholar 

  • Marin S, Sanchis V, Ramos AJ, Vinas I, Magan N (1998) Environmental factors, in vitro ­interactions, and niche overlap between Fusarium moniliforme, F. proliferatum, and F. graminearum, Aspergillus and Penicillium species from maize grain. Mycol Res 102:831–837

    Article  Google Scholar 

  • Marrone PG (1994) Present and future use of Bacillus thuringiensis in integrated pest ­management systems: an industrial perspective. Biocontrol Sci Technol 4:517–526

    Article  Google Scholar 

  • Martin FN (2003) Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annu Rev Phytopathol 41:325–350

    Article  PubMed  CAS  Google Scholar 

  • McKellar ME, Nelson EB (2003) Compost-induced suppression of Pythium damping-off is ­mediated by fatty-acid-metabolizing seed-colonizing microbial communities. Appl Environ Microbiol 69:452–460

    Article  PubMed  CAS  Google Scholar 

  • McLean KL, Swaminathan J, Frampton CM, Hunt JS, Ridgway HJ, Stewart A (2005) Effect of formulation on the rhizosphere competence and biocontrol ability of Trichoderma atroviride C52. Plant Pathol 54:212–218

    Article  Google Scholar 

  • Meera MS, Shivanna MB, Kageyama K, Hyakumachi M (1994) Plant growth promoting fungi from zoysiagrass rhizosphere as potential inducers of systemic resistance in cucumbers. Phytopathology 84:1399–1406

    Article  Google Scholar 

  • Melzer MS, Boland GJ (1996) Transmissible hypovirulence in Sclerotinia minor. Can J Plant Pathol 18:19–28

    Article  CAS  Google Scholar 

  • Mennan S, Chen SY, Melakeberhan H (2006) Suppression of Meloidogyne hapla populations by Hirsutella minnesotensis. Biocontrol Sci Technol 16:181–193

    Article  Google Scholar 

  • Mennan S, Chen SY, Melakeberhan H (2007) Effects of Hirsutella minnesotensis and N-Viro Soil on populations of Meloidogyne hapla. Biocontrol Sci Technol 17:233–246

    Article  Google Scholar 

  • Metting FB (1993) Structure and physiological ecology of soil microbial communities. In: Metting FB (ed) Soil microbial ecology. Marcel Dekker, New York, pp 3–25

    Google Scholar 

  • Meyer SLF, Massoud SI, Chitwood DJ, Roberts DP (2000) Evaluation of Trichoderma virens and Burkholderia cepacia for antagonistic activity against root-knot nematode, Meloidogyne incognita. Nematology 2:871–879

    Article  Google Scholar 

  • Meyling NV, Eilenberg J (2006) Occurrence and distribution of soil-borne entomopathogenic fungi within a single organic agroecosystem. Agric Ecosyst Environ 113:336–341

    Article  Google Scholar 

  • Meyling NV, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Control 43:145–155

    Article  Google Scholar 

  • Meyling NV, Lübeck M, Buckley EP, Eilenberg J, Rehner SA (2009) Community composition, host range and genetic structure of the fungal entomopathogen Beauveria in adjoining ­agricultural and seminatural habitats. Mol Ecol 18:1282–1293

    Article  PubMed  CAS  Google Scholar 

  • Mietkiewski RT, Pell JK, Clark SJ (1997) Influence of pesticide use on the natural occurrence of entomopathogenic fungi in arable soils in the UK: field and laboratory comparisons. Biocontrol Sci Technol 7:565–575

    Article  Google Scholar 

  • Milner RJ, Staples JA, Lutton GG (1998) The selection of an isolate of the hyphomycete fungus, Metarhizium anisopliae, for control of termites in Australia. Biol Control 11:240–247

    Article  Google Scholar 

  • Milner RJ, Samson P, Morton R (2003) Persistence of conidia of Metarhizium anisopliae in ­sugarcane fields: effect of isolate and formulation on persistence over 3.5 years. Biocontrol Sci Technol 13:507–516

