Skip to main content

Thyroid Hormone Receptors

  • Chapter
  • First Online:
Nuclear Receptors

Part of the book series: Proteins and Cell Regulation ((PROR,volume 8))

Abstract

Thyroid hormone promotes a diverse range of developmental, neurological and metabolic functions in vertebrate species. Human thyroid disorders result in a correspondingly wide range of disease symptoms. The functions of thyroid hormone are mediated by a small group of thyroid hormone receptors encoded by two conserved genes. Thyroid hormone receptors were among the first nuclear receptors to be identified and act as ligand-regulated transcription factors. These receptors are particularly versatile since they also have the potential to mediate ligand-independent transcriptional control. Genetic analyses have revealed both specific and overlapping roles for each receptor, revealing how a small receptor family can mediate an extended range of biological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray, G. (1891). Note on the treatment of myxoedema by hypodermic injections of an extract of the thyroid gland of a sheep. Br Med J 2, 796–797.

    Article  PubMed  Google Scholar 

  2. Osler, W. (1897). Sporadic cretinism in America. Transactions Congress of American Physicians and Surgeons, 4 169–206.

    Google Scholar 

  3. Harington, C. R. (1935). Biochemical basis of thyroid function. The Lancet 225, 1199–1204.

    Article  Google Scholar 

  4. Gudernatsch, J. (1912). Feeding experiments on tadpoles. I. The influence of specific organs given as food on growth and differentiation. Roux Arch Entwicklungsmechanik der Organismen 35, 457–483.

    Article  Google Scholar 

  5. Inui, Y., and Miwa, S. (1985). Thyroid hormone induces metamorphosis of flounder larvae. Gen Comp Endocrinol 60, 450–454.

    Article  CAS  PubMed  Google Scholar 

  6. Brown, D. D. (1997). The role of thyroid hormone in zebrafish and axolotl development. Proc Natl Acad Sci U S A 94, 13011–13016.

    Article  CAS  PubMed  Google Scholar 

  7. Tata, J. R. (2006). Amphibian metamorphosis as a model for the developmental actions of thyroid hormone. Mol Cell Endocrinol 246, 10–20.

    Article  CAS  PubMed  Google Scholar 

  8. Tata, J. R. (1963). Inhibition of the biological action of thyroid hormones by actinomycin D and puromycin. Nature 197, 1167–1168.

    Article  CAS  PubMed  Google Scholar 

  9. Sap, J., Muñoz, A., Damm, K., Goldberg, Y., Ghysdael, J., Leutz, A., Beug, H., and Vennström, B. (1986). The c-erbA protein is a high affinity receptor for thyroid hormone. Nature 324, 635–640.

    Article  CAS  PubMed  Google Scholar 

  10. Weinberger, C., Thompson, C. C., Ong, E. S., Lebo, R., Gruol, D. J., and Evans, R. M. (1986). The c-erb-A gene encodes a thyroid hormone receptor. Nature 324, 641–646.

    Article  CAS  PubMed  Google Scholar 

  11. Glass, C. K., Franco, R., Weinberger, C., Albert, V. R., Evans, R. M., and Rosenfeld, M. G. (1987). A c-erb-A binding site in rat growth hormone gene mediates trans-activation by thyroid hormone. Nature 329, 738–741.

    Article  CAS  PubMed  Google Scholar 

  12. Umesono, K., and Evans, R. M. (1989). Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57, 1139–1146.

    Article  CAS  PubMed  Google Scholar 

  13. Sap, J., de Magistris, L., Stunnenberg, H., and Vennström, B. (1990). A major thyroid hormone response element in the third intron of the rat growth hormone gene. EMBO J 9, 887–896.

    CAS  PubMed  Google Scholar 

  14. Brent, G., Moore, D., and Larsen, P. (1991). Thyroid hormone regulation of gene expression. Ann Rev Physiol 53, 17–35.

    Article  CAS  Google Scholar 

  15. Refetoff, S., Weiss, R. E., and Usala, S. J. (1993). The syndromes of resistance to thyroid hormone. Endocrine Rev 14, 348–399.

    CAS  Google Scholar 

  16. Koenig, R. J. (1998). Thyroid hormone receptor coactivators and corepressors. Thyroid 8, 703–713.

    Article  CAS  PubMed  Google Scholar 

  17. Forrest, D., and Vennström, B. (2000). Functions of thyroid hormone receptors in mice. Thyroid 10, 41–52.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, J., and Lazar, M. A. (2000). The mechanism of action of thyroid hormones. Annu Rev Physiol 62, 439–466.

    Article  CAS  PubMed  Google Scholar 

  19. Tata, J. R. (2007). A hormone for all seasons. Perspect Biol Med 50, 89–103.

    Article  CAS  PubMed  Google Scholar 

  20. Köhrle, J. (1999). Local activation and inactivation of thyroid hormones: the deiodinase family. Mol Cell Endocrinol 151, 103–119.

    Article  PubMed  Google Scholar 

  21. Bianco, A. C., Salvatore, D., Gereben, B., Berry, M. J., and Larsen, P. R. (2002). Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23, 38–89.

    Article  CAS  PubMed  Google Scholar 

  22. St Germain, D. L., Hernandez, A., Schneider, M. J., and Galton, V. A. (2005). Insights into the role of deiodinases from studies of genetically modified animals. Thyroid 15, 905–916.

    Article  CAS  PubMed  Google Scholar 

  23. Ng, L., Goodyear, R. J., Woods, C. A., Schneider, M. J., Diamond, E., Richardson, G. P., Kelley, M. W., Germain, D. L., Galton, V. A., and Forrest, D. (2004). Hearing loss and retarded cochlear development in mice lacking type 2 iodothyronine deiodinase. Proc Natl Acad Sci U S A 101, 3474–3479.

    Article  CAS  PubMed  Google Scholar 

  24. Brown, D. D. (2005). The role of deiodinases in amphibian metamorphosis. Thyroid 15, 815–821.

    Article  CAS  PubMed  Google Scholar 

  25. Bianco, A. C., and Kim, B. W. (2006). Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest 116, 2571–2579.

    Article  CAS  PubMed  Google Scholar 

  26. Hernandez, A., Martinez, M. E., Fiering, S., Galton, V. A., and St Germain, D. (2006). Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest 116, 476–484.

    Article  CAS  PubMed  Google Scholar 

  27. Galton, V. A., Wood, E. T., St Germain, E. A., Withrow, C. A., Aldrich, G., St Germain, G. M., Clark, A. S., and St Germain, D. L. (2007). Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development. Endocrinology 148, 3080–3088.

    Article  CAS  PubMed  Google Scholar 

  28. Ng, L., Hernandez, A., He, W., Ren, T., Srinivas, M., Ma, M., Galton, V. A., St Germain, D. L., and Forrest, D. (2009). A protective role for type 3 deiodinase, a thyroid hormone-inactivating enzyme, in cochlear development and auditory function. Endocrinology 150, 1952–1960.

    Article  CAS  PubMed  Google Scholar 

  29. Iglesias, T., Caubin, J., Stunnenberg, H. G., Zaballos, A., Bernal, J., and Munoz, A. (1996). Thyroid hormone-dependent transcriptional repression of neural cell adhesion molecule during brain maturation. EMBO J 15, 4307–4316.

    CAS  PubMed  Google Scholar 

  30. Miller, L. D., Park, K. S., Guo, Q. M., Alkharouf, N. W., Malek, R. L., Lee, N. H., Liu, E. T., and Cheng, S. Y. (2001). Silencing of Wnt signaling and activation of multiple metabolic pathways in response to thyroid hormone-stimulated cell proliferation. Mol Cell Biol 21, 6626–6639.

    Article  CAS  PubMed  Google Scholar 

  31. Flores-Morales, A., Gullberg, H., Fernandez, L., Stahlberg, N., Lee, N. H., Vennström, B., and Norstedt, G. (2002). Patterns of liver gene expression governed by TRβ. Mol Endocrinol 16, 1257–1268.

    Article  CAS  PubMed  Google Scholar 

  32. Poguet, A. L., Legrand, C., Feng, X., Yen, P. M., Meltzer, P., Samarut, J., and Flamant, F. (2003). Microarray analysis of knockout mice identifies cyclin D2 as a possible mediator for the action of thyroid hormone during the postnatal development of the cerebellum. Dev Biol 254, 188–199.

    Article  CAS  PubMed  Google Scholar 

  33. Yen, P. M., Feng, X., Flamant, F., Chen, Y., Walker, R. L., Weiss, R. E., Chassande, O., Samarut, J., Refetoff, S., and Meltzer, P. S. (2003). Effects of ligand and thyroid hormone receptor isoforms on hepatic gene expression profiles of thyroid hormone receptor knockout mice. EMBO Rep 4, 581–587.

    Article  CAS  PubMed  Google Scholar 

  34. Bernal, J. (2005). Thyroid hormones and brain development. Vitam Horm 71, 95–122.

    Article  CAS  PubMed  Google Scholar 

  35. Malo, M. S., Zhang, W., Alkhoury, F., Pushpakaran, P., Abedrapo, M. A., Mozumder, M., Fleming, E., Siddique, A., Henderson, J. W., and Hodin, R. A. (2004). Thyroid hormone positively regulates the enterocyte differentiation marker intestinal alkaline phosphatase gene via an atypical response element. Mol Endocrinol 18, 1941–1962.

    Article  CAS  PubMed  Google Scholar 

  36. Gordon, D. F., Tucker, E. A., Tundwal, K., Hall, H., Wood, W. M., and Ridgway, E. C. (2006). MED220/thyroid receptor-associated protein 220 functions as a transcriptional coactivator with Pit-1 and GATA-2 on the thyrotropin-beta promoter in thyrotropes. Mol Endocrinol 20, 1073–1089.

    Article  CAS  PubMed  Google Scholar 

  37. Matsushita, A., Sasaki, S., Kashiwabara, Y., Nagayama, K., Ohba, K., Iwaki, H., Misawa, H., Ishizuka, K., and Nakamura, H. (2007). Essential role of GATA2 in the negative regulation of thyrotropin beta gene by thyroid hormone and its receptors. Mol Endocrinol 21, 865–884.

    Article  CAS  PubMed  Google Scholar 

  38. Potter, G. B., Zarach, J. M., Sisk, J. M., and Thompson, C. C. (2002). The thyroid hormone-regulated corepressor hairless associates with histone deacetylases in neonatal rat brain. Mol Endocrinol 16, 2547–2560.

    Article  CAS  PubMed  Google Scholar 

  39. Tenbaum, S. P., Juenemann, S., Schlitt, T., Bernal, J., Renkawitz, R., Munoz, A., and Baniahmad, A. (2003). Alien/CSN2 gene expression is regulated by thyroid hormone in rat brain. Dev Biol 254, 149–160.

    Article  CAS  PubMed  Google Scholar 

  40. Cheng, S. Y. (2000). Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev Endocr Metab Disord 1, 9–18.

    Article  CAS  PubMed  Google Scholar 

  41. Chen, J. D., and Evans, R. M. (1995). A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–458.

    Article  CAS  PubMed  Google Scholar 

  42. Lemon, B. D., and Freedman, L. P. (1999). Nuclear receptor cofactors as chromatin remodelers. Curr Opin Genet Dev 9, 499–504.

    Article  CAS  PubMed  Google Scholar 

  43. Ito, M., and Roeder, R. G. (2001). The TRAP/SMCC/Mediator complex and thyroid hormone receptor function. Trends Endocrinol Metab 12, 127–134.

    Article  CAS  PubMed  Google Scholar 

  44. Sachs, L. M., Jones, P. L., Havis, E., Rouse, N., Demeneix, B. A., and Shi, Y. B. (2002). Nuclear receptor corepressor recruitment by unliganded thyroid hormone receptor in gene repression during Xenopus laevis development. Mol Cell Biol 22, 8527–8538.

    Article  CAS  PubMed  Google Scholar 

  45. Paul, B. D., Fu, L., Buchholz, D. R., and Shi, Y. B. (2005). Coactivator recruitment is essential for liganded thyroid hormone receptor to initiate amphibian metamorphosis. Mol Cell Biol 25, 5712–5724.

    Article  CAS  PubMed  Google Scholar 

  46. Sato, Y., Buchholz, D. R., Paul, B. D., and Shi, Y. B. (2007). A role of unliganded thyroid hormone receptor in postembryonic development in Xenopus laevis. Mech Dev 124, 476–488.

    Article  CAS  PubMed  Google Scholar 

  47. Forrest, D., Sjöberg, M., and Vennström, B. (1990). Contrasting developmental and tissue-specific expression of α and β thyroid hormone receptor genes. EMBO J 9, 1519–1528.

    CAS  PubMed  Google Scholar 

  48. Banker, D. E., Bigler, J., and Eisenman, R. N. (1991). The thyroid hormone receptor gene (c-erbA alpha) is expressed in advance of thyroid gland maturation during the early embryonic development of Xenopus laevis. Mol Cell Biol 11, 5079–5089.

    CAS  PubMed  Google Scholar 

  49. Havis, E., Le Mevel, S., Morvan Dubois, G., Shi, D. L., Scanlan, T. S., Demeneix, B. A., and Sachs, L. M. (2006). Unliganded thyroid hormone receptor is essential for Xenopus laevis eye development. EMBO J 25, 4943–4951.

    Article  CAS  PubMed  Google Scholar 

  50. Göthe, S., Wang, Z., Ng, L., Nilsson, J., Campos-Barros, A., Ohlsson, C., Vennström, B., and Forrest, D. (1999). Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth and bone maturation. Genes Dev 13, 1329–1341.

    Article  PubMed  Google Scholar 

  51. Mansouri, A., Chowdhury, K., and Gruss, P. (1998). Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet 19, 87–90.

    Article  CAS  PubMed  Google Scholar 

  52. Marians, R. C., Ng, L., Blair, H. C., Unger, P., Graves, P. N., and Davies, T. F. (2002). Defining thyrotropin-dependent and -independent steps of thyroid hormone synthesis by using thyrotropin receptor-null mice. Proc Natl Acad Sci U S A 99, 15776–15781.

    Article  CAS  PubMed  Google Scholar 

  53. Legrand, J. (1979). Morphogenetic actions of thyroid hormones. TINS 2, 234–236.

    Google Scholar 

  54. Morte, B., Manzano, J., Scanlan, T., Vennström, B., and Bernal, J. (2002). Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci U S A 99, 3985–3989.

    Article  CAS  PubMed  Google Scholar 

  55. Hashimoto, K., Curty, F. H., Borges, P. P., Lee, C. E., Abel, E. D., Elmquist, J. K., Cohen, R. N., and Wondisford, F. E. (2001). An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc Natl Acad Sci U S A 98, 3998–4003.

