Skip to main content

Ascorbate–Glutathione Cycle: Enzymatic and Non-enzymatic Integrated Mechanisms and Its Biomolecular Regulation

  • Chapter
  • First Online:
Ascorbate-Glutathione Pathway and Stress Tolerance in Plants

Abstract

In plant physiology, low level of oxidative stress produces a favourable effect on the metabolism of a plant. However, when antioxydant defenses are over-passed by the action of oxidative compounds it will produce metabolic alteration that would end in cell death. The increase of oxidative stress is conditioned by different types of abiotic (salinity, drought, heavy metal) and biotic (fungus and insects) stresses. The main objective of this chapter will be to evaluate the role of ascorbate–glutathione cycle in the defense mechanisms and antioxidant capacity in plants under different stress conditions, integrating non enzymatic (ascorbate and glutathione) and enzymatic pathways and its biomolecular regulation. This chapter will describe the integration of both non-enzymatic and enzymatic mechanisms specially those concerning with the regeneration of active compounds. Enzymatic pathway preserves the active form of ascorbate and glutathione. Furthemore, we will also describe the regulation of ascorbate-glutation cycle developed by alterated redox status, which can be produced produced by abiotic and biotic stress.

In addition, in the discussion we will emphasize the agronomic and genomic approaches on how to improve the plant tolerance against the biotic and abiotic stresses, so that a higher antioxidant level can be obtained, which will benefit the healthy quality of vegetable foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  PubMed  CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen radicals in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition, vol 9. Elsevier, Amsterdam, pp 227–288

    Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving salt tolerance using antioxidants as a markers. Biotech Adv 27:84–93

    Article  CAS  Google Scholar 

  • Azevedo Neto AD, Prisco JT, Enéas-Filho J, Braga de Abreu CE, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  Google Scholar 

  • Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100:1085–1094

    Article  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Borland A, Elliott S, Patterson S (2006) Are the metabolic components of crassulacean acid metabolism up-regulated in responses to an increase in oxidative burden? J Exp Bot 57:319–328

    Article  PubMed  CAS  Google Scholar 

  • Chang CCC, Slesak I, Jordá L, Sotnikov A, Melzer M, Miszalski Z, Mullineaux PM, Parker JE, Karpinska B, Karpinski S (2009) Arabidopsis chloroplastic glutathine peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiol 150:670–683

    Article  PubMed  CAS  Google Scholar 

  • Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877

    Article  PubMed  CAS  Google Scholar 

  • Chookhampaeng S, Pattanagul W, Theerakulpisut P (2008) Effect od salinity on growth, activity of antioxidant enzymes and sucrose content in tomato (Lycopersicon esculentum Mill.) at the reproductive stage. SciAsia 34:69–75

    CAS  Google Scholar 

  • Dalal M, Dani RG, Kumar PA (2006) Current trends in the genetic engineering of vegetable crops. Sci Hort 107:215–225

    Article  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8:1793–1807

    PubMed  CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 141:341–345

    Google Scholar 

  • del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Gomez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Article  PubMed  Google Scholar 

  • Desikan R, Mackerness S, Hancock J, Neill SJ (2001) Regulation of the Arabidopsis transcriptosome by oxidative stress. Plant Physiol 127:159–172

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ (2005) A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol 137:831–834

    Article  PubMed  CAS  Google Scholar 

  • Ding S, Lu Q, Zhan Y, Yang Z, Wen X, Zhang L, Lu C (2009) Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol Bio 69:577–592

    Article  CAS  Google Scholar 

  • Dixon DP, Davis BG, Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277:30859–30869

    Article  CAS  Google Scholar 

  • Eastmond PJ (2007) MONODEHYROASCORBATE REDUCTASE4 is required for seed storage oil hydrolysis and postgerminative growth in Arabidopsis. Plant Cell 19:1376–87

    Article  PubMed  CAS  Google Scholar 

  • Elter A, Hartel A, Sieben C, Hertel B, Fischer-Schliebs E, Lüttge U, Moroni A, Thiel G (2007) A plant homolog of animal chloride intracellular channels (CLICs) generates an ion conductance in heterologous systems. J Biol Chem 282:8786–87892

    Article  PubMed  CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sankata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders? Agric Water Manag 78:15–24

    Article  Google Scholar 

  • Foyer CH, Noctor G (2005a) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005b) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  PubMed  CAS  Google Scholar 

  • Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141:341–345

    Article  PubMed  CAS  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources. human causes, extent management and case studies. University of New South Wales, Sydney, p 526

    Google Scholar 

  • Gomez M, Arráez D, Segura A, Fernández A (2007) Analytical determination of antioxidants in tomato: typical components of the Mediterranean diet. J Sep Sci 30:452–461

    Article  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 126:21–29

    Article  Google Scholar 

  • Gupta R, Luan S (2003) Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiol 132:1149–1152

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2000) Free radicals in biology and medicine. Oxford University Press, Oxford, UK

    Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    PubMed  CAS  Google Scholar 

  • Harinasut P, Poonsopa D, Roengmongkol K, Charoensataporn R (2003) Salinity effects on antioxidant enzymes in Mulberry cultivar. SciAsia 29:109–113

