Skip to main content

PAN-Optimized Air Interfaces

  • Chapter
  • First Online:
My personal Adaptive Global NET (MAGNET)

Abstract

For the design of air interfaces (AIs) being suitable for typical WPAN application scenarios, it is important to consider the overall objective of MAGNET Beyond, namely to design, develop, demonstrate and validate the concept of a flexible Personal Network (PN) that supports resource-efficient, robust, ubiquitous personal services in a secure, heterogeneous networking environment for mobile users. As a consequence, two PAN-optimized AI solutions, one for high and one for low data rate applications, have been envisaged. The high data rate (HDR) PAN applications will be enabled by a multi-carrier spread spectrum (MC-SS) air-interface solution and a MAC layer scheme utilizing IEEE 802.15.3. For low data rate (LDR) applications, a low-power, low-complexity frequency modulation based UWB (FM-UWB) air-interface solution and a MAC layer based on IEEE 802.15.4 is proposed. A so-called Universal Convergence Layer (UCL) sits on top of the both AIs and is in charge of interfacing the LDR and HDR MAC layers with higher layer protocols. The structure of selected air interfaces is depicted schematically in Fig. 4.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The latencies can be further minimised if you forego the beacon environment and are willing to risk potential interference from accidental data interference from accidental data collision with other sensors on the network. Data latency can also affect battery life so for a truly low power sensor network it has to be as low as possible. For simple star networks (few clients, one network coordinator) latencies in the order of few ms can be expected.

  2. 2.

    This level of security as dictated in IEEE 802.15.4 is not implemented in the Magnet Beyond prototype.

  3. 3.

    ξ = Pd + P0 − Pr(pckt transmission error ∩ pckt excessively delayed) therefore max(Pd, P0) ≤ ξ ≤ Pd + P0. For small probabilities Pd and P0 this bound is quite tight, e.g., for Pd = P0 = 10 − 3 we have 10 − 3 ≤ ξ ≤ 2 ⋅10 − 3 whereas for Pd = 10 − 4 and P0 = 10 − 3 we have 10 − 3 ≤ ξ ≤ 1. 1 ⋅10 − 3.

References

  1. J.F.M. Gerrits, M.H.L. Kouwenhoven, P.R. van der Meer, J.R. Farserotu, J.R. Long, Principles and limitations of ultra wideband FM communications systems. EURASIP J. Appl. Signal Process. (special issue UWB-STATE OF THE ART) 2005(3), 382–396 (Mar 2005)

    MATH  MathSciNet  Google Scholar 

  2. Y. Zhou, J. Yuan, An 8-Bit 100-MHz CMOS linear interpolation DAC. IEEE J. Solid State Circ. 38(10), 1758–1761 (Oct 2003)

    Article  Google Scholar 

  3. J.F.M. Gerrits, J.R. Farserotu, J.R. Long, Multiple-access interference in FM-UWB communication systems, in Proceedings of the WPMC2005, Aalborg, Denmark, 19–22 Sept 2005, pp. 2027–2031

    Google Scholar 

  4. T. Messerges, J.I. Curkier, T.A.M. Kevenaar, L. Puhl, R. Struik, E. Callaway, A security design for a general purpose, self-organising, multihop ad hoc wireless network. ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN), TR2003–114, http://www.merl.com (Dec 2004)

  5. C.-S. Chang, J.A. Thomas, Effective bandwidth in high-speed digital networks. IEEE J. Select. Areas Commun. 13(6), 1091–1100 (1995)

    Article  Google Scholar 

  6. F.P. Kelly, Notes on effective bandwidths. Stochastic Networks: Theory and Applications, vol 9 (Oxford University Press, UK, 1996), pp. 141–168

    Google Scholar 

  7. A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, 2nd edn. (Springer-Verlag, New York, 1998)

    MATH  Google Scholar 

  8. P.W. Glynn, W. Whitt, Logarithmic asymptotics for steady-state tail probabilities in a single-server queue. J. Appl. Prob., 31A, 131–156 (1994)

    Article  MathSciNet  Google Scholar 

  9. I.C. Paschalidis, S. Vassilaras, On the estimation of buffer overflow probabilities from measurements. IEEE Trans. Inform. Theory, 47(1), 178–191 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Q. Liu, S. Zhou, G.B. Giannakis, Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links. IEEE Trans. Wireless Comm. 3(5), 1746–1755 (2004)