    Article  Google Scholar 

  • Minuto A, Spadaro D, Garibaldi A, Gullino ML (2004) Control of soilborne pathogens of tomato using a commercial formulate of Streptomyces griseoviridis and solarization. Crop Prot 25:468–475

    Article  Google Scholar 

  • Moorhouse ER, Gillespie AT, Charnley AK (1992a) Effect of potting media on the control of Otiorhynchus sulcatus larvae on outdoor strawberry plants using the entomogenous fungus Metarhizium anisopliae. Biol Control 2:238–243

    Article  Google Scholar 

  • Moorhouse ER, Charnley AK, Gillespie AT (1992b) A review of the biology and control of the vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae). Ann Appl Biol 121:431–454

    Article  Google Scholar 

  • Moorhouse ER, Easterbrook MA, Gillespie AT, Charnley AK (1993a) Control of Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae) larvae on a range of hardy ornamental ­nursery stock species using the entomogenous fungus Metarhizium anisopliae. Biocontrol Sci Technol 3:63–72

    Article  Google Scholar 

  • Moorhouse ER, Easterbrook MA, Gillespie AT, Charnley AK (1993b) The development of Otiorhynchus sulcatus (Fabricus) (Coleoptera: Curculionidae) larvae on a range of ornamental pot plant species and the potential for control using Metarhizium anisopliae. J Hortic Sci 68:627–635

    Google Scholar 

  • Moorhouse ER, Gillespie AT, Charnley AK (1993c) Application of Metarhizium anisopliae (Metsch.) Sor. conidia to control Otiorhynchus sulcatus (F.) (Coleoptera: Curculionidae) ­larvae on glasshouse pot plants. Ann Appl Biol 122:623–636

    Article  Google Scholar 

  • Murphy PJ, Roberts WP (1979) A basis for agrocin 84 sensitivity in Agrobacterium radiobacter. J Gen Microbiol 114:207–213

    CAS  Google Scholar 

  • Murphy JA, Sun S, Betts LL (1993) Endophyte-enhanced resistance to billbug (Coleoptera: Curculionidae), sod webworm (Lepidoptera: Pyralidae), and white grub (Coleoptera: Scarabaeidae) in tall fescue. Environ Entomol 22:699–703

    Google Scholar 

  • Nakasaki K, Hiraoka H, Nagata H (1998) A new operation for producing disease-suppressive compost from grass clippings. Appl Environ Microbiol 64:4015–4020

    PubMed  CAS  Google Scholar 

  • Navon A (1993) Control of lepidopteran pests with Bacillus thuringiensis. In: Entwistle PF, Cory JS, Bailey MJ et al (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, New York, pp 125–146

    Google Scholar 

  • Nel B, Steinberg C, Labuschagne N, Viljoen A (2006) The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing Fusarium wilt of banana. Plant Pathol 55:217–223

    Article  Google Scholar 

  • Noble R, Coventry E (2005) Suppression of soil-borne plant diseases with composts: a review. Biocontrol Sci Technol 15:3–20

    Article  Google Scholar 

  • Nuss DL, Koltin Y (1990) Significance of dsRNA genetic elements in plant pathogenic fungi. Annu Rev Phytopathol 28:37–58

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan M, Brownbridge M (2009) Environmental impacts of microbial control agents used for control of invasive pests. In: Hajek AE, Glare T, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods. Springer Science and Business Media BV, The Netherlands, pp 305–327

    Chapter  Google Scholar 

  • O’Callaghan M, Jackson TA (1993) Isolation and enumeration of Serratia entomophila – a ­bacterial pathogen of the New Zealand grass grub, Costelytra zealandica. J Appl Bacteriol 75:307–314

    Article  Google Scholar 

  • Oerke EC, Dehne H-W, Schonbeck F, Weber A (eds) (1994) Crop production and crop protection: estimated losses in major food and cash crops. Elsevier, Amsterdam, The Netherlands, pp. 808

    Google Scholar 

  • Oi DH, Williams DF (2002) Impact of Thelohania solenopsae (Microsporidia: Thelohaniidae) on polygyne colonies of red imported fire ants (Hymenoptera: Formicidae). J Econ Entomol 95:558–562

