Skip to main content

Critical Evaluation of the Recent Development and Trends in Submarine Groundwater Discharge Research in Asia

  • Chapter
Management and Sustainable Development of Coastal Zone Environments
  • 1515 Accesses

Abstract

In majority of the arid and dry regions of the world and in monsoon-dependent countries in Asia, groundwater is a major freshwater resource for drinking and other uses. The coastal regions, which support maximum density of population, mainly depend on the ground water. Due to the population growth and the fact that about 50% of the world population now already live in coastal regions, the groundwater issues in the coastal areas are increasingly becoming crucial (UNWWDR, 2009). Over-exploitation of groundwater in these areas can potentially lead to saltwater intrusion, land subsidence, permanent damage to the ability of an aquifer to store and transmit water, and reduced discharges to rivers, streams, and critical aquatic habitat areas (Fig. 1). Further, coastal groundwater plays an important role in nutrient flux to the ocean. The influence of submarine groundwater discharge (SGD) on the coastal water quality, their biogeochemical process and their ecology are very significant in most of the coastal regions. Investigations of interactions between groundwater and coastal seawater have been restricted mainly to the case of water movement from sea to the land, i.e. saltwater intrusion (Segol and Pinder, 1976; Reilly and Goodman, 1987) while submarine groundwater discharge (SGD) considers the water output from a basin-scale hydrological cycle, representing an input into the ocean (Fig. 2).

A compilation of processes affecting coastal groundwater.

Schematic depiction of processes associated with SGD (modified after Taniguchi et al., 2002). Arrows indicate fluid movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Basu, A.R., Jacobsen, S.B., Poreda, R.J., Dowling, C.B. and Aggarwal, P.K. (2001). Large groundwater strontium flux to the oceans from the Bengal Basin and the marine strontium isotope record. Science, 293, 1470–1474.

    Article  Google Scholar 

  • Bear, J., Cheng, A.H.-D., Herrera, I., Sorek, S. and Ouazar, D. (1999). Seawater Intrusion in Coastal Aquifers: Concepts, Methods, and Practices, Kluwer Academic Publishers, Dordrecht, Holland.

    Google Scholar 

  • Buddemeier, R.W. (ed.) (1996). Groundwater Discharge in the Coastal Zone: Proceedings of an International Symposium. LOICZ/R&S/96-8, IV+179 pp. LOICZ, Texel, the Netherlands.

    Google Scholar 

  • Burnett, W.C. (1999). Offshore springs and seeps are focus of working group. EOS, 80, 13–15.

    Article  Google Scholar 

  • Burnett, W.C., Taniguchi, M. and Oberdorfer, J. (2001). Measurement and significance of the direct discharge of groundwater into the coastal zone. J Sea Res, 46, 109–116.

    Article  Google Scholar 

  • Burnett, W.C., Chanton, J., Christoff, J., Kontar, E., Krupa, S. and Lambert, M. (2002). Assessing methodologies for measuring groundwater discharge to the ocean, EOS, 83, 117–123.

    Article  Google Scholar 

  • Burnett, W.C., Bokuniewicz, H., Huettel, M., Moore, W.S. and Taniguchi, M. (2003). Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66(1–2), 3–33.

    Article  Google Scholar 

  • Burnett, W.C. and Dulaiova, H. (2003). Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. J. Environ. Radioactivity, 69, 21–35.

    Article  Google Scholar 

  • Burnett, W.C., Wattayakorn, G., Taniguchi, M., Dulaiova, H., Sojisuporn, P. and Rungsupa, S. (2007). Groundwater-derived nutrient inputs to the Upper Gulf of Thailand. Continental Shelf Research, 27(2), 176–190.

    Article  Google Scholar 

  • Burnett, W.C., Aggarwal, P.K., Aureli, A., Bokuniewicz, H., Cable, J.E., Charette, M.A., Kontar, E., Krupa, S., Kulkarni, K.M., Loveless, A., Moore, W.S., Oberdorfer, J.A., Oliveira, J., Ozyurt, N., Povinec, P., Privitera, A.M.G. and Rajar, R. (2006). Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of the Total Environment, 367, 498–543.

    Article  Google Scholar 

  • Cable, J.E., Burnett, W.C. and Chanton, J.P. (1997). Magnitudes and variations of groundwater seepage into shallow waters of the Gulf of Mexico. Biogeochemistry, 38, 189–205.