    CAS  Google Scholar 

  • Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154

    Article  PubMed  CAS  Google Scholar 

  • Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV (2005) Differnt signaling and cell death roles of heterotrimeric G protein a and b subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17:957–979

    Article  PubMed  CAS  Google Scholar 

  • Kaliora AC, Dedoussis GVZ, Schmidt H (2006) Dietary antioxidants in preventing atherogenesis. Atherosclerosis 187:1–17

    Article  PubMed  CAS  Google Scholar 

  • Kerdnaimongkol KR, Woodson RW (1999) Inhibition of catalase by antisense RNA increases susceptibility to oxidative stress and chilling injury in transgenic tomato plants. J Am Soc Hort Sci 124:330–444

    CAS  Google Scholar 

  • Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the rsponse of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203

    Article  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  PubMed  CAS  Google Scholar 

  • Krauss S, Schnitzler WH, Grassmann J, Woitke M (2006) The influence of different electrical conductivity values in a simplified recirculating soil less system on inner and outer fruit quality characteristics of tomato. J Agric Food Chem 54:441–448

    Article  PubMed  CAS  Google Scholar 

  • Kuzniak E, Sklodowska M (2005) Compartment-specific role of the ascorbate-glutathione cycle in the response of tomato leaf cells to Botrytis cinerea infection. J Exp Bot 56:921–933

    Article  PubMed  CAS  Google Scholar 

  • Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906

    Article  PubMed  CAS  Google Scholar 

  • Lenucci MS, Cadinu D, Taurino M, Piro G, Dalessandro G (2006) Antioxidant composition in cherry and high-pigment tomato cultivars. J Agric Food Chem 54:2606–2613

    Article  PubMed  CAS  Google Scholar 

  • Li JM, Jin H (2007) Regulation of brassinosteroid signaling. Trends Plant Sci 12:37–41

    Article  PubMed  CAS  Google Scholar 

  • Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43:900–91

    Article  PubMed  CAS  Google Scholar 

  • Ma F, Cheng L (2003) The Sun-exposed peel of apple fruit has higher xanthophyll cycle-dependent thermal dissipation and antioxidants of the ascorbate-glutathione pathway than the shade peel. Plant Sci 165:819–827

    Article  CAS  Google Scholar 

  • Malecka A, Jarmuszkiewicz W, Tomaszewska B (2001) Antioxidative defense to lead stress in subcellular compartments of pea root cells. Acta Biochim Pol 48:687–698

    PubMed  CAS  Google Scholar 

  • McKersie BD (1994) Oxidative stress. In: McKersie BD, Leshem YY (eds) Stress and stress coping in cultivated plants. Kluwer, Dordrecht, pp 15–55

    Chapter  Google Scholar 

  • Miles GP, Samuel MA, Ranish JA, Sperrazzo GM, Ellis BE (2009) Quantitative proteomics identifies oxidant-induced, AtMPK6-dependent changes in Arabidopsis thaliana protein profiles. Plant Signal Behav 4:497–505

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Mittova V, Kiddle G (2003) Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol 133:443–447

    Article  PubMed  CAS  Google Scholar 

  • Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol 144:1777–1785

    Article  PubMed  CAS  Google Scholar 

  • Minoggio M, Bramati L, Simonetti P, Gardana C, Lemoli L, Santangelo E, Mauri L, Spigno P, Soressi GP, Pietta PG (2003) Polyphenol pattern and antioxidant activity of different tomato lines and cultivars. Ann Nutr Metab 47:64–69

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2002a) Response of the cultavted tomato and its wild salt-tolerant relative Lycopersicon pennelli to salt-dependent oxidative stress: increased activities of antioxidants enzymes in root plastids. Free Radic Res 36:195–202

    Article  PubMed  CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2002b) Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant 115:393–400

    Article  PubMed  CAS  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Ann Rev Plant Physiol Plant Mol Bio 52:561–591

    Article  CAS  Google Scholar 

  • Mullineaux P, Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5:43–48

    Article  PubMed  CAS  Google Scholar 

  • Narendra S, Venkataramani S, Shen G, Wang J, Pasapula V, Lin Y, Kornyeyev D, Holaday AS, Zhang H (2006) The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development. J Exp Bot 57:3033–3042

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. PNAS 96:6553–6557

    Article  PubMed  CAS  Google Scholar 

  • Palma JM, Jiménez A, Sandalio LM, Corpas FJ, Lundqvist M, Gómez M, Sevilla F, Río LA (2006) Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants. J Exp Bot 57:1747–1758

    Article  PubMed  CAS  Google Scholar 

  • Pastori GM, Trippi VS (1992) Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maize strain. Plant Cell Physiol 33:957–961

    CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  • Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Andrea Rudella A, Ytterberg AJ, Rutschow H, van Wijk KJ (2006) The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. MCP 5:114–133

    Article  PubMed  CAS  Google Scholar 

  • Polle A (2001) Dissecting the superoxidismutase-ascorbate-glutathione pathway by metabolic modelling: computer analysis as a step towards flux analysis. Plant Physiol 126:445–462

    Article  PubMed  CAS  Google Scholar 

  • Pourcel L, Routaboul JM, Cheynier V (2007) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci 12:29–36

    Article  PubMed  CAS  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    PubMed  CAS  Google Scholar 

  • Raffo A, La Malfa G, Fogliano V, Maiani G, Quaglia G (2006) Seasonal variations in antioxidant components of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1). J Food Compos Anal 19:11–19

    Article  CAS  Google Scholar 

  • Rentel MC, Lecourrieux D, Ouaked F, Usher SL, Peterson L, Okamato H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 Kinase is necessary for oxidative burst-mediated signal-ling in Arabidopsis. Nature 427:858–861

    Article  PubMed  CAS  Google Scholar 

  • Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Pogson BJ (2006) A mutation affecting ASCORBATE PEROXIDASE 2 gene expression reveals a link between responses to high Light and drought tolerante. Plant, Cell and Environment 29:269–281

    Article  CAS  Google Scholar 

  • Russo M, Sgherri C, Izzo R, Navari-Izzo F (2008) Brassica napus subjected to copper excess: phospolpases C and D and glutathione system in signalling. Env Exp Bot 62:238–246

    Article  CAS  Google Scholar 

  • Samuel MA, Miles GP, Ellis BE (2000) Ozone treatment rapidly activates MAP kinase signalling in plants. Plant J 22:367–376

    Article  PubMed  CAS  Google Scholar 

  • Scandalios JG (1997) Molecular genetics of superoxide dismutase in plants. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, New York, pp 527–568

    Google Scholar 

  • Schubert M, Petersson UA, Haas BJ, Funk C, Schröder WP, Kieselbach T (2002). Proteome Map of the Chloroplast Lumen of Arabidopsis thaliana. J Biol Chem 277: 8354–8365

    Google Scholar 

  • Secenji M, Hideg E, Bebes A, Györgyey (2010) Transcriptional differences in gene families of the ascorbate-glutathione cycle in wheat during mild water deficit. Plant Cell Rep 29:37–50

    Article  PubMed  CAS  Google Scholar 

  • Seong ES, Cho HS, Choi D, Joung YH, Lim CK, Hur JH, Wang MH (2007) Tomato plants overexpressing CaKR1 enhanced tolerance to salt and oxidative stress. Biochem Biophys Res Commun 363:983–988

    Article  PubMed  CAS  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol Plant 112:487–494

    Article  PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    Article  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Tkeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multifacetted molecule. Curr Opin Plant Biol 3:229–235

    PubMed  CAS  Google Scholar 

  • Strand A, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature 421:79–83

    Article  PubMed  CAS  Google Scholar 

  • Vadassery J, Tripathi S, Prasad R, Varma A, Oelmüller R (2009) Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. J Plant Physiol 166:1263–1274

    Article  PubMed  CAS  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Sacvenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)- differencial response in salt-tolerant and sensitive varieties. Plant Sci 165:1411–1418

    Article  CAS  Google Scholar 

  • Valero E, González-Sánchez MI, Maciá H, García-Carmona F (2009) Computer simulation of the dynamic behavior of the glutathione-ascorbate redox cycle in chloroplasts. Plant Physiol 149:1958–1969

    Article  PubMed  CAS  Google Scholar 

  • Verhoeyen ME, Bovy A, Collins G, Muir S, Robinson S, de Vos CHR, Colliver S (2002) Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J Exp Bot 53:2099–2106

    Article  PubMed  CAS  Google Scholar 

  • Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570–577

    Article  PubMed  CAS  Google Scholar 

  • Wormuth D, Heiber I, Shaikali J, Kandlbinder K, Baier M, Dietz KJ (2007) Redox regulation and antioxidative defence in Arabidopsis leaves viewed from a systems biology perspective. J Biotech 129:229–248

    Article  CAS  Google Scholar 

  • Yabuta Y, Maruta T, Yoshimura K (2004) Two distinct redox signaling pathways for cytosolic APX induction under photooxdidative stress. Plant Cell Physiol 45:1586–594

    Article  PubMed  CAS  Google Scholar 

  • Yeo A (1998) Predicting the interaction between the effects of salinity and climate change on crop plants. Sci Hort 78:159–174

    Article  Google Scholar 

  • Yoshida S, Tamaoki M, Shikano T, Nakajima N, Ogawa D, Ioki M, Aono M, Kubo A, Kamada H, Inoue Y, Saji H (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47:304–308

    Article  PubMed  CAS  Google Scholar 

  • Xiang C, Olivier DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plan Cell 10:1539–1550

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Mei Lie Tan for stimulating discussions and comments on this manuscript. This work was supported by the FONDECYT (grants project Nº 1090405), National Commision for Scientific and Technological Research (CONICYT), Ministery of Education, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Martínez, J.P., Araya, H. (2010). Ascorbate–Glutathione Cycle: Enzymatic and Non-enzymatic Integrated Mechanisms and Its Biomolecular Regulation. In: Anjum, N., Chan, MT., Umar, S. (eds) Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9404-9_11

Download citation

Publish with us

Policies and ethics