Skip to main content

Advertisement

Log in

Hyperactivity, impaired learning on a vigilance task, and a differential response to methylphenidate in the TRβPV knock-in mouse

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The thyroid hormones (T3 and T4) play a critical role in brain development, and thyroid abnormalities have been linked to a variety of psychiatric and neuropsychological disorders. Among patients with the rare genetic syndrome resistance to thyroid hormone (RTH), 40–70% meet the diagnostic criteria for attention deficit-hyperactivity disorder (ADHD). RTH is caused by a mutation in the thyroid receptor β (Thrb) gene that results in reduced binding of T3 to its receptor and elevated concentrations of T3, T4, and thyroid-stimulating hormone.

Objectives

We tested a knock-in (KI) mouse expressing a mutant TRβ allele (TRβPV) for the behavioral features of ADHD and their response to methylphenidate (MPH).

Methods

The locomotor activity of the TRβPV KI mice was measured in activity monitors over multiple sessions. Sustained attention and the effects of MPH on attention were assessed using a vigilance task.

Results

The TRβPV KI mice are hyperactive and have learning deficits on a vigilance task. Doses of MPH that impair the vigilance performance of wild-type mice do not affect the performance of the TRβPV KI mice.

Conclusions

The TRβPV KI mice provide a tool for studying the underlying neural deficits that contribute to thyroid-related neurological disorders, hyperactivity, and altered responsiveness to MPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal RA, Rastogi RB, Singhal RL (1976) Changes in brain catecholamines and spontaneous locomotor activity in response to thyrotropin releasing hormone. Res Commun Chem Pathol Pharmacol 15:743–752

    PubMed  CAS  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Andersen SL, Teicher MH (2000) Sex differences in dopamine receptors and their relevance to ADHD. Neurosci Biobehav Rev 24:137–141

    Article  PubMed  CAS  Google Scholar 

  • Andersen SL, Rutstein M, Benzo J, Hostetter JC, Teicher MH (1997) Sex differences in dopamine receptor overproduction and elimination. NeuroReport 8:1495–1498

    Article  PubMed  CAS  Google Scholar 

  • Biederman J, Mick E, Faraone SV, Braaten E, Doyle A, Spencer T, Wilens TE, Frazier E, Johnson MA (2002) Influence of gender on attention deficit hyperactivity disorder in children referred to a psychiatric clinic. Am J Psychiatry 159:36–42

    Article  PubMed  Google Scholar 

  • Bodenner DL, Lash RW (1998) Thyroid disease mediated by molecular defects in cell surface and nuclear receptors. Am J Med 105:524–538

    Article  PubMed  CAS  Google Scholar 

  • Broerson LM, Uylings HB (1999) Visual attention task performance in Wistar and Listar hooded rats: response inhibition deficits after medial prefrontal cortex lesions. Neuroscience 94:47–57

    Article  PubMed  Google Scholar 

  • Chan S, Kilby MD (2000) Thyroid hormone and central nervous system development. J Endocrinol 165:1–8

    Article  PubMed  CAS  Google Scholar 

  • Chudasama Y, Muir JL (2001) Visual attention in the rat: a role for the prelimbic cortex and thalamic nuclei? Behav Neurosci 2:417–428

    Article  Google Scholar 

  • Claustre J, Balende C, Pujol JF (1996) Influence of thyroid hormone status on tyrosine hydroxylase in central and peripheral catecholaminergic structures. Neurochem Int 28:277–281

    Article  PubMed  CAS  Google Scholar 

  • Cook EH, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal BL (1995) Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 56:993–998

    PubMed  CAS  Google Scholar 

  • Davids E, Zhang K, Kula NS, Tarazi FI, Baldessarini RJ (2002) Effects of norepinephrine and serotonin transporter inhibitors on hyperactivity induced by neonatal 6-hydroxydopamine lesioning in rats. J Pharmacol Exp Ther 301:1097–1102

    Article  PubMed  CAS  Google Scholar 

  • De Bruin NMWJ, Kiliaan AJ, De Wilde MC, Broersen LM (2003) Combined uridine and choline administration improves cognitive deficits in spontaneously hypertensive rats. Neurobiol Learn Mem 80:63–79

    Article  PubMed  CAS  Google Scholar 

  • Demet MM, Ozmen B, Deveci A, Boyvada S, Adiguzel H, Aydemir O (2002) Depression and anxiety in hyperthyroidism. Arch Med Res 33:552–556

    Article  PubMed  Google Scholar 

  • Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG (1999) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283:397–401

    Article  PubMed  CAS  Google Scholar 

  • Gaub M, Carlson CL (1997) Gender differences in ADHD: a meta-analysis and critical review. J Am Acad Child Adolesc Psych 36:1036–1045

    Article  CAS  Google Scholar 

  • Gill M, Daly G, Heron S, Hawi Z, Fitzgerald M (1997) Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Mol Psychiatry 2:311–313

    Article  PubMed  CAS  Google Scholar 

  • Goldman LS, Genel M, Bezman RJ, Slanetz PJ (1998) Diagnosis and treatment of attention-deficit/hyperactivity disorder in children and adolescents. J Am Med Assoc 279:1100–1107

    Article  CAS  Google Scholar 

  • Hauser P, Zametkin AJ, Martinez P, Vitiello B, Matochik JA, Mixson JA, Weintraub BD (1993) Attention deficit-hyperactivity disorder in people with generalized resistance to thyroid hormone. N Engl J Med 328:997–1001

    Article  PubMed  CAS  Google Scholar 

  • Himelstein J, Schulz KP, Newcorn JH, Halperin JM (2000) The neurobiology of attention-deficit hyperactivity disorder. Front Biosci 5:461–478

    Article  Google Scholar 

  • Hridina PD, Ghosh PK, Rastogi RB, Singhal RL (1975) Ontogenic pattern of dopamine, acetylcholine, and acetylcholinesterase in the brains of normal and hypothyroid rats. Can J Physiol Pharm 53:709–715

    Google Scholar 

  • Ito JM, Valcana T, Timiras PS (1997) Effect of hypo- and hyperthyroidism on regional monoamine metabolism in the adult rat brain. Neuroendocrinology 24:55–64

    Google Scholar 

  • Kaneshige M, Kaneshige K, Zhu X, Dace A, Garrett L, Carter TA, Kazlauskaite R, Pankratz DG, Wynshaw-Boris A, Refetoff S, Weintraub B, Willingham MC, Barlow C, Cheng S-Y (2000) Mice with a targeted mutation in the thyroid hormone β receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci U S A 97:13209–13214

    Article  PubMed  CAS  Google Scholar 

  • Kincaid AE (2001) Spontaneous circling behavior and dopamine neuron loss in a genetically hypothyroid mouse. Neuroscience 105:891–898

    Article  PubMed  CAS  Google Scholar 

  • Klein C, Fischer B Jr, Fischer B, Hartnegg K (2002) Effects of methylphenidate on saccadic responses in patients with ADHD. Exp Brain Res 145:121–125

    Article  PubMed  CAS  Google Scholar 

  • Kooistra L, van der Meere JJ, Vulsma T, Kalverboer AF (1996) Sustained attention problems in children with early-treated congenital hypothyroidism. Acta Paediatr 85:425–429

    Article  PubMed  CAS  Google Scholar 

  • Kopp P, Kitajima K, Jameson JL (1996) Syndrome of resistance to thyroid hormone: insights into thyroid hormone action. Proc Soc Exp Biol Med 211:49–61

    PubMed  CAS  Google Scholar 

  • LaHoste GJ, Swanson JM, Wigal SB, Glabe C, Wigal T, King N, Kennedy JL (1996) Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Mol Psychiatry 1:121–124