    Article  Google Scholar 

  • Cable, J.E. and Martin, J.B. (2007). In situ evaluation of near shore marine and fresh pore water transport into Flamengo Bay, Brazil. Estuarine, Coastal and Shelf Science, 76, 473–483.

    Article  Google Scholar 

  • COSOD II (1987). Fluid circulation in the crust and the global geochemical budget. Report of the Second Conference on Scientific Ocean Drilling, Strasbourg, France, 6–8 July.

    Google Scholar 

  • Cathles et al. (1987). Fluid circulation in the crust and global geochemical budget, Report of the second conference on scientific ocean drilling.

    Google Scholar 

  • Chidambaram, S. and Ramanathan, AL. (2008). Comparison of subsurface ground water discharge in east and west coast of India (DST-ILTP project Progress report 2007–2008, Govt of India, 32 p, Unpublished).

    Google Scholar 

  • Destouni, G. and Prieto, C. (2003). On the possibility for generic modelling of submarine groundwater discharge. Biogeochemistry, 66, 171–186.

    Article  Google Scholar 

  • Dzhamalov, R.G., Zektser, I.S. and Meskheteli, A.V. (1977). Groundwater discharge into the seas and world ocean, Nauka (Science), Moscow, 94 p. (in Russian).

    Google Scholar 

  • Dzhamalov, R.G. and Safronova, T.I. (2000). On estimating chemical discharge into the world ocean with groundwater. Water Resources, 29(6), 626–631.

    Article  Google Scholar 

  • Gallardo, A.H. and Marui, A. (2006). Submarine groundwater discharge: an outlook of recent advances and current knowledge. Geo-Mar Lett, 26, 102–113.

    Article  Google Scholar 

  • Garrels, R.M. and MacKenzie, F.T. (1971). Evolution of Sedimentary Rocks, Norton & Co., New York.

    Google Scholar 

  • Hwang, D.W., Kim, G., Lee, Y-W. and Yang, H-S. (2005). Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes. Marine Chemistry, 96, 61–71.

    Article  Google Scholar 

  • IOC/INF (2000). Assessment and management implications of submarine groundwater discharge into the coastal zone. IOC/INF-1140 Paris, 2 June 2000.

    Google Scholar 

  • Inman, D.L., Tai, R.J. and Nordstrom, C.E. (1971). Mixing in the surf zone. J. Geophys. Res., 76, 3493–3514.

    Article  Google Scholar 

  • Jacob, N., Babu, D.S., Suresh, and Shivanna, K. (2009). Radon as an indicator of submarine.

    Google Scholar 

  • Johannes, R.E. (1980). The ecological significance of the submarine discharge of groundwater. Mar. Ecol. Prog. Ser., 3, 365–373.

    Article  Google Scholar 

  • Kaleris, V. et al. (2002). Modelling submarine groundwater discharge: an example from the western Baltic Sea. J. Hydrology, 265, 76–99.

    Article  Google Scholar 

  • Kaleris, V. (2006). Submarine groundwater discharge: Effects of hydrogeology and of near-shore surface water bodies. J. Hydrology, 325, 96–117.

    Article  Google Scholar 

  • Kim, G. and Hwang, D.W. (2002). Tidal pumping of groundwater into the coastal ocean revealed from submarine 222Rn and CH4 monitoring. Geophys Res Lett, 29, 10.1029/2002GL015093.

    Google Scholar 

  • Kim, G., Ryu, J.-W., Yang, H-S. and Yun, S-T. (2005). Submarine groundwater discharge (SGD) into the Yellow Sea revealed by 228Ra and 226Ra isotopes: Implications for global silicate fluxes. Earth and Planetary Science Letters, 237, 156–166.

    Article  Google Scholar 

  • Kohout, F.A. (1966). Submarine springs: A neglected phenomenon of coastal hydrology. Hydrology, 26, 391–413.

    Google Scholar 

  • Kontar, E.A. and Zektser, I.S. (1999). Submarine discharge and its effect on oceanic processes in the coastal zone. Water Resources, 26, 512.

    Google Scholar 

  • Langevin, G.D. (2003). Simulation of Submarine Ground Water Discharge to a Marine Estuary: Biscayne Bay, Fl. Ground Water, 41(6), 758–771.

    Article  Google Scholar 

  • Lautier, J.C. (1998). Hydrogeologic Assessment of the Proposed Deepening of the Wilmington Harbor Shipping Channel, New Hanover and Brunswick Counties, North Carolina. NC Dept. of Environment, Health, and Natural Resources, Division of Water Resources, Raleigh, NC.