    Article  Google Scholar 

  11. Q. Liu, S. Zhou, G.B. Giannakis, Queuing with adaptive modulation and coding over wireless links: cross-layer analysis and design. IEEE Trans. Wireless Comm. 4(3), 1142–1153 (2005)

    Article  Google Scholar 

  12. Q. Liu, S. Zhou, G.B. Giannakis, Cross-layer scheduling with predictable QoS guarantees in adaptive wireless networks. IEEE J. Select. Area Commun. 23(5), 1051–1066 (2005)

    Google Scholar 

  13. D. Wu, R. Negi, Effective capacity: a wireless link model for support of quality of service. IEEE Trans. Wireless Commun. 2(4), 630–643 (July 2003)

    Google Scholar 

  14. J. Tang, X. Zhang, Cross-layer-model based adaptive resource allocation for statistical QoS guarantees in mobile wireless networks. QShine’06 The Third International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks, Waterloo, ON, Canada, 7–9 (Aug 2006)

    Google Scholar 

  15. J. Tang, X. Zhang, Quality-of-service driven power and rate adaptation over wireless links. IEEE Trans. Wireless Comm. 6(8) (Aug 2007)

    Google Scholar 

  16. J. Tang, X. Zhang, Cross-layer modeling for quality of service guarantees over wireless links. IEEE Trans. Wireless Commun. 6(12) (Dec 2007)

    Google Scholar 

  17. M.S. Alouini, A.J. Goldsmith, Adaptive modulation over Nakagami fading channels. Kluwer J Wireless Commun. 13(1–2) (2002), 119–143

    Google Scholar 

  18. I.C. Paschalidis, Class-specific quality of service guarantees in multimedia communication networks, in Automatica (Special Issue on Control Methods for Communication Networks), ed. by V. Anantharam, J.Walrand, 35 (1999), 1951–1968

    Google Scholar 

  19. D. Bertsimas, I.C. Paschalidis, Probabilistic service level guarantees in make-to-stock manufacturing systems, Operation Res., 49(1), 119–133 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Sendonaris, E. Erkip, B. Aazhang, User cooperation diversity – part I: system description, IEEE Trans. Wireless Comm. 51, 1927–1938 (Nov 2003)

    Google Scholar 

  21. J.N. Laneman, D.N.C. Tse, G.W. Wornell, Cooperative diversity in wireless networks: Efficient protocols and outage behaviour. IEEE Trans. Inform. Theory 50, 3062–3080 (2004)

    Article  MathSciNet  Google Scholar 

  22. A. Host-Madsen, Capacity bounds for cooperative diversity. IEEE Trans. Inform. Theory 52, 1522–1544 (Apr 2006)

    Article  MathSciNet  Google Scholar 

  23. A. Bletsas, A. Khisti, D.P. Reed, A. Lippman, A simple cooperative diversity method based on network path selection. IEEE J. Select. Areas Commun. 24, 659–672 (Mar 2006)

    Article  Google Scholar 

  24. A. Nosratinia, T.E. Hunter, A. Hedayat, Cooperative communication in wireless networks. IEEE Commun. Mag. 42, 74–80 (Oct 2004)

    Article  Google Scholar 

  25. A. Bletsas, H. Shin, M.Z. Win, Outage optimality of opportunistic amplify-and-forward relaying. IEEE Commun. Lett. 11(3), 261–263 (Mar 2007)

    Article  Google Scholar 

  26. G.M. Kraidy, J.J. Boutros, A.G.I. Fàbregas, Approaching the outage probability of the amplify-and-forward relay fading channel. IEEE Commun. Lett. 11(10), 808–810 (Oct 2007)

    Article  Google Scholar 

  27. IST MAGNET Beyond, Prototype specification for the FM-UWB and MC-SS RA schemes IST 027396, Deliverable D3.2.1 (June 2006)

    Google Scholar 

  28. H.L. Van Trees, Optimum Array Processing (New York, Wiley, 2002)

    Book  Google Scholar 

  29. T. Hunziker, M. Westmeier, D. Dahlhaus, Amplify-and-forward relaying for reducing outages in TDMA-based WPANs operating in unlicensed bands. Proceedings of the 10th International Symposium on Wireless Personal Multimedia Communications, Dec 2007, pp. 627–631, Jaipur, India

