Skip to main content

Application of Geostatistical Simulation in Precision Agriculture

  • Chapter
  • First Online:
Geostatistical Applications for Precision Agriculture

Abstract

Geostatistical simulation provides a means to mimic spatial and or temporal variation of processes that are relevant to precision agriculture. Simulation by computer models aids decision making when it is too difficult, time consuming, costly or dangerous to perform real-world experiments. Spatio-temporal processes are often considered as uncertain because it is impossible to make accurate and comprehensive observations. Geostatistical simulation incorporates uncertainty into modelling to obtain a more realistic impression of the variation. This chapter provides a short introduction to the background of geostatistical simulation and explains sequential Gaussian simulation in more detail because it is the method most commonly applied. Three case studies demonstrate the application of geostatistical simulation in precision agriculture. They deal with the risk of under- and over-liming because of uncertainty about the accuracy of a pH map, the economic costs of GPS errors and the identification of factors that are most relevant to the accuracy of mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reprinted from Computers and Electronics in Agriculture, 63/2, S. de Bruin, G.B.M. Heuvelink and J.D. Brown, Propagation of positional measurement errors to agricultural field boundaries and associated costs, pp 247–248, Copyright (2008), with permission from Elsevier.

  2. 2.

    Gebbers, R., Herbst, R., & Wenkel, K.-O. (2009). Sensitivity analysis of soil nutrient mapping. In E. J. van Henten, D. Goense, & C. Lokhorst (Eds.), Precision Agriculture ’09. Proceedings of the 7th European Conference on Precision Agriculture (pp. 513–519). Wageningen, The Netherlands: Wageningen Academic Publishers.

References

  • Adamchuk, V. I., Lund, E. D., Reed, T. M., & Ferguson, R. B. (2007). Evaluation of an on-the-go technology for soil pH mapping. Precision Agriculture, 8, 139–149.

    Article  Google Scholar 

  • Agnew, D., & Larson, K. (2007). Finding the repeat times of the GPS constellation. GPS Solutions, 11, 71–76.

    Article  Google Scholar 

  • Amiri-Simkooei, A. R., & Tiberius, C. C. J. M. (2007). Assessing receiver noise using GPS short baseline time series. GPS Solutions, 11, 21–35.

    Article  Google Scholar 

  • Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V. (2008). Applied spatial data analysis with R. New York: Springer.

    Google Scholar 

  • Bogaert, P., Delincé, J., & Kay, S. (2005). Assessing the error of polygonal area measurements: a general formulation with applications to agriculture. Measurement Science & Technology, 16, 1170–1178.

    Article  CAS  Google Scholar 

  • Bona, P. (2000). Precision, cross correlation, and time correlation of GPS phase and code observations. GPS Solutions, 4, 3–13.

    Article  Google Scholar 

  • Bourgault, G. (1997). Using non-Gaussian distributions in geostatistical simulation. Mathematical Geology, 29, 315–334.

    Article  Google Scholar 

  • Bramley, R. G. V. (2009). Lessons from nearly 20 years of precision agriculture research, development, and adoption as a guide to its appropriate application. Crop and Pasture Science, 60, 197–217.

    Article  Google Scholar 

  • Chilès, J-P., & Delfiner, P. (1999). Geostatistics. Modeling spatial uncertainty. New York: Wiley.

    Book  Google Scholar 

  • de Bruin, S. (2008). Modelling positional uncertainty of line features by accounting for stochastic deviations from straight line segments. Transactions in GIS, 12, 165–177.

    Article  Google Scholar 

  • de Bruin, S., Heuvelink, G. B. M., & Brown, J. D. (2008). Propagation of positional measurement errors to agricultural field boundaries and associated costs. Computers and Electronics in Agriculture, 63, 245–256.

    Article  Google Scholar 

  • Demougeot-Renard, H., de Fouquet, C., & Renard, P. (2004). Forecasting the number of soil samples required to reduce remediation costs uncertainty. Journal of Environmental Quality, 33, 1694–1702.

    Article  PubMed  CAS  Google Scholar 

  • Deutsch, C. V., & Journel, A. G. (1998). GSLIB: geostatistical software library and user’s guide (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  • Düngeverordnung (2007). Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten Fachlichen Praxis beim Düngen (Düngeverordnung – DüV). Neufassung der Düngeverordnung (27.02.2007). Bundesgesetzblatt I, 2007, 221 (Federal act on the use of fertilizers in Germany).

    Google Scholar 

  • European Space Agency (2005). The EGNOS signal explained, EGNOS fact sheet 12. EGNOS fact sheet http://www.egnos-pro.esa.int/Publications/2005\%20Updated\%20Fact\%20Sheets/fact\_sheet\_12.pdf (accessed August 18 2009).

    Google Scholar 

  • Faechner, T., Pyrcz, M., & Deutsch, C. V. (1999). Soil remediation decision making in presence of uncertainty in crop yield response. Geoderma, 97, 21–38.

    Article  Google Scholar 

  • Fagroud, M., & Van Meirvenne, M. (2002). Accounting for soil spatial autocorrelation in the design of experimental trials. Soil Science Society of America Journal, 66, 1134–1142.

    Article  CAS  Google Scholar 

  • Farahani, H. J., & Flynn, R. L. (2007). Map quality and zone delineation as affected by width of parallel swaths of mobile agricultural sensors. Biosystems Engineering, 96, 151–159.

    Article  Google Scholar 

  • Favis-Mortlock, D. T., Boardman, J., Parsons, A. J., & Lascelles, B. (2000). Emergence and erosion: a model for rill initiation and development. Hydrological Processes, 14, 2173–2205.

    Article  Google Scholar 

  • Gebbers, R., Herbst, R., & Wenkel, K.-O. (2009). Sensitivity analysis of soil nutrient mapping. In E. J. van Henten, D. Goense, & C. Lokhorst (Eds.), Precision Agriculture ’09. Proceedings of the 7th European Conference on Precision Agriculture (pp. 513–519). Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • Gentle, J. E. (1989). Random number generation and Monte Carlo methods. New York: Springer.

    Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.

    Google Scholar 

  • Goovaerts, P. (1999). Geostatistical tools for deriving block-averaged values of environmental attributes. Journal of Geographical Information Sciences, 5, 88–96.

    Google Scholar 

  • Gotway, C.A., & Rutherford, B. M. (1996). The components of geostatistical simulation. In Mower, H.T. (Ed.), Proceedings of the Second International Symposium on Spatial Accuracy in Natural Resources and Environmental Sciences. Fort Collins: USDA Forest Service. (http://www.osti.gov/bridge/servlets/purl/228463-cOfkGn/webviewable/228463.pdf, accessed September 29 2009).

  • Gotway, C. A., Ferguson, R. B., Hergert, G. W., & Peterson, T. A. (1996). Comparisons of kriging and inverse-distance methods for mapping soil parameters. Soil Science Society of America Journal, 60, 1237–1247.

    Article  CAS  Google Scholar 

  • Härdle, W., Müller, M., Sperlich, S., & Werwatz, A. (2004). Nonparametric and semiparametric models. Berlin: Springer.

    Book  Google Scholar 

  • Herbst, R., Lamp, J., & Reimer, G. (2001). Inventory and spatial modelling of soils on PA pilot fields. In: G. Grenier, & S. Blackmore (Eds.), Third European Conference on Precision Agriculture (pp. 395–400). Montpellier, France: Agro Montpellier.

    Google Scholar 

  • Heuvelink, G. B. M. (1998). Error propagation in environmental modelling with GIS. London, UK: Taylor & Francis.

    Google Scholar 

  • Heuvelink, G. B. M. (1999). Propagation of error in spatial modelling with GIS. In Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (Eds.), Geographical information systems (2nd ed., pp. 207–217). New York: Wiley.

    Google Scholar 

  • Heuvelink, G. B. M., Brown, J. D., & van Loon, E. E. (2007). A probabilistic framework for representing and simulating uncertain environmental variables. International Journal of Geographical Information Science, 21, 497–513.

    Article  Google Scholar 

  • Hoskinson, R. L., Rope, R. C., Blackwood, L. G., Lee, R. D., & Fink, R. K. (2004). The impact of soil sampling errors on variable rate fertilization. In D. J. Mulla (Ed.), Proceedings of 7th International Conference of Precision Agriculture (pp. 1645–1654). Minneapolis, USA: Precision Agriculture Center, University of Minnesota, Department of Soil, Water and Climate.

    Google Scholar 

  • Kerry, R., & Oliver, M. A. (2003). Variograms of ancillary data to aid sampling for soil surveys. Precision Agriculture, 4, 261–278.

    Article  Google Scholar 

  • Kiiveri, H. T. (1997). Assessing, representing and transmitting positional uncertainty in maps. International Journal of Geographical Information Science, 11, 33–52.

    Article  Google Scholar 

  • Lantuéjoul, C. (2002). Geostatistical simulation. Models and algorithms. Berlin: Springer.

    Google Scholar 

  • Lapen, D. R., Topp, G. C., Hayhoe, H. N., Gregorich, E. G., & Curnoe, W. E. (2001). Stochastic simulation of soil strength/compaction and assessment of corn yield risk using threshold probability patterns. Geoderma, 104, 325–343.

    Article  Google Scholar 

  • Leuangthong, O., Khan, K. D., & Deutsch, C. V. (2008). Solved problems in geostatistics. Hoboken: Wiley.

    Google Scholar 

  • MAFF (2000). Fertilizer recommendations for agricultural and horticultural crops. London: The Stationery Office.

    Google Scholar 

  • Mallarino, A. P., & Wittry, D. J. (2004). Efficacy of grid and zone soil sampling approaches for site-specific assessment of phosphorus, potassium, pH, and organic matter. Precision Agriculture, 5, 131–144.

    Article  Google Scholar 

  • MATLAB: The MathWorks, Natick, MA. (http://www.mathworks.com).

  • Mueller, T. G., Pusuluri, N. B., Mathias, K. K., Cornelius, P. L., & Barnhisel, R. I. (2004). Site-specific soil fertility management: a model for map quality. Soil Science Society of America Journal, 68, 2031–2041.

    Article  CAS  Google Scholar 

  • Olynik, M., Petovello, M., Cannon, M., & Lachapelle, G. (2002). Temporal impact of selected GPS errors on point positioning. GPS Solutions, 6, 47–57.

    Article  Google Scholar 

  • Pebesma, E. J. (2001). Gstat users’ manual. Utrecht, The Netherlands: Department of Physical Geography, Utrecht University. http://www.gstat.org/gstat.pdf. Accessed 28. Jan. 2009.

  • Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30, 683–691.

    Article  Google Scholar 

  • Pokrajac, D., Fiez, T., & Obradovic, Z. (2002). A data generator for evaluating spatial issues in precision agriculture. Precision Agriculture, 3, 259–281.

    Article  Google Scholar 

  • Praktijkonderzoek Plant en Omgeving (2006). Kwantitatieve informatie akkerbouw en vollegrondsgroenteteelt 2006 (KWIN 2006). Lelystad: Praktijkonderzoek Plant en Omgeving.

    Google Scholar 

  • R Development Core Team (2008). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. (http://www.r-project.org).

  • Reichardt, M., Jürgens, C., Klöble, U., Hüter, J., & Moser, K. (2009). Dissemination of precision farming in Germany: acceptance, adoption, obstacles, knowledge transfer and training activities. Precision Agriculture (DOI 10.1007/s11119-009-9112-6, accessed October 1 2009).

    Google Scholar 

  • Remy, N., Boucher, A., & Wu, J. (2009). Applied geostatistics with SGeMS. New York: Cambridge University Press.

    Book  Google Scholar 

  • Shi, W., & Liu, W. (2000). A stochastic process-based model for the positional error of line segments in GIS. International Journal of Geographical Information Science, 14, 51–66.

    Article  Google Scholar 

  • Shiflet, A. B., & Shiflet, G. W. (2006). Introduction to computational science. Princeton: Princeton University Press.

    Google Scholar 

  • SYSTAT: Systat Software Inc., Chicago, IL. (http://www.systat.com).

  • Van Buren, J., Westerik, A., & Olink, E. J. H. (2003). Kwaliteit TOP10vector – De geometrische kwaliteit van het bestand TOP10vector van de Topografische Dienst. Kadaster – Concernstaf Vastgoedinformatie en Geodesie: 12.

    Google Scholar 

  • Vann, J., Bertoli, O., & Jackson, S. (2002). An overview of geostatistical simulation for quantifying risk. In S. M. Searston, & R. J. Warner (Eds.), Quantifiying risk and error. Geostatistical Association of Australasia Symposium. (http://www.qgeoscience.com/images/downloads/vann_bertoli_jackson_simulation_for_risk_distribution.pdf, accessed September 29 2009).

  • VDLUFA (1996). Kalium-Düngung nach Bodenuntersuchung und Pflanzenbedarf. Richtwerte für die Gehaltsklasse C. Darmstadt, Germany: VDLUFA-Verlag (Potassium fertilization based on soil analysis and crop requirements. Guidelines to maintain optimum soil index).

    Google Scholar 

  • VDLUFA (2000a). Bestimmung des Kalkbedarfs von Acker- und Grünlandböden. Darmstadt: Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA). (Determination of lime needs for arable and grassland soils) (http://www.vdlufa.de/joomla/Dokumente/Standpunkte/0-9-kalk.pdf, accessed August 18 2009).

  • VDLUFA (2000b). Bestimmung des Kalkbedarfs von Acker- und Grünlandböden. Appendix. Richtwerte für das Rahmenschema zur Kalkbedarfsermittlung in Deutschland. Darmstadt: Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA) (Recommendation tables for lime) (http://www.vdlufa.de/joomla/Dokumente/Standpunkte/0-9-kalkanl.pdf, accessed 18.08.2009).

  • Wang, J., Satirapod, C., & Rizos, C. (2002). Stochastic assessment of GPS carrier phase measurements for precise static relative positioning. Journal of Geodesy, 76, 95–104.

    Article  Google Scholar 

  • Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists (2nd ed.). Chichester: Wiley.

    Book  Google Scholar 

  • Zanolin, A., de Fouquet, C., Granier, J., Ruelle, P., & Nicoullaude, B. (2007). Geostatistical simulation of the spatial variability of an irrigated maize farm plot. Comptes Rendus Geosciences, 339, 430–440.

    Article  Google Scholar 

  • Zhang, J., & Kirby, R. P. (2000). A geostatistical approach to modelling positional errors in vector data. Transactions in GIS, 4, 145–159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gebbers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Gebbers, R., de Bruin, S. (2010). Application of Geostatistical Simulation in Precision Agriculture. In: Oliver, M. (eds) Geostatistical Applications for Precision Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9133-8_11

Download citation

Publish with us

Policies and ethics