    Google Scholar 

  • Li, L., Barry, D.A., Stagnitti, F. and Parlange, J-Y. (1999). Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resources Research, 35, 3253–3259.

    Article  Google Scholar 

  • Martin, J., Cable, J., Smith, C., Roy, M. and Cherrier, J. (2007). Magnitudes of submarine groundwater discharge from marine and terrestrial sources: Indian River Lagoon, Florida. Water Resources Research, 43, W05440, doi: 10.1029/2006WR005266.

    Google Scholar 

  • Martin, J.B., Cable, J.E., Jaeger, J., Hartl, K. and Smith, C.G. (2006). Thermal and chemical evidence for rapid water exchange across the sediment-water interface by bioirrigation in the Indian River Lagoon, Florida. Limnol. Oceanogr., 53(3), 1332–1341.

    Google Scholar 

  • McCoy, C.A., Corbett, D.R., Cable, J.E. and Spruill, R.K. (2007a). Hydrogeological characterization and quantification of submarine groundwater discharge in the southeast Coastal Plain of North Carolina. J. Hydrol., 339, 159–171.

    Article  Google Scholar 

  • McDonalt, M.G. and Harbaugh, A.W. (1988). A modular three-dimensional finitedifferences groundwater flow model. US Geol Surv Open-File Report 83-875, 528 p.

    Google Scholar 

  • Michael, H.A., Mulligan, A.E. and Harvey, C.F. (2005). Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature, 436, 1145–1148.

    Article  Google Scholar 

  • Moore, W.S. (1996). Large groundwater inputs to coastal waters revealed by 226Ra enrichment. Nature, 380, 612–614.

    Article  Google Scholar 

  • Moore, W.S. (1997). High fluxes of radium and barium from the mouth of the Ganges-Brahmaputra River during low river discharge suggest a large groundwater source. Earth Planet Sci Lett, 150, 141–150.

    Article  Google Scholar 

  • Morastersky, R. (1996). Seep and ye shall find: Hidden water flow. Science News, 149 (20 April), 245.

    Article  Google Scholar 

  • Oberdorfer, J.A. (2003). Hydrogeologic modeling of submarine groundwater discharge: comparison to other quantitative methods. Biogeochemistry, 66, 159–169.

    Article  Google Scholar 

  • Peterson, R.N., Burnett, W.C., Taniguchi, M., Jianyao, C., Santos, I.R. and Ishitobi, T. (2008). Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China. Journal of Geophysical Research, ISSN 0148-0227, 113, noC9, [Note(s): C09021.1-C09021.14] (3/4 p.)

    Google Scholar 

  • Reilly, T.E. and Goodman, A.S. (1987). Analysis of saltwater upcoming beneath a pumping well. Journal of Hydrology, 89, 169–204.

    Article  Google Scholar 

  • SCOR-LOIZ (2004). Submarine groundwater discharge management implications, measurements and effects. IHP-VI Series on Groundwater 5. IOC Manuals and Guides 44. UNESCO, Paris.

    Google Scholar 

  • Segol, G. and Pinder, G.F. (1976). Transient simulation of saltwater intrusion in southeastern Florida. Water Resources Research, 12, 65–70.

    Article  Google Scholar 

  • Sekuliè, B. and Vertaènik, A. (1996). Balance of Average Annual Fresh Water Inflow into the Adriatic Sea. Water Resource Development, 12(1), 89–97.

    Article  Google Scholar 

  • Smith, A.J. (2004). Mixed convection and density-dependent seawater circulation in coastal aquifers. Water Resou Res, 40 W08309. doi:10.1029/2003WR002977.

    Google Scholar 

  • Smith, A.J. and Turner, J.V. (2001). Density-dependent surface water-groundwater interaction and nutrient discharge in the Swan-Canning Estuary. Hydrological Proc, 15, 2595–2616.

    Article  Google Scholar 

  • Taniguchi, M., Sakura, Y. and Ishii, T. (1998). Estimations of saltwater-fresh water interfaces and groundwater discharge rates in coastal zones from borehole temperature data. Proceeding of Japanese Association of Groundwater Hydrology Meeting, Tokyo, October (1998), pp. 86–89.

    Google Scholar 

  • Taniguchi, M., Inouchi, K., Tase, N. and Shimada, J. (1999). Combination of tracer and numerical simulations to evaluate the groundwater capture zone, IAHS Publ 258, pp. 207–213.