    Article  PubMed  Google Scholar 

  • Olivain C, Alabouvette C (1999) Process of tomato root colonization by a pathogenic strain of Fusarium oxysporum f.sp. lycopersici in comparison with a non-pathogenic strain. New Phytol 141:497–510

    Article  Google Scholar 

  • Ovreas L, Torsvik V (1998) Microbial diversity and community structure in two different ­agricultural soil communities. Microb Ecol 36:303–315

    Article  PubMed  CAS  Google Scholar 

  • Ownley BH, Weller DM, Thomashow LS (1992) Influence of in situ and in vitro pH on ­suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2–79. Phytopathology 82:178–184

    Article  CAS  Google Scholar 

  • Ownley BH, Duffy BK, Weller DM (2003) Identification and manipulation of soil properties to improve the biological control performance of phenazine-producing Pseudomonas ­fluorescens. Appl Environ Microbiol 69:3333–3343

    Article  PubMed  CAS  Google Scholar 

  • Ownley BH, Pereira RM, Klingeman WE, Quigley NB, Leckie BM (2004) Beauveria bassiana, a dual purpose biocontrol organism, with activity against insect pests and plant pathogens. In: Ekesi S, Maniania NK (eds) Emerging concepts in plant health management 2004. Research Signpost, Trivandrum, India, pp 255–269

    Google Scholar 

  • Ozbay N, Newman SE (2004) Biological control with Trichoderma spp. with emphasis on T. harzianum. Pak J Biol Sci 7:478–484

    Article  Google Scholar 

  • Padmavathi J, Devi KU, Rao CUM (2003) The optimum and tolerance pH range is correlated to colonial morphology in isolates of the entomopathogenic fungus Beauveria bassiana – a ­potential biopesticide. World J Microbiol Biotechnol 19:469–477

    Article  Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology and potential for ­biocontrol. Annu Rev Phytopathol 23:23–54

    Article  Google Scholar 

  • Parkman JP, Smart GC (1996) Entomopathogenic nematodes, a case study: introduction of Steinernema scapterisci in Florida. Biocontrol Sci Technol 6:413–419

    Article  Google Scholar 

  • Pérez-Rodriguez I, Doronteo-Mendoza A, Franco-Navarro F, Santiago-Santiago V, Montero-Pineda A (2007) Isolates of Pochonia chlamydoporia var. chlamydosporia from Mexico as potential biological control agents of Nacobbus aberrans. Nematropica 37:127–134

    Google Scholar 

  • Pharand B, Carisse O, Benhamou N (2002) Cytological aspects of compost-mediated induced resistance against Fusarium crown and root rot in tomato. Phytopathology 92:424–438

    Article  PubMed  Google Scholar 

  • Pierson EA, Weller DM (1994) Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology 84:940–947

    Article  Google Scholar 

  • Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond B Biol Sci 359:907–918

    Article  PubMed  CAS  Google Scholar 

  • Quesada-Moraga E, Carrasco-Diaz JA, Santiago-Alvarez C (2006) Insecticidal and antifeedant activities of proteins secreted by entomopathogenic fungi against Spodoptera littoralis (Lep., Noctuidae). J Appl Entomol 130:442–452

    Article  CAS  Google Scholar 

  • Quesada-Moraga E, Navas-Cortes JA, Maranhao EAA, Ortiz-Urquiza A, Santiago-Alvarez C (2007) Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol Res 111:947–966

    Article  PubMed  Google Scholar 

  • Quintela ED, McCoy CW (1998) Synergistic effect of imidacloprid and two entomopathogenic fungi on the behavior and survival of larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae) in soil. J Econ Entomol 91:110–122

    CAS  Google Scholar 

  • Ramle M, Wahid MB, Norman K, Glare TR, Jackson TA (2005) The incidence and use of Oryctes virus for control of rhinoceros beetle in oil palm plantations in Malaysia. J Invertebr Pathol 89:85–90

    Article  PubMed  CAS  Google Scholar 

  • Rangel DEN, Alston DG, Roberts DW (2008) Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle and virulence of Metarhizium anisopliae, an entomopathogenic fungus. Mycol Res 112:1355–1361

