Skip to main content

The Peroxisomal Ascorbate–Glutathione Pathway: Molecular Identification and Insights into Its Essential Role Under Environmental Stress Conditions

  • Chapter
  • First Online:
Ascorbate-Glutathione Pathway and Stress Tolerance in Plants

Abstract

Peroxisomes are unique organelles with intricate biochemical machinery­ involved in oxidative stress management and signaling. Peroxisomal metabolism is characterized by its plasticity because the organelle’s enzyme composition varies depending on the cell type, stage of development, and environmental conditions. The present chapter reviews recent progress in understanding the metabolism of reactive oxygen species (ROS) in plant peroxisomes. The ascorbate–glutathione (AsA–GSH) cycle is the second line of defense to cope with hydrogen peroxide (H2O2) generated by peroxisomal flavin oxidases particularly under stress conditions when catalase becomes inactivated. The cycle has been studied comprehensively at the biochemical and physiological level and its role been elucidated under biotic and abiotic stress conditions. The last two members of the peroxisomal AsA–GSH cycle, glutathione reductase and dehydroascorbate reductase, have recently been identified by proteome analysis of Arabidopsis leaf peroxisomes and been established as peroxisomal proteins by in vivo targeting analysis. The identification of all cycle members now opens new doors with which to study the function of the cycle in vivo, including reverse genetics. The release of ROS signaling molecules, such as H2O2, from plant peroxisomes adds new functions in the cross-talk events among organelles and cells under physiological and stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase: a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85:235–241

    Article  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen species in photosynthesis. In: Kyle D, Osmond C, Arntzen C (eds) Photoinhibition. Elsevier Science, New York, pp 227–287

    Google Scholar 

  • Babujee L, Wurtz V, Ma C, Lueder F, Soni P, van Dorsselaer A, Reumann S (2010) The proteome map of spinach leaf peroxisomes indicates partial compartmentalization of phylloquinone (vitamin K1) biosynthesis in plant peroxisomes. J Exp Bot 61(5):1441–1453

    Article  PubMed  CAS  Google Scholar 

  • Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106

    Article  PubMed  CAS  Google Scholar 

  • Beevers H (1979) Microbodies in higher-plants. Annu Rev Plant Physiol Plant Mol Biol 30:159–193

    Article  CAS  Google Scholar 

  • Bolwell GP (1999) Role of active oxygen species and NO in plant defence responses. Curr Opin Plant Biol 2:287–294

    Article  PubMed  CAS  Google Scholar 

  • Bunkelmann JR, Trelease RN (1996) Ascorbate peroxidase. A prominent membrane protein in oilseed glyoxysomes. Plant Physiol 110:589–598

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Wang H, Wang X, Cao A, Chen P (2006) Cloning and expression of peroxisomal ascorbate peroxidase gene from wheat. Mol Biol Rep 33:207–213

    Article  PubMed  CAS  Google Scholar 

  • Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, del Río LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, Sandalio LM, Distefano S, Palma JM, Lupiáñez JA, del Río LA (1998) A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes. Biochem J 330:777–84

    PubMed  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, Sandalio LM, Palma JM, Lupiáñez JA, del Río LA (1999) Peroxisomal NADP-dependent isocitrate dehydrogenase. Characterization and activity regulation during natural senescence. Plant Physiol 121:921–928

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Bunkelmann J, Trelease RN (1994) Identification and immunochemical characterization of a family of peroxisome membrane proteins (PMPs) in oilseed glyoxysomes. Eur J Cell Biol 65:280–290

    PubMed  CAS  Google Scholar 

  • Corpas FJ, del Río LA, Barroso JB (2008) Post-translational modifications mediated by reactive nitrogen species: nitrosative stress responses or components of signal transduction pathways? Plant Signal Behav 3:301–303

    Article  PubMed  Google Scholar 

  • Creissen G, Reynolds H, Xue Y, Mullineaux P (1995) Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco. Plant J 8:167–175

    Article  PubMed  CAS  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Article  PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  PubMed  CAS  Google Scholar 

  • del Río LA, Sandalio LM, Palma JM, Bueno P, Corpas FJ (1992) Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic Biol Med 13:57–80

    Google Scholar 

  • DeLille JM, Sehnke PC, Ferl RJ (2001) The Arabidopsis 14-3-3 family of signaling regulators. Plant Physiol 126:35–38

    Article  PubMed  CAS  Google Scholar 

  • Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot 60:1207–1218

    Article  PubMed  CAS  Google Scholar 

  • Donaldson RP (1982) Nicotinamide cofactors (NAD and NADP) in glyoxysomes, mitochondria, and plastids isolated from castor bean endosperm. Arch Biochem Biophys 215:274–279

    Article  PubMed  CAS  Google Scholar 

  • Eastmond PJ (2007) MONODEHYROASCORBATE REDUCTASE4 is required for seed storage oil hydrolysis and postgerminative growth in Arabidopsis. Plant Cell 19:1376–1387

    Article  PubMed  CAS  Google Scholar 

  • Eubel H, Meyer EH, Taylor NL, Bussell JD, O’Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Quan S, Orth T, Awai C, Chory J, Hu J (2005) The Arabidopsis PEX12 gene is required for peroxisome biogenesis and is essential for development. Plant Physiol 139:231–239

    Article  PubMed  CAS  Google Scholar 

  • Feierabend J, Engel S (1986) Photoinactivation of catalase in vitro and in leaves. Arch Biochem Biophys 251:567–576

    Article  PubMed  CAS  Google Scholar 

  • Feierabend J, Schaan C, Hertwig B (1992) Photoinactivation of catalase occurs under both high- and low-temperature stress conditions and accompanies photoinhibition of Photosystem II. Plant Physiol 100:1554–1561

    Article  PubMed  CAS  Google Scholar 

  • Fernández-García N, Martí MC, Jiménez A, Sevilla F, Olmos E (2009) Sub-cellular distribution of glutathione in an Arabidopsis mutant (vtc1) deficient in ascorbate. J Plant Physiol 166:2004–2012

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Fritz R, Bol J, Hebling U, Angermüller S, Völkl A, Fahimi HD, Mueller S (2007) Compartment-dependent management of H2O2 by peroxisomes. Free Radic Biol Med 42:119–129

    Article  CAS  Google Scholar 

  • Graham IA, Eastmond PJ (2002) Pathways of straight and branched chain fatty acid catabolism in higher plants. Prog Lipid Res 41:156–181

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Nishimura M (2003) Entering a new era of research on plant peroxisomes. Curr Opin Plant Biol 6:577–582

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Nishimura M (2006) Arabidopsis thaliana – a model organism to study plant peroxisomes. Biochim Biophys Acta 1763:1382–1391

    Article  PubMed  CAS  Google Scholar 

  • Hertwig B, Streb P, Feierabend J (1992) Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol 100:1547–1553

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Asada K (1984) Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiol 25:85–92

    CAS  Google Scholar 

  • Hu J, Aguirre M, Peto C, Alonso J, Ecker J, Chory J (2002) A role for peroxisomes in photomorphogenesis and development of Arabidopsis. Science 297:405–409

    Article  PubMed  CAS  Google Scholar 

  • Huang AHC, Moore TS, Trelease RN (1983) Plant peroxisomes. Academic Press, New York

    Google Scholar 

  • Ishikawa T, Yoshimura K, Sakai K, Tamoi M, Takeda T, Shigeoka S (1998) Molecular characterization and physiological role of a glyoxysome-bound ascorbate peroxidase from spinach. Plant Cell Physiol 39:23–34

    Article  PubMed  CAS  Google Scholar 

  • Jespersen HM, Kjaersgard IV, Ostergaard L, Welinder KG (1997) From sequence analysis of three novel ascorbate peroxidises from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J 326:305–310

    PubMed  CAS  Google Scholar 

  • Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed  Google Scholar 

  • Jiménez A, Hernández JA, Pastori G, del Rio LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    Article  PubMed  Google Scholar 

  • Johnson TL, Olsen LJ (2001) Building new models for peroxisome biogenesis. Plant Physiol 127:731–739

    Article  PubMed  CAS  Google Scholar 

  • Kamada T, Nito K, Hayashi H, Mano S, Hayashi M, Nishimura M (2003) Functional differentiation of peroxisomes revealed by expression profiles of peroxisomal genes in Arabidopsis thaliana. Plant Cell Physiol 44:1275–1289

    Article  PubMed  CAS  Google Scholar 

  • Karyotou K, Donaldson RP (2005) Ascorbate peroxidase, a scavenger of hydrogen peroxide in glyoxysomal membranes. Arch Biochem Biophys 434:248–257

    Article  PubMed  CAS  Google Scholar 

  • Kataya AR, Reumann S (2010) Arabidopsis glutathione reductase 1 is dually targeted to peroxisomes and the cytosol. Plant Signal Behav 5(2):171–175

    Article  PubMed  CAS  Google Scholar 

  • Kaur N, Reumann S, Hu J (2009) Peroxisome biogenesis and function. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. The American Society of Plant Biologists, Rockville, MD, pp 1–41

    Google Scholar 

  • Kavitha K, Venkataraman G, Parida A (2008) An oxidative and salinity stress induced peroxisomal ascorbate peroxidase from Avicennia marina: molecular and functional characterization. Plant Physiol Biochem 46:794–804

    Article  PubMed  CAS  Google Scholar 

  • Kimura A, Takano Y, Furusawa I, Okuno T (2001) Peroxisomal metabolic function is required for appressorium-mediated plant infection by Colletotrichum lagenarium. Plant Cell 13:1945–1957

    PubMed  CAS  Google Scholar 

  • Koh S, Andre A, Edwards H, Ehrhardt D, Somerville S (2005) Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J 44:516–529

    Article  PubMed  CAS  Google Scholar 

  • Kolb D, Müller M, Zellnig G, Zechmann B (2009) Cadmium induced changes in subcellular glutathione contents within glandular trichomes of Cucurbita pepo L. Protoplasma. doi:10.1007/s00709-009-0043-x

    PubMed  Google Scholar 

  • Koo AJ, Chung HS, Kobayashi Y, Howe GA (2006) Identification of a peroxisomal acyl-activating enzyme involved in the biosynthesis of jasmonic acid in Arabidopsis. J Biol Chem 281:33511–3320

    Article  PubMed  CAS  Google Scholar 

  • Kuzniak E, Skłodowska M (2005a) Compartment-specific role of the ascorbate-glutathione cycle in the response of tomato leaf cells to Botrytis cinerea infection. J Exp Bot 56:921–933

    Article  PubMed  CAS  Google Scholar 

  • Kuzniak E, Skłodowska M (2005b) Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta 222:192–200

    Article  PubMed  CAS  Google Scholar 

  • Leterrier M, Corpas FJ, Barroso JB, Sandalio LM, del Río LA (2005) Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol 138:2111–2123

    Article  PubMed  CAS  Google Scholar 

  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005) Pre- and postinvasion defenses both contribute to non-host resistance in Arabidopsis. Science 310:1180–1183

    Article  PubMed  CAS  Google Scholar 

  • Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43:900–914

    Article  PubMed  CAS  Google Scholar 

  • López-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–6777

    Article  PubMed  Google Scholar 

  • Mateos RM, León AM, Sandalio LM, Gómez M, del Río LA, Palma JM (2003) Peroxisomes from pepper fruits (Capsicum annuum L.): purification, characterisation and antioxidant activity. J Plant Physiol 60:1507–1516

    Article  Google Scholar 

  • McCartney AW, Greenwood JS, Fabian MR, White KA, Mullen RT (2005) Localization of the tomato bushy stunt virus replication protein p33 reveals a peroxisome-to-endoplasmic reticulum sorting pathway. Plant Cell 17:3513–3531

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1991) Purification and characterization of pea cytosolic ascorbate peroxidase. Plant Physiol 97:962–968

    Article  PubMed  CAS  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    Article  PubMed  CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–856

    Article  PubMed  CAS  Google Scholar 

  • Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA (2008) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857

    Article  PubMed  CAS  Google Scholar 

  • Mueller S, Weber A, Fritz R, Mütze S, Rost D, Walczak H, Völkl A, Stremmel W (2002) Sensitive and real-time determination of H2O2 release from intact peroxisomes. Biochem J 363:483–491

    Article  PubMed  CAS  Google Scholar 

  • Mullen RT, Trelease RN (1996) Biogenesis and membrane properties of peroxisomes: does the boundary membrane serve and protect? Trends Plant Sci 1:389–394

    Google Scholar 

  • Mullen RT, Lisenbee CS, Miernyk JA, Trelease RN (1999) Peroxisomal membrane ascorbate peroxidase is sorted to a membranous network that resembles a subdomain of the endoplasmic reticulum. Plant Cell 11:2167–2185

    PubMed  CAS  Google Scholar 

  • Müller M, Zechmann B, Zellnig G (2004) Ultrastructural localization of glutathione in Cucurbita pepo plants. Protoplasma 223:213–219

    Article  PubMed  CAS  Google Scholar 

  • Narendra S, Venkataramani S, Shen G, Wang J, Pasapula V, Lin Y, Kornyeyev D, Holaday AS, Zhang H (2006) The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development. J Exp Bot 57:3033–3042

    Article  PubMed  CAS  Google Scholar 

  • Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191

    PubMed  Google Scholar 

  • Palma JM, Corpas FJ, del Río LA (2009) Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology. Proteomics 9:2301–2312

    Article  PubMed  CAS  Google Scholar 

  • Palma JM, Jiménez A, Sandalio LM, Corpas FJ, Lundqvist M, Gómez M, Sevilla F, del Río LA (2006) Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants. J Exp Bot 57:1747–1758