    Google Scholar 

  • Taniguchi. M. (2000). Evaluation of the saltwater-groundwater interface from borehole temperature in a coastal region. Geophys Res Lett, 27, 713–716.

    Article  Google Scholar 

  • Taniguchi, M., Burnett, W.C., Cable, J.E. and Turner, J.V. (2002). Investigations of submarine groundwater discharge. Hydrol Process, 16, 2115–2129.

    Article  Google Scholar 

  • Taniguchi, M. et al. (2003). Spatial and temporal distribution of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the northeastern Gulf of Mexico. Biogeochemistry, 66, 35–53.

    Article  Google Scholar 

  • Taniguchi, M., Ishitobi, T. and Saeki, K.-I. (2005). Evaluation of Time-Space Distributions of Submarine Ground Water Discharge. Ground Water, 43(35), 336–342.

    Article  Google Scholar 

  • Taniguchi, M., Ishitobi, T., Burnett, W.C. and Wattayakorn, G. (2007). Evaluating Ground Water-Sea Water Interactions via Resistivity and Seepage Meters. Ground Water, 45(6), 729–735.

    Article  Google Scholar 

  • Taniguchi, M., Stieglitz, T. and Ishitobi, T. (2008). Temporal variability of water quality of submarine groundwater discharge in Ubatuba, Brazil. Estuarine, Coastal and Shelf Science, 484–492.

    Google Scholar 

  • Taniguchi, M., Ishitobi, T., Chen, J., Onodera, S., Miyaoka, K., Burnett, W.C., Peterson, R., Liu, G. and Fukushima, Y. (2008). Submarine groundwater discharge from the Yellow River Delta to the Bohai Sea, China, J. Geophys. Res., 113, C06025, doi:10.1029/2007JC004498.

    Google Scholar 

  • Thompson, C., Smith, L. and Maji, R. (2007). Hydrogeological modeling of submarine groundwater discharge along the continental shelf of Louisiana. J. Geophys. Res., 12(C3), C03014.

    Google Scholar 

  • Uchiyama, Y., Nadaoka, K., Rölke, P., Adachi, K. and Yagi, H. (2000). Submarine groundwater discharge into the sea and associated nutrient transport in a sandy beach. Water Resour. Res., 36(6), 1467–1479.

    Article  Google Scholar 

  • UNWWDR (2009). Water in a Changing World, World Water Development Report 3, World Water Assessment Programme UNESCO.

    Google Scholar 

  • Valiela, I., Costa, J., Foreman, K., Teal, J.M., Howes, B. and Aubrey, D. (1990). Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters. Biodegradation, 10(3), 177–197.

    Google Scholar 

  • Wilson, A.M. (2005). Fresh and saline groundwater discharge to the ocean: A regional perspective. Water Resour. Res., 41, W02016.

    Article  Google Scholar 

  • Zektser, I.S., Ivanov, V.A. and Meskheteli, A.V. (1973). The problem of direct groundwater discharge to the seas. J. Hydrol., 20, 1–36.

    Article  Google Scholar 

  • Zektser, I.S., Dzhamalov, R.G. and Meskheteli, A.V. (1984). Podzemnyi vodoobmen sushi i moray (Subsurface Water Exchange between the Continent and the Sea), Leningrad: Gidrometeoizdat, 207s.

    Google Scholar 

  • Zektser, I.S. and Loaiciga, H. (1993). Groundwater fluxes in the global hydrological cycle: Past, present and future. J. of Hydrology, 144, 405–427.

    Article  Google Scholar 

  • Zektser, I.S. (1996). Groundwater discharge into the seas and oceans: state of the art. In: Groundwater Discharge in the Coastal Zone, Buddemeier, R.W. (ed.). LOICZ/Russian Academy of Sciences: Texel, Netherlands/Moscow; pp. 122–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Capital Publishing Company

About this chapter

Cite this chapter

Kumar, M., Ramanathan, A.L., Neupane, B.R., Van Tu, D., Kim, Sh. (2010). Critical Evaluation of the Recent Development and Trends in Submarine Groundwater Discharge Research in Asia. In: Ramanathan, A.L., Bhattacharya, P., Dittmar, T., Prasad, M.B.K., Neupane, B.R. (eds) Management and Sustainable Development of Coastal Zone Environments. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3068-9_8

Download citation

Publish with us

Policies and ethics