    Article  CAS  PubMed  Google Scholar 

  56. Venero, C., Guadano-Ferraz, A., Herrero, A. I., Nordstrom, K., Manzano, J., de Escobar, G. M., Bernal, J., and Vennstrom, B. (2005). Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor alpha1 can be ameliorated by T3 treatment. Genes Dev 19(18), 2152–2163.

    Article  CAS  PubMed  Google Scholar 

  57. Wallis, K., Sjogren, M., van Hogerlinden, M., Silberberg, G., Fisahn, A., Nordstrom, K., Larsson, L., Westerblad, H., Morreale de Escobar, G., Shupliakov, O., and Vennstrom, B. (2008). Locomotor deficiencies and aberrant development of subtype-specific GABAergic interneurons caused by an unliganded thyroid hormone receptor alpha1. J Neurosci 28, 1904–1915.

    Article  CAS  PubMed  Google Scholar 

  58. Yaoita, Y., Shi, Y.-B., and Brown, D. (1990). Xenopus laevis a and b thyroid hormone receptors. Proc Natl Acad Sci USA 87, 7090–7094.

    Article  CAS  PubMed  Google Scholar 

  59. Shi, Y. B., Yaoita, Y., and Brown, D. D. (1992). Genomic organization and alternative promoter usage of the two thyroid hormone receptor β genes in Xenopus laevis. J Biol Chem 267, 733–738.

    CAS  PubMed  Google Scholar 

  60. Jones, I., Srinivas, M., Ng, L., and Forrest, D. (2003). The thyroid hormone receptor β gene: structure and functions in the brain and sensory systems. Thyroid 13, 1057–1068.

    Article  CAS  PubMed  Google Scholar 

  61. Sakurai, A., Miyamoto, T., and DeGroot, L. J. (1992). Cloning and characterization of the human thyroid hormone receptor β 1 gene promoter. Biochem Biophys Res Commun 185, 78–84.

    Article  CAS  PubMed  Google Scholar 

  62. Frankton, S., Harvey, C. B., Gleason, L. M., Fadel, A., and Williams, G. R. (2004). Multiple messenger ribonucleic acid variants regulate cell-specific expression of human thyroid hormone receptor β1. Mol Endocrinol 18, 1631–1642.

    Article  CAS  PubMed  Google Scholar 

  63. Chassande, O., Fraichard, A., Gauthier, K., Flamant, F., Legrand, C., Savatier, P., Laudet, V., and Samarut, J. (1997). Identification of transcripts initiated from an internal promoter in the c-erbA alpha locus that encode inhibitors of retinoic acid receptor- alpha and triiodothyronine receptor activities. Mol Endocrinol 11, 1278–1290.

    Article  CAS  PubMed  Google Scholar 

  64. Williams, G. R. (2000). Cloning and characterization of two novel thyroid hormone receptor β isoforms. Mol Cell Biol 20, 8329–8342.

    Article  CAS  PubMed  Google Scholar 

  65. Izumo, S., and Mahdavi, V. (1988). Thyroid hormone receptor alpha isoforms generated by alternative splicing differentially activate myosin HC gene transcription. Nature 334, 539–542.

    Article  CAS  PubMed  Google Scholar 

  66. Lazar, M., Hodin, R., Darling, D., and Chin, W. (1988). Identification of a rat c-erbA α-related protein which binds deoxyribonucleic acid but does not bind thyroid hormone. Mol Endocrinol 2, 893–901.

    Article  CAS  PubMed  Google Scholar 

  67. Koenig, R. J., Lazar, M. A., Hodin, R. A., Brent, G. A., Larsen, P. R., Chin, W. W., and Moore, D. D. (1989). Inhibition of thyroid hormone action by a non-hormone binding c-erbA protein generated by alternative mRNA splicing. Nature 337, 659–661.

    Article  CAS  PubMed  Google Scholar 

  68. Saltó, C., Kindblom, J. M., Johansson, C., Wang, Z., Gullberg, H., Nordström, K., Mansén, A., Ohlsson, C., Thorén, P., Forrest, D., and Vennström, B. (2001). Ablation of TRα2 and a concomitant overexpression of α1 yields a mixed hypo- and hyperthyroid phenotype in mice. Mol Endocrinol 15, 2115–2128.

    Article  PubMed  Google Scholar 

  69. Murray, M. B., Zilz, N. D., McCreary, N. L., Macdonald, M. J., and Towle, H. C. (1988). Isolation and characterization of rat cDNA clones for two distinct thyroid hormone receptors. J Biol Chem 263, 12770–12777.

    CAS  PubMed  Google Scholar 

  70. Bradley, D. J., Towle, H. C., and Young, W. S., 3rd (1992). Spatial and temporal expression of α- and β-thyroid hormone receptor mRNAs, including the β 2-subtype, in the developing mammalian nervous system. J Neurosci 12, 2288–2302.

    CAS  PubMed  Google Scholar 

  71. Schwartz, H. L., Strait, K. A., Ling, N. C., and Oppenheimer, J. H. (1992). Quantitation of rat tissue thyroid hormone binding receptor isoforms by immunoprecipitation of nuclear triiodothyronine binding capacity. J Biol Chem 267, 11794–11799.

    CAS  PubMed  Google Scholar 

  72. Thompson, C. C. (1996). Thyroid hormone-responsive genes in developing cerebellum include a novel synaptotagmin and a hairless homolog. J Neurosci 16, 7832–7840.

    CAS  PubMed  Google Scholar 

  73. Hodin, R. A., Lazar, M. A., Wintman, B. I., Darling, D. S., Koenig, R. J., Larsen, P. R., Moore, D. D., and Chin, W. W. (1989). Identification of a thyroid hormone receptor that is pituitary-specific. Science 244, 76–78.

    Article  CAS  PubMed  Google Scholar 

  74. Sjöberg, M., Vennström, B., and Forrest, D. (1992). Thyroid hormone receptors in chick retinal development: differential expression of mRNAs for α and N-terminal variant β receptors. Development 114, 39–47.

    PubMed  Google Scholar 

  75. Bradley, D. J., Towle, H. C., and Young, W. S., 3rd (1994). α and β thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo. Proc Natl Acad Sci U S A 91, 439–443.

    Article  CAS  PubMed  Google Scholar 

  76. Stoykov, I., Zandieh-Doulabi, B., Moorman, A. F., Christoffels, V., Wiersinga, W. M., and Bakker, O. (2006). Expression pattern and ontogenesis of thyroid hormone receptor isoforms in the mouse heart. J Endocrinol 189, 231–245.

    Article  CAS  PubMed  Google Scholar 

  77. Flamant, F., and Samarut, J. (2003). Thyroid hormone receptors: lessons from knockout and knock-in mutant mice. Trends Endocrinol Metab 14, 85–90.

    Article  CAS  PubMed  Google Scholar 

  78. Wondisford, F. E. (2003). Thyroid hormone action: insight from transgenic mouse models. J Investig Med 51, 215–220.

    Article  CAS  PubMed  Google Scholar 

  79. Cheng, S. Y. (2005). Thyroid hormone receptor mutations and disease: beyond thyroid hormone resistance. Trends Endocrinol Metab 16, 176–182.

    Article  CAS  PubMed  Google Scholar 

  80. Ng, L., and Forrest, D. (2006). Developmental roles of the thyroid hormone receptor α and β genes. Adv Dev Biol 16, 1–31.

    Article  Google Scholar 

  81. Wikström, L., Johansson, C., Saltó, C., Barlow, C., Campos Barros, A., Baas, F., Forrest, D., Thorén, P., and Vennström, B. (1998). Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor α1. EMBO J 17, 455–461.

    Article  PubMed  Google Scholar 

  82. Johansson, C., Göthe, S., Forrest, D., Vennström, B., and Thorén, P. (1999). Cardiovascular phenotype and temperature control in mice lacking thyroid hormone receptor β or both α1 and β. Am J Physiol (Heart Circ Physiol) 276, H2006–H2012.

    CAS  Google Scholar 

  83. Gloss, B., Trost, S., Bluhm, W., Swanson, E., Clark, R., Winkfein, R., Janzen, K., Giles, W., Chassande, O., Samarut, J., and Dillmann, W. (2001). Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor α or β. Endocrinology 142, 544–550.

    Article  CAS  PubMed  Google Scholar 

  84. Johansson, C., Koopmann, R., Vennström, B., and Benndorf, K. (2002). Accelerated inactivation of voltage-dependent K+ outward current in cardiomyocytes from thyroid hormone receptor alpha1-deficient mice. J Cardiovasc Electrophysiol 13, 44–50.

    Article  PubMed  Google Scholar 

  85. Marrif, H., Schifman, A., Stepanyan, Z., Gillis, M. A., Calderone, A., Weiss, R. E., Samarut, J., and Silva, J. E. (2005). Temperature homeostasis in transgenic mice lacking thyroid hormone receptor-alpha gene products. Endocrinology 146, 2872–2884.

    Article  CAS  PubMed  Google Scholar 

  86. Pelletier, P., Gauthier, K., Sideleva, O., Samarut, J., and Silva, J. E. (2008). Mice lacking the thyroid hormone receptor-alpha gene spend more energy in thermogenesis, burn more fat, and are less sensitive to high-fat diet-induced obesity. Endocrinology 149, 6471–6486.

    Article  CAS  PubMed  Google Scholar 

  87. Plateroti, M., Chassande, O., Fraichard, A., Gauthier, K., Freund, J. N., Samarut, J., and Kedinger, M. (1999). Involvement of T3Ralpha- and beta-receptor subtypes in mediation of T3 functions during postnatal murine intestinal development. Gastroenterology 116, 1367–1378.

    Article  CAS  PubMed  Google Scholar 

  88. Plateroti, M., Gauthier, K., Domon-Dell, C., Freund, J. N., Samarut, J., and Chassande, O. (2001). Functional interference between thyroid hormone receptor α and natural truncated TR delta α isoforms in the control of intestine development. Mol Cell Biol 21, 4761–4772.

    Article  CAS  PubMed  Google Scholar 

  89. Plateroti, M., Kress, E., Mori, J. I., and Samarut, J. (2006). Thyroid hormone receptor alpha1 directly controls transcription of the beta-catenin gene in intestinal epithelial cells. Mol Cell Biol 26, 3204–3214.

    Article  CAS  PubMed  Google Scholar 

  90. Arpin, C., Pihlgren, M., Fraichard, A., Aubert, D., Samarut, J., Chassande, O., and Marvel, J. (2000). Effects of T3Rα1 and T3Rα2 gene deletion on T and B lymphocyte development. J Immunol 164, 152–160.

    CAS  PubMed  Google Scholar 

  91. Angelin-Duclos, C., Domenget, C., Kolbus, A., Beug, H., Jurdic, P., and Samarut, J. (2005). Thyroid hormone T3 acting through the thyroid hormone {alpha} receptor is necessary for implementation of erythropoiesis in the neonatal spleen environment in the mouse. Development 132, 925–934.

    Article  CAS  PubMed  Google Scholar 

  92. Tinnikov, A., Nordström, K., Thorén, P., Kindblom, J. M., Malin, S., Rozell, B., Adams, M., Rajanayagam, O., Pettersson, S., Ohlsson, C., et al. (2002). Retardation of post-natal development caused by a negatively acting thyroid hormone receptor α1. EMBO J 21, 5079–5087.

    Article  CAS  PubMed  Google Scholar 

  93. O’Shea, P. J., Harvey, C. B., Suzuki, H., Kaneshige, M., Kaneshige, K., Cheng, S. Y., and Williams, G. R. (2003). A thyrotoxic skeletal phenotype of advanced bone formation in mice with resistance to thyroid hormone. Mol Endocrinol 17, 1410–1424.

    Article  PubMed  CAS  Google Scholar 

  94. O’Shea, P. J., Bassett, J. H., Sriskantharajah, S., Ying, H., Cheng, S. Y., and Williams, G. R. (2005). Contrasting skeletal phenotypes in mice with an identical mutation targeted to thyroid hormone receptor {alpha}1 or {beta}. Mol Endocrinol 19, 3045–3059.

    Article  PubMed  CAS  Google Scholar 

  95. Itoh, Y., Esaki, T., Kaneshige, M., Suzuki, H., Cook, M., Sokoloff, L., Cheng, S. Y., and Nunez, J. (2001). Brain glucose utilization in mice with a targeted mutation in the thyroid hormone α or β receptor gene. Proc Natl Acad Sci U S A 98, 9913–9918.

    Article  CAS  PubMed  Google Scholar 

  96. Esaki, T., Suzuki, H., Cook, M., Shimoji, K., Cheng, S. Y., Sokoloff, L., and Nunez, J. (2003). Functional activation of cerebral metabolism in mice with mutated thyroid hormone nuclear receptors. Endocrinology 144, 4117–4122.

    Article  CAS  PubMed  Google Scholar 

  97. Heuer, H., and Mason, C. A. (2003). Thyroid hormone induces cerebellar Purkinje cell dendritic development via the thyroid hormone receptor alpha1. J Neurosci 23, 10604–10612.

    CAS  PubMed  Google Scholar 

  98. Lemkine, G. F., Raj, A., Alfama, G., Turque, N., Hassani, Z., Alegria-Prevot, O., Samarut, J., Levi, G., and Demeneix, B. A. (2005). Adult neural stem cell cycling in vivo requires thyroid hormone and its alpha receptor. FASEB J 19, 863–865.

    CAS  PubMed  Google Scholar 

  99. Gilbert, M. E., Sui, L., Walker, M. J., Anderson, W., Thomas, S., Smoller, S. N., Schon, J. P., Phani, S., and Goodman, J. H. (2007). Thyroid hormone insufficiency during brain development reduces parvalbumin immunoreactivity and inhibitory function in the hippocampus. Endocrinology 148, 92–102.

    Article  CAS  PubMed  Google Scholar 

  100. Baas, D., Legrand, C., Samarut, J., and Flamant, F. (2002). Persistence of oligodendrocyte precursor cells and altered myelination in optic nerve associated to retina degeneration in mice devoid of all thyroid hormone receptors. Proc Natl Acad Sci U S A 99, 2907–2911.

    Article  CAS  PubMed  Google Scholar 

  101. Billon, N., Jolicoeur, C., Tokumoto, Y., Vennström, B., and Raff, M. (2002). Normal timing of oligodendrocyte development depends on thyroid hormone receptor α 1. EMBO J 21, 6452–6460.

    Article  CAS  PubMed  Google Scholar 

  102. Lezoualc’h, F., Hassan, A. H. S., Giraud, P., Loeffler, J.-P., Lee, S. L., and Demeneix, B. A. (1992). Assignment of the β-thyroid hormone receptor to 3,5,3′-triiodothyronine-dependent inhibition of transcription from the thyrotropin-releasing hormone promoter in chick hypothalamic neurons. Mol Endocrinol 6, 1797–1804.

    Article  PubMed  Google Scholar 

  103. Forrest, D., Hanebuth, E., Smeyne, R. J., Everds, N., Stewart, C. L., Wehner, J. M., and Curran, T. (1996b). Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor β: evidence for tissue-specific modulation of receptor function. EMBO J 15, 3006–3015.

    CAS  PubMed  Google Scholar 

  104. Gauthier, K., Chassande, O., Plateroti, M., Roux, J. P., Legrand, C., Pain, B., Rousset, B., Weiss, R., Trouillas, J., and Samarut, J. (1999). Different functions for the thyroid hormone receptors TRα and TRβ in the control of thyroid hormone production and post-natal development. EMBO J 18, 623–631.

    Article  CAS  PubMed  Google Scholar 

  105. Abel, E. D., Ahima, R. S., Boers, M. E., Elmquist, J. K., and Wondisford, F. E. (2001). Critical role for thyroid hormone receptor β2 in the regulation of paraventricular thyrotropin-releasing hormone neurons. J Clin Invest 107, 1017–1023.

    Article  CAS  PubMed  Google Scholar 

  106. Ng, L., Hurley, J. B., Dierks, B., Srinivas, M., Saltó, C., Vennström, B., Reh, T. A., and Forrest, D. (2001a). A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet 27, 94–98.

    CAS  PubMed  Google Scholar 

  107. Abel, E. D., Moura, E. G., Ahima, R. S., Campos-Barros, A., Pazos-Moura, C. C., Boers, M. E., Kaulbach, H. C., Forrest, D., and Wondisford, F. E. (2003). Dominant inhibition of thyroid hormone action selectively in the pituitary of thyroid hormone receptor-beta null mice abolishes the regulation of thyrotropin by thyroid hormone. Mol Endocrinol 17, 1767–1776.

    Article  CAS  PubMed  Google Scholar 

  108. Dupre, S. M., Guissouma, H., Flamant, F., Seugnet, I., Scanlan, T. S., Baxter, J. D., Samarut, J., Demeneix, B. A., and Becker, N. (2004). Both thyroid hormone receptor (TR)beta 1 and TR beta 2 isoforms contribute to the regulation of hypothalamic thyrotropin-releasing hormone. Endocrinology 145, 2337–2345.

    Article  CAS  PubMed  Google Scholar 

  109. Amma, L. L., Campos-Barros, A., Wang, Z., Vennström, B., and Forrest, D. (2001). Distinct tissue-specific roles for thyroid hormone receptors β and α1 in regulation of type 1 deiodinase expression. Mol Endocrinol 15, 467–475.

    Article  CAS  PubMed  Google Scholar 

  110. Ng, L., Pedraza, P. E., Faris, J. S., Vennstrom, B., Curran, T., Morreale de Escobar, G., and Forrest, D. (2001b). Audiogenic seizure susceptibility in thyroid hormone receptor beta-deficient mice. Neuroreport 12, 2359–2362.

    Article  CAS  PubMed  Google Scholar 

  111. Siesser, W. B., Cheng, S. Y., and McDonald, M. P. (2005). Hyperactivity, impaired learning on a vigilance task, and a differential response to methylphenidate in the TRbetaPV knock-in mouse. Psychopharmacology (Berl) 181, 653–663.

    Article  CAS  Google Scholar 

  112. Forrest, D., Erway, L. C., Ng, L., Altschuler, R., and Curran, T. (1996a). Thyroid hormone receptor β is essential for development of auditory function. Nature Genet 13, 354–357.

    Article  CAS  PubMed  Google Scholar 

  113. Guadaño-Ferraz, A., Benavides-Piccione, R., Venero, C., Lancha, C., Vennström, B., Sandi, C., DeFelipe, J., and Bernal, J. (2003). Lack of thyroid hormone receptor alpha1 is associated with selective alterations in behavior and hippocampal circuits. Mol Psychiatry 8, 30–38.

    Article  PubMed  CAS  Google Scholar 

  114. Ng, L., Rusch, A., Amma, L. L., Nordstrom, K., Erway, L. C., Vennstrom, B., and Forrest, D. (2001c). Suppression of the deafness and thyroid dysfunction in Thrb-null mice by an independent mutation in the Thra thyroid hormone receptor alpha gene. Hum Mol Genet 10, 2701–2708.

    Article  CAS  PubMed  Google Scholar 

  115. Sjöberg, M., and Vennström, B. (1995). Ligand-dependent and -independent transactivation by thyroid hormone receptor β2 is determined by the structure of the hormone response element. Mol Cell Biol 15, 4718–4726.

    PubMed  Google Scholar 

  116. Zhu, X.-G., McPhie, P., Lin, K.-H., and Cheng, S.-Y. (1997). The differential hormone-dependent transcriptional activation of thyroid hormone receptor isoforms is mediated by interplay of their domains. J Biol Chem 272, 9048–9054.

    Article  CAS  PubMed  Google Scholar 

  117. Yang, Z., and Privalsky, M. L. (2001). Isoform-specific transcriptional regulation by thyroid hormone receptors: hormone-independent activation operates through a steroid receptor mode of co-activator interaction. Mol Endocrinol 15, 1170–1185.

    Article  CAS  PubMed  Google Scholar 

  118. Chatterjee, V., and Beck-Peccoz, P. (2001). Resistance to thyroid hormone, In L. de Groot and J. Jameson, eds., Endocrinology. WB Saunders Company, Philadelphia, PA, pp. 1609–1615.

    Google Scholar 

  119. Refetoff, S., DeWind, L. T., and DeGroot, L. J. (1967). Familial syndrome combining deaf-mutism, stippled epiphyses, goiter, and abnormally high PBI: possible target organ refractoriness to thyroid hormone. J Clin Endocrinol Metab 27, 279–294.

    Article  CAS  PubMed  Google Scholar 

  120. Kaneshige, M., Kaneshige, K., Zhu, X., Dace, A., Garrett, L., Carter, T. A., Kazlauskaite, R., Pankratz, D. G., Wynshaw-Boris, A., Refetoff, S., et al. (2000). Mice with a targeted mutation in the thyroid hormone β receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci U S A 97, 13209–13214.

    Article  CAS  PubMed  Google Scholar 

  121. Liu, Y. Y., Schultz, J. J., and Brent, G. A. (2003). A thyroid hormone receptor α gene mutation (P398H) is associated with visceral adiposity and impaired catecholamine-stimulated lipolysis in mice. J Biol Chem 278, 38913–38920.

    Article  CAS  PubMed  Google Scholar 

  122. Sorensen H. G., van der Deure, W. M., Hansen, P. S., Peeters, R. P., Breteler, M. M., Kyvik, K. O., Sorensen, T. I., Hegedus. L., and Visser, T. J. (2008). Identification and consequences of polymorphisms in the thyroid hormone receptor alpha and beta genes. Thyroid 18:1087–1094.

    Google Scholar 

  123. Gonzalez-Sancho, J. M., Garcia, V., Bonilla, F., and Munoz, A. (2003). Thyroid hormone receptors/THR genes in human cancer. Cancer Lett 192, 121–132.

    Article  CAS  PubMed  Google Scholar 

  124. Lee, T. C., Almeida, D., Claros, N., Abramson, D. H., and Cobrinik, D. (2006). Cell cycle-specific and cell type-specific expression of rb in the developing human retina. Invest Ophthalmol Vis Sci 47, 5590–5598.

    Article  PubMed  Google Scholar 

  125. Sap, J., Muñoz, A., Schmitt, J., Stunnenberg, H., and Vennström, B. (1989). Repression of transcription mediated at a thyroid hormone response element by the v-erbA oncogene product. Nature 340, 242–244.

    Article  CAS  PubMed  Google Scholar 

  126. Baxter, J. D., Webb, P., Grover, G., and Scanlan, T. S. (2004). Selective activation of thyroid hormone signaling pathways by GC-1: a new approach to controlling cholesterol and body weight. Trends Endocrinol Metab 15, 154–157.

    Article  CAS  PubMed  Google Scholar 

  127. Berkenstam, A., Kristensen, J., Mellstrom, K., Carlsson, B., Malm, J., Rehnmark, S., Garg, N., Andersson, C. M., Rudling, M., Sjoberg, F., et al. (2008). The thyroid hormone mimetic compound KB2115 lowers plasma LDL cholesterol and stimulates bile acid synthesis without cardiac effects in humans. Proc Natl Acad Sci U S A 105, 663–667.

    Article  CAS  PubMed  Google Scholar 

  128. Cuevas, E., Ausó, E., Telefont, M., Morreale de Escobar, G., Sotelo, C., and Berbel, P. (2005 Aug). Transient maternal hypothyroxinemia at onset of corticogenesis alters tangential migration of medial ganglionic eminence-derived neurons. Eur J Neurosci 22(3), 541–551.

    Article  PubMed  Google Scholar 

  129. Wilcoxon, J. S., Nadolski, G. J., Samarut, J., Chassande, O., and Redei, E. E. (2007) Behavioral inhibition and impaired spatial learning and memory in hypothyroid mice lacking thyroid hormone receptor alpha. Behav Brain Res 177, 109–116.

    Google Scholar 

  130. Dellovade, T. L., Chan, J., Vennstrom, B., Forrest, D., and Pfaff, D. W. (2000). The two thyroid hormone receptor genes have opposite effects on estrogen-stimulated sex behaviors. Nat Neurosci 3, 472–475.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the intramural research program at NIDDK at the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

VennstrÖM, B., Liu, H., Forrest, D. (2010). Thyroid Hormone Receptors. In: Bunce, C., Campbell, M. (eds) Nuclear Receptors. Proteins and Cell Regulation, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3303-1_7

Download citation

Publish with us

Policies and ethics