    PubMed  CAS  Google Scholar 

  • Lee IT, Sheu WH, Liau YJ, Lin SY, Lee WJ, Lin CC (2003) Relationship of stressful life events, anxiety and depression to hyperthyroidism in an Asian population. Horm Res 60:247–251

    Article  PubMed  CAS  Google Scholar 

  • Leonard CM, Martinez P, Weintraub BD, Hauser P (1995) Magnetic resonance imaging of cerebral anomalies in subjects with resistance to thyroid hormone. Am J Med Genet 60:238–243

    Article  PubMed  CAS  Google Scholar 

  • Manor I, Corbex M, Eisenberg J, Gritsensko I, Bachner-Melman R, Tyrano S, Ebstein RP (2004) Association of the dopamine D5 receptor with attention-deficit/hyperactivity disorder (ADHD) and scores on a continuous performance test (TOVA). Am J Med Genet 127B:73–77

    Article  PubMed  Google Scholar 

  • Matochik JA, Zametkin AJ, Cohen RM, Hauser P, Weintraub BD (1996) Abnormalities in sustained attention and anterior cingulate metabolism in subjects with resistance to thyroid hormone. Brain Res 723:23–28

    Article  PubMed  CAS  Google Scholar 

  • McDonald MP, Wong R, Goldstein G, Weintraub B, Cheng S-Y, Crawley JN (1998) Hyperactivity and learning deficits in transgenic mice bearing a human mutant thyroid hormone β1 receptor gene. Learn Memory 5:289–301

    CAS  Google Scholar 

  • McGaughy J, Sarter M (1995) Behavioral vigilance in rats: task validation and effects of age, amphetamine, and benzodiazepine receptor ligands. Psychopharmacology 117:340–357

    Article  PubMed  CAS  Google Scholar 

  • Oades RD (2002) Dopamine may be ‘hyper’ with respect to noradrenaline metabolism, but ‘hypo’ with respect to serotonin metabolism in children with attention-deficit/hyperactivity disorder. Behav Brain Res 130:97–102

    Article  PubMed  CAS  Google Scholar 

  • Pliszka SR (1998) Comorbidity of attention-deficit/hyperactivity disorder with psychiatric disorder: an overview. J Clin Psychiatry 59(Suppl 7):50–58

    PubMed  Google Scholar 

  • Pliszka SR (2000) Patterns of psychiatric comorbidity with attention-deficit/hyperactivity disorder. Child Adolesc Psychiatr Clin N Am 9:525–540, vii

    CAS  Google Scholar 

  • Rapaport JL, Buchsbaum MS, Weingartner H, Zahn TP, Ludlow C, Mikkelson EJ (1980) Dextroamphetamine: its cognitive and behavioral effects in normal and hyperactive boys and men. Arch Gen Psychiatry 37:933–943

    PubMed  Google Scholar 

  • Rastogi RB, Singhal RL (1974) Alterations in brain norepinephrine and tyrosine hydroxylase activity during experimental hypothyroidism in rats. Brain Res 81:253–266

    Article  PubMed  CAS  Google Scholar 

  • Rastogi R, Singhal RL (1976) Influence of neonatal and adult hyperthyroidism on behavior and biosynthetic capacity for norepinephrine, dopamine, 5-hydroxytryptamine in rat brain. J Pharmacol Exp Ther 198:609–618

    PubMed  CAS  Google Scholar 

  • Rhodes JS, Garland T (2003) Differential sensitivity to acute administration of Ritalin, apomorphine, SCH 23390, but not raclopride in mice selectively bred for hyperactive wheel-running behavior. Psychopharmacology 167:242–250

    PubMed  CAS  Google Scholar 

  • Richardson E, Kupietz SS, Winsberg BG, Maitinsky S, Mendell N (1988) Effects of methylphenidate dosage in hyperactive reading-disabled children: II. Reading achievement. J Am Acad Child Adolesc Psych 27:78–87