    Article  PubMed  CAS  Google Scholar 

  • Panchuk II, Volkov RA, Schoffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    Article  PubMed  CAS  Google Scholar 

  • Poole B (1975) Diffusion effects in the metabolism of hydrogen peroxide by rat liver peroxisomes. J Theor Biol 51:149–167

    Article  PubMed  CAS  Google Scholar 

  • Pracharoenwattana I, Smith SM (2008) When is a peroxisome not a peroxisome? Trends Plant Sci 13:522–525

    Article  PubMed  CAS  Google Scholar 

  • Reumann S, Babujee L, Ma C, Wienkoop S, Siemsen T, Antonicelli GE, Rasche N, Luder F, Weckwerth W, Jahn O (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 19:3170–3193

    Article  PubMed  CAS  Google Scholar 

  • Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber AP, Olsen LJ, Hu J (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodríguez-Serrano M, del Río LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170:43–52

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, McCarthy I, Sandalio LM, Palma JM, Corpas FJ, Gómez M, del Río LA (1999) Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes. Free Radic Res 31:S25–S31

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gómez M, del Río LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2·- and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Rylott EL, Rogers CA, Gilday AD, Edgell T, Larson TR, Graham IA (2003) Arabidopsis mutants in short- and medium-chain acyl-CoA oxidase activities accumulate acyl-CoAs and reveal that fatty acid beta-oxidation is essential for embryo development. J Biol Chem 278:21370–21377

    Article  PubMed  CAS  Google Scholar 

  • Schumann U, Wanner G, Veenhuis M, Schmid M, Gietl C (2003) AthPEX10, a nuclear gene essential for peroxisome and storage organelle formation during Arabidopsis embryogenesis. Proc Natl Acad Sci USA 100:9626–9631

    Article  PubMed  CAS  Google Scholar 

  • Shetty NP, Mehrabi R, Lütken H, Haldrup A, Kema GH, Collinge DB, Jørgensen HJ (2007) Role of hydrogen peroxide during the interaction between the emibiotrophic fungal pathogen Septoria tritici and wheat. New Phytol 174:637–647

    Article  PubMed  CAS  Google Scholar 

  • Shi WM, Muramoto Y, Ueda A, Takabe T (2001) Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene 273:23–27

    Article  PubMed  CAS  Google Scholar 

  • Sparkes IA, Brandizzi F, Slocombe SP, El-Shami M, Hawes C, Baker A (2003) An Arabidopsis pex10 null mutant is embryo lethal, implicating peroxisomes in an essential role during plant embryogenesis. Plant Physiol 133:1809–1819

    Article  PubMed  CAS  Google Scholar 

  • Taler D, Galperin M, Benjamin I, Cohen Y, Kenigsbuch D (2004) Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell 16:172–184

    Article  PubMed  CAS  Google Scholar 

  • Tausz M, Sircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962

    Article  PubMed  CAS  Google Scholar 

  • Tolbert NE (1980) Photorespiration. In: Davies DD (ed) The biochemistry of plants. Academic, New York, pp 487–523

    Google Scholar 

  • Tolbert NE (1981) Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem 50:133–157

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inzé D, Van Breusegem F (2004) Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J 39:45–58

    Article  PubMed  CAS  Google Scholar 

  • Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zhang H, Allen RD (1999) Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol 40:725–732

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Mori H, Nishimura M (1995) A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiol 36:1157–1162

    PubMed  CAS  Google Scholar 

  • Yan J, Wang J, Zhang H (2002) An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism. Plant J 29:193–202

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci U S A 99:4097–4102

    Article  PubMed  CAS  Google Scholar 

  • Zechmann B, Mauch F, Sticher L, Müller M (2008) Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. J Exp Bot 59:4017–4027

    Article  PubMed  CAS  Google Scholar 

  • Zechmann B, Zellnig G, Urbanek-Krajnc A, Müller M (2007) Artificial elevation of glutathione affects symptom development in ZYMV-infected Cucurbita pepo L. plants. Arch Virol 152:747–762

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Wang J, Nickel U, Allen RD, Goodman HM (1997) Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant Mol Biol 34:967–971

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hennig L, Gruissem W (2005) Gene-expression analysis and network discovery using Genevestigator. Trends Plant Sci 10:407–409

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

SR and FJC were supported by UiS funding and grants from the Ministry of Education and Science (BIO2009-12003-C02-01), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrun Reumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Reumann, S., Corpas, F.J. (2010). The Peroxisomal Ascorbate–Glutathione Pathway: Molecular Identification and Insights into Its Essential Role Under Environmental Stress Conditions. In: Anjum, N., Chan, MT., Umar, S. (eds) Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9404-9_14

Download citation

Publish with us

Policies and ethics