    Article  PubMed  Google Scholar 

  • Rath AC (2002) Ecology of entomopathogenic fungi in field soils. In: Proceedings of the meeting of the society for invertebrate pathology, Iguassu Falls, Brazil, pp 65–71

    Google Scholar 

  • Rath AC, Bullard GK (1997) Persistence of Metarhizium anisopliae DAT F-001 in pasture soils for 7.5 years – implications for sustainable soil-pest management. In: Allsopp PG, Rogers DJ, Robertson LN (eds) Soil invertebrates in 1997. Bureau of Sugar Experimental Stations, Brisbane, Australia, pp 78–80

    Google Scholar 

  • Rath AC, Koen TB, Yip HY (1992) The influence of abiotic factors on the distribution and ­abundance of Metarhizium anisopliae in Tasmanian pasture soils. Mycol Res 96:378–384

    Article  Google Scholar 

  • Rath AC, Worledge D, Koen TB, Rowe BA (1995) Long-term field efficacy of the entomogenous fungus Metarhizium anisopliae against the subterranean scarab, Adoryphorus couloni. Biocontrol Sci Technol 5:439–451

    Article  Google Scholar 

  • Raymond RN, Muller G, Matzanke F (1984) Complexation of iron by sideophores. A review of their solution and structural chemistry and biological function. Top Curr Chem 123:49–102

    Article  CAS  Google Scholar 

  • Redmond CT, Potter DA (1995) Lack of efficacy of in vitro and putatively in vitro- produced Bacillus popilliae against field populations of Japanese beetle (Coleoptera: Scarabaeidae) grubs in Kentucky. J Econ Entomol 88:846–854

    Google Scholar 

  • Reinecke P, Fokkema NJ (1981) An evaluation of methods of screening fungi from the haulm base of cereals for antagonism to Pseudocercosporella herpotrichoides in wheat. T Brit Mycol Soc 77:343–350

    Article  Google Scholar 

  • Ristaino JB, Perry KB, Lumsden RD (1991) Effect of solarization and Gliocladium virens on sclerotia of Sclerotium rolfsii, soil microbiota, and the incidence of southern blight of tomato. Phytopathology 81:1117–1124

    Article  Google Scholar 

  • Rovira AD, Ryder MH, Harris AR (1992) Biological control of root diseases with pseudomonads. In: Tjamos ES, Papavizas GC, Cook RJ (eds) Biological control of plant diseases – Progress and challenges for the future. Plenum, New York, pp 175–184

    Google Scholar 

  • Ryder MH, Jones DA (1990) Biological control of crown gall. In: Hornby D (ed) Biological ­ ­control of soil-borne plant pathogens. CAB International, Wallingford, UK, pp 45–63

    Google Scholar 

  • Schippers B, Geels FP, Hoekstra O, Lamers JG, Maenhout CAAA, Scholte K (1985) Yield ­depressions in narrow rotations caused by unknown microbial factors and their suppression by selected pseudomonads. In: Parker CA, Rovira AD, Moore KJ et al (eds) Ecology and management of soilborne plant pathogens. The American Phytopathological Society, St. Paul, MN, pp 127–130

    Google Scholar 

  • Schrey SD, Tarkka MT (2008) Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie Leeuwenhoek 94:11–19

    Article  PubMed  Google Scholar 

  • Schwarzenbach K, Widmer F, Enkerli J (2007a) Cultivation-independent analysis of fungal ­genotypes in soil by using simple sequence repeat markers. Appl Environ Microbiol 73:6519–6525

    Article  PubMed  CAS  Google Scholar 

  • Schwarzenbach K, Enkerli J, Widmer F (2007b) Objective criteria to assess representativity of soil fungal community profiles. J Microbiol Meth 68:358–366

    Article  CAS  Google Scholar 

  • Sequeira L (1962) Influence of organic amendments on survival of Fusarium oxysporum f. cubense in the soil. Phytopathology 52:976–982

    CAS  Google Scholar 

  • Serra-Wittling C, Houot S, Alabouvette C (1996) Increased soil suppressiveness to Fusarium wilt of flax after addition of municipal soild waste compost. Soil Biol Biochem 28:1207–1214

    Article  CAS  Google Scholar 

  • Shah FA, Ansari MA, Prasad M, Butt TM (2007) Evaluation of black vine weevil (Otiorhynchus sulcatus) control strategies using Metarhizium anisopliae with sublethal doses of insecticides in disparate horticultural growing media. Biol Control 40:246–252

    Article  CAS  Google Scholar 

  • Shah FA, Gaffney M, Ansari MA, Prasad M, Butt TM (2008) Neem seed cake enhances the ­efficacy of the insect pathogenic fungus Metarhizium anisopliae for the control of black vine weevil, Otiorhynuchs sulcatus (Coleoptera: Curculionidae). Biol Control 44:111–115

    Article  Google Scholar 

  • Shapiro-Ilan DI, Reilly CC, Hotchkiss MW, Wood BW (2002) The potential for enhanced ­fungicide resistance in Beauveria bassiana through strain discovery and artificial selection. J Invertebr Pathol 81:86–93

    Article  PubMed  CAS  Google Scholar 

  • Shapiro-Ilan DI, Jackson MA, Reilly CC, Hotchkiss MW (2004) Effects of combining and ­entomopathogenic fungi or bacterium with entomopathogenic nematodes on mortality of Curculio caryae (Coleoptera: Curculionidae). Biol Control 30:119–126

    Article  Google Scholar 

  • Sharon E, Bar-Eyal M, Chet I, Herrera-Estrella A, Kleifeld O, Spiegel Y (2001) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91:687–693

    Article  PubMed  CAS  Google Scholar 

  • Shishido M, Miwa C, Usami T, Amemiya Y, Johnson KB (2005) Biological control efficiency of Fusarium wilt of tomato by nonpathogenic Fusarium oxysporum Fo-B2 in different ­environments. Phytopathology 95:1072–1080

    Article  PubMed  Google Scholar 

  • Siddiqui IA, Shaukat SS (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2, 4-diacetylpholoroglucinol. Soil Biol Biochem 35:1615–1623

    Article  CAS  Google Scholar 

  • Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 71:5646–5649

    Article  PubMed  CAS  Google Scholar 

  • Singh KP, Jaiswal RK, Kumar N, Kumar D (2007) Nematophagous fungi associated with root galls of rice caused by Meloidogyne graminicola and its control by Arthrobotrys dactyloides and Dactylaria brochopaga. J Phytopathol 155:193–197

    Article  Google Scholar 

  • Sivan A, Chet I (1989) The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization. Phytopathology 79:198–203

    Article  Google Scholar 

  • Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Kubicek CP, Harman GE, Ondik KL (eds) Trichoderma and Gliocladium: basic biololgy, taxonomy and genetics. CRC Press, Boca Raton, FL, pp 139–191

    Google Scholar 

  • Slininger PJ, Shea-Wilbur MA (1995) Liquid-culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas ­fluorescens 2–79. J Appl Microbiol Biotechnol 43:194–800

    Article  Google Scholar 

  • Somasekhar N, Grewal PS, EABd N, Stinner BR (2002) Non-target effects of entomopathogenic nematodes on the soil nematode community. J Appl Ecol 39:735–744

    Article  Google Scholar 

  • Stevens C, Khan VA, Rodriguez-Kabana R, Ploper LD, Backman PA, Collins DJ, Brown JE, Wilson MA, Igwegbe ECK (2003) Integration of soil solarization with chemical, biological and cultural control for the management of soilborne diseases of vegetables. Plant Soil 253:493–506

    Article  CAS  Google Scholar 

  • Stewart A (2001) Commercial biocontrol- reality or fantasy. Australas Plant Pathol 30:127–131

    Article  Google Scholar 

  • Stewart A, McLean KL (2007) Biological control of onion white rot. In: Mukerji KG, Chincholkar SB (eds) Biological control of plant disease. The Haworth Press, New York, pp 123–149

    Google Scholar 

  • Steyaert JM, Ridgway HJ, Elad Y, Stewart A (2003) Genetic basis of mycoparasitism: a ­mechanism of biological control by species of Trichoderma. N Z J Crop Hortic Sci 31:281–291

    Article  Google Scholar 

  • Strashnow Y, Elad Y, Sivan A, Chet I (1985) Integrated control of Rhizoctonia solani by methyl bromide and Trichoderma harzianum. Plant Pathol 34:146–151

    Article  Google Scholar 

  • Strasser H, Vey A, Butt TM (2000) Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Sci Technol 10:717–735

    Article  Google Scholar 

  • Sulistyanto D, Ehlers RU (1996) Efficacy of the entomopathogenic nematodes Heterorhabditis megidis and Heterorhabditis bacteriophora for the control of grubs (Phyllopertha horticola and Aphodius contaminatus) in golf course turf. Biocontrol Sci Technol 6:247–250

    Article  Google Scholar 

  • Sun JZ, Fuxa JR, Henderson G (2003) Effects of virulence, sporulation, and temperature on Metarhizium anisopliae and Beauveria bassiana laboratory transmission in Coptotermes ­formosanus. J Invertebr Pathol 84:38–46

    Article  PubMed  Google Scholar 

  • Swaminathan J, Bunt CR, Jackson TA (2008) Coating technology to enhance the shelf life of probiotic bacteria on cereals. In: Proceedings of the IPA world congress, Beverley Hills Hilton, Beverley Hills, CA

    Google Scholar 

  • Szczech M, Shoda M (2006) The effect of mode of application of Bacillus subtilis RB14-C on its efficacy as a biocontrol agent against Rhizoctonia solani. J Phytopathol 154:370–377

    Article  CAS  Google Scholar 

  • Tesfamariam M, Kiewnick S, Sikora R (2009) Endophytic bacteria from Ethiopian coffee plants and their potential to antagonise Meloidogyne incognita. Nematology 11:117–127

    Article  Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens 2-97 in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    PubMed  CAS  Google Scholar 

  • Thompson SR, Brandenburg RL (2005) Tunneling responses of mole crickets (Orthoptera: Gryllotalpidae) to the entomopathogenic fungus, Beauveria bassiana. Environ Entomol 34:140–147

    Article  Google Scholar 

  • Thompson SR, Brandenburg RL, Arends JJ (2006) Impact of moisture and UV degradation on Beauveria bassiana (Balsamo) Vuillemin conidial viability in turfgrass. Biol Control 39:401–407

    Article  Google Scholar 

  • Tian B, Yang J, Zhang K (2007) Bacteria used in the biological control of plant-parasitic ­nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 61:197–213

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting Rhizobacterium Paenibacillus polymyxa Induces Changes in Arabidopsis thaliana Gene Expression: a Possible Connection Between Biotic and Abiotic Stress Responses. Mol Plant Microbe Interact 12:951–959

    Article  PubMed  CAS  Google Scholar 

  • Tjeerd van Rij E, Wesselink M, Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2004) Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact 17:557–566

    Article  PubMed  Google Scholar 

  • Toussoun TA, Menzinger W, Smith RS Jr (1969) Role of conifer litter in ecology of Fusarium: stimulation of germination in soil. Phytopathology 59:1396–1399

    Google Scholar 

  • Townsend RJ, Glare TR, Willoughby BE (1995) The fungi Beauveria spp. cause epizootics in grass grub populations in Waikato. NZ Plant Protection 48:237–241

    Google Scholar 

  • Townsend RJ, Ferguson CM, Proffitt JR, Slay MWA, Swaminathan J, Day S, Gerard E, O’Callaghan M, Johnson VW, Jackson TA (2004) Establishment of Serratia entomophila after application of a new formulation for grass grub control. NZ Plant Protection 57:310–313

    Google Scholar 

  • Toyota K, Ritz K, Young IM (1996) Microbiological factors affecting the colonisation of soil aggregates by Fusarium oxysporum f. sp. raphani. Soil Biol Biochem 28:1513–1521

    Article  CAS  Google Scholar 

  • Traugott M, Weissteiner S, Strasser H (2005) Effects of the entomopathogenic fungus Beauveria brongniartii on the non-target predator Poecilus versicolor (Coleoptera: Carabidae). Biol Control 33:107–112

    Article  Google Scholar 

  • Trillas MI, Casanova E, Cotxarrera L, Ordovas J, Borrero C, Aviles M (2006) Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biol Control 39:32–38

    Article  Google Scholar 

  • Trillas-Gay MI, Hoitink HAJ, Madden LV (1986) Nature of suppression of Fusarium wilt of radish in a container medium amended with composted hardwood bark. Plant Dis 70:1023–1027

    Article  Google Scholar 

  • Trudgill DL, Blok VC, Bala G, Daudi A, Davies KG, Gowen SR, Fargette M, Madulu JD, Mateille T, Mwageni W, Netscher C, Phillips MS, Sawadogo A, Trivino CG, Voyoukallou E (2000) The importance of tropical root-knot nematodes (Meloidogyne spp.) and factors affecting the utility of Pasteuria penetrans as a biocontrol agent. Nematology 2:823–845

    Article  Google Scholar 

  • Vagelas IK, Pembroke B, Gowen SR, Davies KG (2007) The control of root-knot nematodes (Meloidogyne spp.) by Pseudomonas oryzihabitans and its immunological detection on tomato roots. Nematology 9:363–370

    Article  Google Scholar 

  • Van Driesche RG, Bellows TSJ (1996) Biological control. Chapman & Hall, New York, p 539

    Book  Google Scholar 

  • Van Peer R, Schippers B (1992) Lipopolysacchamdes of plant growth promoting Pseudomanas sp. strain WCC5417r induce resistance in carnations to Fusarium wilt. Neth J Plant Pathol 98:129–139

    Article  Google Scholar 

  • Vanninen I, Tyni-Juslin J, Hokkanen H (2000) Persistence of augmented Metarhizium anisopliae and Beauveria bassiana in Finnish agricultural soils. Biocontrol 45:201–222

    Article  Google Scholar 

  • Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Article  Google Scholar 

  • Vercambre B, Goebel O, Riba G, Marchal M, Neuvéglise C, Ferron P (1994) Success in microbial control of a soil pest, Hoplochelus marginalis, in Reunion Island; choice of a suitable fungus. In: Proceedings of the VIth international colloquium on invertebrate pathology and microbial control, SIP, Montpellier, France, pp 283–288

    Google Scholar 

  • Veseley D, Hejdanek S (1984) Microbial relations of Pythium oligandrum and problems in the use of this organism for the biological control of damping-off in sugar beet. Zbl Mikrobiol 139:257–265

    Google Scholar 

  • Vey A, Hoagland RE, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM (ed) Fungi as biocontrol agents: progress, problems and potential. CABI Publishing, Wallingford, UK, pp 311–346

    Chapter  Google Scholar 

  • Villani MG, Krueger SR, Schroeder PC, Consolie F, Consolie NH, Preston-Wilsey LM, Roberts DW (1994) Soil application effects of Metarhizium anisopliae on Japanese beetle (Coleoptera: Scarabaeidae) behavior and survival in turfgrass microcosms. Environ Entomol 23:502–513

    Google Scholar 

  • Vinale F, Krishnapillai S, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma-­plant-pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Vincent C, Goettel MS, Lazarovits G (2007) Biological control: a global perspective. CAB International, Wallingford, UK, p 440

    Book  Google Scholar 

  • Visnovsky GA, Smalley DJ, O’Callaghan M, Jackson TA (2008) Influence of culture medium ­composition, dissolved oxygen concentration and harvesting time on the production of Serratia entomophila, a microbial control agent of the New Zealand grass grub. Biocontrol Sci Technol 18:87–100

    Article  Google Scholar 

  • Wakelin SA, Sivasithamparam K, Cole ALJ, Skipp RA (1999) Saprophytic growth in soil of a strain of Trichoderma koningii. N Z J Agric Res 42:337–345

    Article  Google Scholar 

  • Wang C, St Leger RJ (2007) A scorpion neurotoxin increases the potency of a fungal insecticide. Nat Biotechnol 25:1455–1456

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Fan M, Li Z, Butt TM (2004) Molecular monitoring and evaluation of the application of the insect-pathogenic fungus Beauveria bassiana in southeast China. J Appl Microbiol 96:861–870

    Article  PubMed  CAS  Google Scholar 

  • Weindling R (1932) Trichoderma lignorum as a parasite of other soils fungi. Phytopathology 11:273–292

    Google Scholar 

  • Weindling R (1941) Experimental consideration of the mold toxins of Gliocladium and Trichoderma. Phytopathology 31:991–1003

    CAS  Google Scholar 

  • Weindling R, Emerson OH (1936) The isolation of a toxic substance from the culture filtrate of Trichoderma. Phytopathology 26:1068–1070

    CAS  Google Scholar 

  • Weisbeek PJ, Gerrits H (1999) Iron and biocontrol. In: Stacey G, Keen NT (eds) Plant-microbe interactions. APS Press, St Paul, MN, pp 217–250

    Google Scholar 

  • Weller DM (1988) Biological control of soil-borne plant pathogens in the rhizosphere with ­bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Weller DM (2007) Pseudomonas biological control agents of soil-borne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Weller DM, Raaijmakers JM, MacSpadden Gardener BB, Thomashow LS (2002) Microbial ­populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  PubMed  CAS  Google Scholar 

  • Whipps JM (1997) Interactions between fungi and plant pathogens in soil and the rhizosphere. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell Science, Oxford, pp 47–65

    Google Scholar 

  • Whipps JW, Gerlagh M (1993) Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycol Res 96:897–907

    Article  Google Scholar 

  • Whipps J, Bennett A, Challen M, Hill R, Jiang D, Jones E, McQuilken M, Rinzema A, Rogers C, Stewart A, Tomprefa M (2004) Recent developments in inoculums production and application, ecology and pathogenicity in the biocontrol agent Coniothyrium minitans. Management of Plant Diseases and Arthropod pests by BCAs. IOBC/wprs Bull 27:281–284

    Google Scholar 

  • Widden P, Cunningham J, Breil B (1988) Decomposition of cotton by Trichoderma species: i­nfluence of temperature, soil type, and nitrogen levels. Can J Microbiol 35:469–473

    Article  Google Scholar 

  • Wraight SP, Jackson MA, SLd K (2001) Production, stabilization and formulation of fungal ­biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: ­progress, problems and potential. CABI Publishing, Wallingford, UK, pp 253–287

    Chapter  Google Scholar 

  • Wright MS, Osbrink WLA, Lax AR (2002) Transfer of entomopathogenic fungi among Formosan subterranean termites and subsequent mortality. J Appl Entomol 126:20–23

    Article  Google Scholar 

  • Wright MS, Raina AK, Lax AR (2005) A strain of the fungus Metarhizium anisopliae for ­s controlling subterranean termites. J Econ Entomol 98:1451–1458

    Article  PubMed  Google Scholar 

  • Zadworny M, Werner A, Idzikowska K (2004) Behaviour of the hyphae of Laccaria laccata in the presence of Trichoderma harzianum in vitro. Mycorrhiza 14:401–405

    Article  PubMed  Google Scholar 

  • Zhang J-X, Howell CR, Starr JL (1996) Suppression of Fusarium colonization of cotton roots and Fusarium wilt by seed treatments with Gliocladium virens and Bacillus subtilis. Biocontrol Sci Technol 6:175–187

    Article  Google Scholar 

  • Zimmermann G (2007a) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 17:553–596

    Article  Google Scholar 

  • Zimmermann G (2007b) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 17:879–920

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Stewart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stewart, A., Brownbridge, M., Hill, R.A., Jackson, T.A. (2010). Utilizing Soil Microbes for Biocontrol. In: Dixon, G., Tilston, E. (eds) Soil Microbiology and Sustainable Crop Production. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9479-7_9

Download citation

Publish with us

Policies and ethics