    Article  CAS  Google Scholar 

  • Rovet J (1999) Congenital hypothyroidism: long-term outcome. Thyroid 9:741–748

    Article  PubMed  CAS  Google Scholar 

  • Rovet J (2002) Congenital hypothyroidism: an analysis of persisting deficits and associated factors. Child Neuropsychol 8:150–162

    PubMed  Google Scholar 

  • Rovet J, Alvarez M (1996) Thyroid hormone and attention in school-age children with congenital hypothyroidism. J Child Psychol Psychiatry 37:579–585

    Article  PubMed  CAS  Google Scholar 

  • Rovet J, Daneman D (2003) Congenital hypothyroidism: a review of current diagnostic and treatment practices in relation to neuropsychologic outcome. Paediatr Drugs 5:141–149

    PubMed  Google Scholar 

  • Sagvolden T (2000) Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev 24:31–39

    Article  PubMed  CAS  Google Scholar 

  • Solanto M (2002) Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research. Behav Brain Res 130:65–71

    Article  PubMed  CAS  Google Scholar 

  • Song S-I, Daneman D, Rovet J (2001) The influence of etiology and treatment factors on intellectual outcome in congenital hypothyroidism. Dev Behav Pediatr 22:376–384

    CAS  Google Scholar 

  • Stein MA, Weiss RE, Refetoff S (1995) Neurocognitive characteristics of individuals with resistance to thyroid hormone: comparisons with individuals with attention-deficit hyperactivity disorder. J Dev Behav Pediatr 16:406–411

    PubMed  CAS  Google Scholar 

  • Suzuki H, Willingham MC, Cheng S-Y (2002) Mice with a mutation in the thyroid hormone receptor β gene spontaneously develop thyroid carcinoma: a mouse model of thyroid carcinogenesis. Thyroid 12:963–969

    Article  PubMed  CAS  Google Scholar 

  • Swanson JM, Sunohara GA, Kennedy JL, Regino R, Fineberg E, Wogal T, Lerner M, Williams L, LaHoste GJ, Wigal S (1998) Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): a family based approach. Mol Psychiatry 3:38–41

    Article  PubMed  CAS  Google Scholar 

  • Thompson CC, Potter GB (2000) Thyroid hormone action in neural development. Cereb Cortex 10:939–945

    Article  PubMed  CAS  Google Scholar 

  • Trommer BL, Hoeppner JA, Lorber R, Armstrong KJ (1988) The go–no-go paradigm in attention deficit disorder. Ann Neurol 24:610–614

    Article  PubMed  CAS  Google Scholar 

  • Wong R, Vasilyev VV, Ting YT, Kutler DI, Willingham MC, Weintraub BD, Cheng S (1997) Transgenic mice bearing a human mutant thyroid beta 1 receptor manifest thyroid function anomalies, weight reduction, and hyperactivity. Mol Med 3:303–314

    PubMed  CAS  Google Scholar 

  • Zhang X-Y, Kaneshige M, Kamiya Y, Kaneshige K, McPhie P, Cheng S-Y (2002) Differential expression of thyroid hormone receptor isoforms dictates the dominant negative activity of mutant β receptor. Mol Endocrinol 16:2077–2092

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Isha Dhringa, Andrew Misfeldt, and Jiali Zhao for technical assistance, Nicole Schramm for comments on the manuscript, and Warren Lambert for advice on statistical analysis. These experiments comply with the current laws of the country in which they were performed and with the principles of laboratory animal care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. McDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siesser, W.B., Cheng, Sy. & McDonald, M.P. Hyperactivity, impaired learning on a vigilance task, and a differential response to methylphenidate in the TRβPV knock-in mouse. Psychopharmacology 181, 653–663 (2005). https://doi.org/10.1007/s00213-005-0024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0024-5

Keywords

Navigation