    Google Scholar 

  30. IEEE Standard for Information Technology–Telecommunications and Information Exchange Between Systems–Local and Metropolitan Area Networks-Specific Requirements, IEEE Standard 802.15.3, 2003

    Google Scholar 

  31. http://www.ieee802.org/15/pub/2003/Jul03/03268r2P802–15_TG3a-Multi-band-CFP-Document.pdf

  32. ftp://ftp.802wirelessworld.com/15/07/15–07–0693–03–003c-compa-phy-proposal.pdf

  33. Y.H. Tseng, E.H. Wu, G.H. Chen, Maximum traffic scheduling and capacity analysis for IEEE 802.15.3 high data rate MAC protocol, Proc. Vehicular IEEE Technol. Conf. 3, 1678–1682 (2003)

    Google Scholar 

  34. X. Chen, Y. Xiao, Y. Cai, J. Lu, Z. Zhou, An energy diffserv and application-aware MAC scheduling for VBR streaming video in the IEEE 802.15.3 high-rate wireless personal area networks. Elsevier Comp. Commun. 29, 3516–3526 (2006)

    Google Scholar 

  35. R. Mangharam, M. Demirhan, R. Rajkumar, D. Raychaudhuri, Size matters: Size-based scheduling for MPEG-4 over wireless channels, Proceedings of the SPIE Conference on Multi-Media Networking and Communications, 2004, pp. 110–122, Santa Clara, CA

    Google Scholar 

  36. L. Vajda, A. Torok, K.J. Youn, J. Sun-Do, Hierarchical superframe formation in 802.15. 3 networks. Proc. IEEE ICC 7, 4017–4022 (2004)

    Google Scholar 

  37. S.H. Rhee, K. Chung, Y. Kim, W. Yoon, K.S. Chang, An application-aware MAC scheme for IEEE 802.15. 3 high-rate WPAN. Proc. WCNC 2, 1018–1023 (2004)

    Google Scholar 

  38. IEEE Draft Recommended Practice to Standard for Information Technology–Telecommunications and Information Exchange Between Systems–Local and Metropolitan Networks-Specific Requirements-Part 15.5: Mesh Enhancements for IEEE 802.15 WPANs, IEEE Draft 15–06–0237–02–0005 (2006)

    Google Scholar 

  39. M. De Sanctis, J.F.M. Gerrits, J.P. Vila, Coexistence concept for the implementation of LDR/HDR WPAN multimode devices. Teletronikk Journal (by Telenor), special issue on Personal Networks, 2007, pp. 101–112

    Google Scholar 

  40. IEEE, Coexistence of wireless personal area networks with other wireless devices operating in unlicensed frequency bands. IEEE Standard 802.15.2 (August 2003)

    Google Scholar 

  41. R. Tesi, M. Condreanu, I. Opperman, Interference effects of UWB transmission in OFDM communication systems, in Proceedings of the International Workshop on Ultra Wide Band Systems, Oulu, Finland (June 2003)

    Google Scholar 

  42. A. Tomiki, T. Ogawa, A. Fukuda, N. Terada, T. Kobayashi, Evaluation of interference from impulse-radio and direct-sequence-UWB sources to 2-GHz digital radio transmission, in Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Istanbul, Turkey (May 2003)

    Google Scholar 

  43. IEEE Std. 802.15.4–2003, Standard for Telecommunications and Information Exchange Between Systems Local Area Metropolitan Area Networks Specific Requirements Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPAN)

    Google Scholar 

  44. K. Schoo, Y. Wang, H.T. Nguyen, I. Siaud, A.-M. Ulmer-Moll, N. Malhouroux, PHY/MAC Benchmarking of the Target MAGNET FM-UWB and MC-SS Air Interfaces, Deliverable 3.2.2 MAGNET Beyond (June 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Dahlhaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dahlhaus, D., Hunziker, T., Vassilaras, S., Al-Raweshidy, H., De Sanctis, M. (2010). PAN-Optimized Air Interfaces. In: Prasad, R. (eds) My personal Adaptive Global NET (MAGNET). Signals and Communication Technology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3437-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3437-3_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3436-6

  • Online ISBN: 978-90-481-3437-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics