Skip to main content

Contemporary Methods for Quantifying Submarine Groundwater Discharge to Coastal Areas

  • Chapter
  • First Online:
Emerging Issues in Groundwater Resources

Part of the book series: Advances in Water Security ((AWS))

Abstract

Submarine Groundwater Discharge (SGD), which represents subsurface exchange of water between land and ocean, is a major component of the hydrological cycle. Until the mid-1990s, it was generally believed that SGD rates were not large enough to influence ocean water budgets. This thought might be due to the difficulty in quantifying rates of SGD, because most SGD occurs as diffusive flow, rather than discrete spring flow. However, there is a growing recognition that the submarine discharge of fresh groundwater into coastal oceans is just as important as river discharge in some areas of the coastal ocean. Due to growing ecological concerns about SGD, there is considerable progress on research about SGD with particular emphasis on how to quantify and trace the SGD, and to develop some forecasting or predictive capability of SGD rates based on climatic and seasonal effects. This chapter presents a comprehensive overview of the methods used to quantify SGD to coastal areas and summarizes the previous studies on SGD. In addition, this chapter also discusses driving forces of groundwater flow through coastal aquifers, mechanism of groundwater seawater interaction and some other important issues that are necessary to understand the methods for quantifying SGD in coastal areas. The main goal of this chapter is to provide an overview of the applied methodologies to quantify SGD in coastal areas, which in turn will allow researchers, coastal zone managers, and others to choose appropriate methods that meet their specific project requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CFC:

Chlorofluorocarbons

GIS:

Geographical information system

IAEA:

International Atomic Energy Agency

IAPSO:

International Association of Physical Sciences of the Oceans

IHP:

International Hydrological Program

IOC:

Intergovernmental Oceanographic Commission

LOICZ:

Land-Ocean Interactions in the Coastal Zone

OBC:

Optical backscattering

PMC:

Particulate matter concentration

Ra:

Radium

Rn:

Radon

RSGD:

Recirculated saline groundwater discharge

SCOR:

Scientific Committee on Oceanic Research

SE:

South East

SF6 :

Sulphur hexafluoride

SFGD:

Submarine fresh groundwater discharge

SFGD:

Submarine fresh groundwater discharge

SGR:

Submarine groundwater recharge

SPE:

Submarine porewater exchange

TABI:

Thermal airborne broadband imager

TIR:

Thermal infrared

References

  • Barlow PM (2003) Groundwater in freshwater-saltwater environments of the Atlantic coast. US Geological Survey Circulation. 1262:121 p

    Google Scholar 

  • Bear J (1979) Hydraulics of groundwater. McGraw Hill, New York, 567 p

    Google Scholar 

  • Bokuniewicz HJ, Kontar E, Rodrigues M, Klein DA (2004) Submarine groundwater discharge (SGD) patterns through a fractured rock aquifer: a case study in the Ubatuba coastal area, Brazil. Revista de la Asociacion Argentina de Sedimentologia 11(1):9–16

    Google Scholar 

  • Bokuniewicz H, Taniguchi M, Ishitoibi T, Charette M, Kontar E (2008) Direct measurements of submarine groundwater discharge (SGD) over a fractured rock aquifer in Flamengo Bay Brazil. Estuar Coast Shelf Sci 76:466–472

    Article  Google Scholar 

  • Bouwer H (1978) Groundwater hydrology. McGraw-Hill, New York, 480 p

    Google Scholar 

  • Bowen JL, Kroeger KD, Tomasky G, Pabich WJ, Cole ML, Carmichael RH, Valiela I (2007) A review of land-sea coupling by groundwater discharge of nitrogen to New England estuaries: mechanisms and effects. Appl Geochem 22(1):175–191

    Google Scholar 

  • Buddemeier RW (1996) Groundwater discharge in the coastal zone. In: Proceedings of an international symposium, Texel, Russian Academy of Sciences, Moscow, p 179

    Google Scholar 

  • Burnett W, Taniguchi M, Oberdorfer J (2001) Measurement and significance of the direct discharge of groundwater into the coastal zone. J Sea Res 46:109–116

    Article  Google Scholar 

  • Burnett W, Bokuniewicz H, Huettel M, Moore WS, Taniguchi M (2003) Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66:3–33

    Article  CAS  Google Scholar 

  • Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA, Kontar E, Krupa S, Kulkarni KM, Loveless A, Moore WS, Oberdorfer JA, Oliveira J, Ozyurt N, Povinec P, Privitera AMG, Rajar R (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367:498–543

    Article  CAS  Google Scholar 

  • Cable J, Bugna G, Burnett W, Chanton J (1996) Application of 222Rn and CH4 for assessment of groundwater discharge to the coastal ocean. Limnol Oceanogr 41:1347–1353

    Article  Google Scholar 

  • Cable JE, Burnett WC, Chanton JP (1997) Magnitude and variations of groundwater seepage along a Florida marine shoreline. Biogeochemistry 38:189–205

    Article  Google Scholar 

  • Cable JE, Martin JB, Jaeger J (2006) Exonerating Bernoulli? On evaluating the physical and biological processes affecting marine seepage meter measurements. Limnol Oceanogr Methods 4:172–183

    Article  Google Scholar 

  • Charette MA, Buesseler KO (2004) Submarine groundwater discharge of nutrients and copper to an urban subestuary of Chesapeake Bay (Elizabeth River). Limnol Oceanogr 49:376–385

    Article  CAS  Google Scholar 

  • Dogan A, Fares A (2008) Effects of land use changes and groundwater pumping on saltwater intrusion in coastal watersheds. In: Fares A, ElKadi A (eds) Land management impacts on coastal watershed hydrology, Progress in water resources series. WIT Press, Southampton

    Google Scholar 

  • Dulaiova H, Gonneea ME, Henderson PB, Charette MA (2008) Geochemical and physical sources of radon variation in a subterranean estuary—implications for groundwater radon activities in submarine groundwater discharge studies. Mar Chem 110:120–127

    Article  CAS  Google Scholar 

  • Dzhamalov RG (1996) Methodical approaches to regional assessment of groundwater discharge into the seas, Groundwater discharge in the coastal zone. In: Buddemeier RW (ed) LOICZ IGBP, 44-47, LOICZ Texel, Russian Academy of Sciences, Moscow, 179 p

    Google Scholar 

  • Essaid HI (1990) The computer model SHARP, a quasi three dimensional finite-difference model to simulate freshwater and saltwater flow in layered coastal aquifer systems. USGS water resources investigations report 90-4130, Reston

    Google Scholar 

  • Fetter CW (2001) Applied hydrogeology. Prentice Hall, Upper Saddle River, p 598

    Google Scholar 

  • Gallagher DL, Wyne JW, Reay WG, Robinson M (2001) A Geographic information system analysis of submarine groundwater discharge on the eastern shore of Virginia. First international conference on saltwater intrusion and coastal aquifers monitoring, modeling, and management. Essaouira, 23–25 April 2001, 13 p

    Google Scholar 

  • Ghyben WB (1888) Nota in verband met de voorgenomen putboring nabij Amsterdam, Tijdschrift van Let Koninklijk: Inst. Van Ing

    Google Scholar 

  • Glover RE (1959) The pattern of fresh-water flow in a coastal aquifer. J Geogr Res 64:457–459

    Google Scholar 

  • Guo W, Langevin CD (2002) User’s guide to SEAWAT: a computer program for simulation of three-dimensional variable-density groundwater flow. Techniques of water-resources ınvestigations Book 6 Chapter A7, 77 p

    Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular groundwater model: user guide to modularization concepts and the groundwater flow process. USGS open-file report 00-92. USGS, 121 p

    Google Scholar 

  • Hays RL, Ullman WJ (2007) Direct determination of total and fresh groundwater discharge and nutrient loads from a sandy beachface at low tide (Cape Henlopen, Delaware). Limnol Oceanogr 52:240–247

    Article  CAS  Google Scholar 

  • Henry HR (1959) Salt intrusion into freshwater aquifers. J Geophys Res 64:1911–1919

    Article  Google Scholar 

  • Henry HR (1964) Effects of dispersion on salt encroachment in coastal aquifers, U.S. Geological Survey Water-Supply Paper, 1613-C, pp C71–C84

    Google Scholar 

  • Herzberg A (1901) Die Wasserversorgung einiger nordseebader. J Gasbeleucht Wasserversorg 44:815–819

    Google Scholar 

  • Hubbert MK (1940) The theory of groundwater motion. J Geol 48(8):785–944

    Article  Google Scholar 

  • Huyakorn PS, Anderson PF, Mercer JW, White JHO (1987) Saltwater intrusion in aquifers: development and testing of a three-dimensional finite element model. Water Resour Res 23:293–312

    Article  CAS  Google Scholar 

  • Hwang DW, Kim G, Lee Y-W, Yang H-S (2005) Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes. Marine Chem 96:61–71

    Article  CAS  Google Scholar 

  • Johannes RE (1980) The ecological significance of the submarine discharge of groundwater. Mar Ecol Prog Ser 3:365–373

    Article  Google Scholar 

  • Johnson T (2007) Battling seawater intrusion in the Central & West Coast Basins. Technical Bulletin, Weather Replenishment District of Southern California. 13:1–2

    Google Scholar 

  • Keller EA, Loaiciga HA (1991) Earthquakes, fluid pressure and mountain building: a model. Geol Soc Am 23(5):84–85, Abstracts with program

    Google Scholar 

  • Kim G, Swarzenski PW (2010) Submarine groundwater discharge (SGD) and associated nutrient fluxes to the Coastal Ocean. In: Liu KK, Atkinson L, Quinones R, Talaue-McManus L (eds) Carbon and nutrient fluxes in continental margins, Global change-the IGBP Series, 757 p

    Google Scholar 

  • Kim G, Kim J-S, Hwang D-W (2011) Submarine groundwater discharge from oceanic islands standing in oligotrophic oceans: Implications for global biological production and organic carbon fluxes. Limnol Oceanogr 56(2):673–682

    Article  CAS  Google Scholar 

  • King JN, Mehta AJ, Dean RG (2010) Analytical models for the groundwater tidal prism and associated benthic water flux. Hydrogeol J 18(1):203–215

    Article  CAS  Google Scholar 

  • Knee KL, Paytan A (2011) Submarine groundwater discharge: a source of nutrients, metals, and pollutants to the coastal ocean. In: Wolanski E, McLusky DS (eds) Treatise on estuarine and coastal science, vol 4. Academic, Waltham, pp 205–233

    Chapter  Google Scholar 

  • Kohout FA (1966) Submarine springs: a neglected phenomenon of coastal hydrology. Hydrology 26:391–413

    Google Scholar 

  • Kolokoussis P, Karathanassi V, Rokos D, Argialas D, Karageorgis AP, Georgopoulos D (2011) Integrating thermal and hyperspectral remote sensing for the detection of coastal springs and submarine groundwater discharges. Int J Remote Sens 32(23):8231–8251

    Article  Google Scholar 

  • Krupa SL, Belanger TV, Heck HH, Brok JT, Jones BJ (1998) Krupaseep-the next generation seepage meter. J Coast Res 25:210–213

    Google Scholar 

  • Kuan WK, Jin GQ, Xin P, Robinson C, Gibbes B, Li L (2012) Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resour Res 48:W02502. doi:10.1029/2011WR010678

    Article  Google Scholar 

  • Kumar M, Ramanathan AL, Neupane BR, Tu DV, Kim S (2010) Critical evaluation of the recent development and trends in submarine groundwater discharge research in Asia. In: Neupane BR, Ramanathan AL, Bhattacharya P, Dittmar T, Bala Krishna Prasad M (eds) Management and sustainable development of coastal zone environments. Springer, Dordrecht, pp 89–102

    Google Scholar 

  • Langevin CD, Guo W (2006) MODFLOW/MT3DMS–based simulation of variable-density groundwater flow and transport. Groundwater 44(3):339–351

    Article  CAS  Google Scholar 

  • Langevin CD, Shoemaker WB, Guo W (2003) MODFLOW-2000, the U.S. Geological Survey modular groundwater model—documentation of the SEAWAT-2000 version with the variable-density flow process (VDF) and the integrated MT3DMS Transport Process (IMT). USGS Open-File Report 03-426. USGS, 43 p

    Google Scholar 

  • LaRoche J, Nuzzi R, Waters R, Wyman K, Falkowski PG, Wallace DWR (1997) Brown tide blooms in Long Island’s coastal waters linked to inter-annual variability in groundwater flow. Glob Change Biol 3:397–410

    Article  Google Scholar 

  • Ledwell JR, Watson AJ, Law CS (1993) Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364:701–703

    Article  CAS  Google Scholar 

  • Lee DR (1977) A device for measuring seepage flux in lakes and estuaries. Limnol Oceanogr 22:140–147

    Article  CAS  Google Scholar 

  • Li L, Barry DA, Stagniti F, Parlange JY (1999) Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour Res 35(11):3253–3259

    Article  CAS  Google Scholar 

  • Li X, Hu BX, Burnett WC, Santos IR, Chanton JP (2009) Submarine groundwater discharge driven by tidal pumping in a heterogeneous aquifer. Ground Water 47(4):558–568

    Article  CAS  Google Scholar 

  • Loaiciga HA (1989) An optimization approach to groundwater quality monitoring network design. Water Resour Res 25:1771–1780

    Article  CAS  Google Scholar 

  • Loaiciga HA, Zektser IS (2001) Methods to estimate direct ground-water discharge to the ocean. J King Abdulaziz Univ Mar Sci 12:24–32

    Google Scholar 

  • Mays L (2011) Ground and surface water hydrology. Wiley, New York, p 617

    Google Scholar 

  • McDonald MG, Harbaugh AW (1988) A modular three dimensional finite-difference groundwater flow model. USGS techniques of water-resources ınvestigations, Book 6, Chapter A1, USGS, 586 p

    Google Scholar 

  • Miller DC, Ullman WJ (2004) Ecological consequences of groundwater discharge to Delaware Bay, United States. Ground Water 42:959–970

    Article  Google Scholar 

  • Moore WS (2000) Determining coastal mixing rates using radium isotopes. Cont Shelf Res 20:1995–2007

    Article  Google Scholar 

  • Moore WS (2010) The effect of submarine groundwater discharge on the ocean. Ann Rev Mar Sci 2:59–88

    Article  Google Scholar 

  • Mulligan AE, Charette MA (2006) Intercomparison of submarine groundwater discharge estimates from a sandy unconfined aquifer. J Hydrol 327:411–425

    Article  Google Scholar 

  • Mulligan AE, Charette MA (2009) Groundwater flow to the coastal ocean. In: John HS, Karl KT, Steve AT (eds) Encyclopedia of ocean sciences. Academic, Oxford, pp 88–97

    Chapter  Google Scholar 

  • Oude Essink GHP (2001) Improving fresh groundwater supply-problems and solutions. Ocean Coast Manag 44:429–449. doi:10.1016/S0964-5691(01)00057-6

    Article  Google Scholar 

  • Paulsen RJ, Smith CF, O’Rourke D, Wong T (2001) Development and evaluation of an ultrasonic groundwater seepage meter. Ground Water 39:904–911

    Article  CAS  Google Scholar 

  • Pinder GF, Cooper HH (1970) A numerical technique for calculating the transient position of the saltwater front. Water Resour Res 6(3):875–882

    Article  Google Scholar 

  • Portnoy JW, Nowicki BL, Roman CT, Urish DW (1998) The discharge of nitrate contaminated groundwater from developed shoreline to marsh-fringed estuary. Water Resour Res 34:3095–3104

    Article  CAS  Google Scholar 

  • Povinec PP, Burnett WC, Beck A et al (2012) Isotopic, geophysical and biogeochemical investigation of submarine groundwater discharge: IAEA-UNESCO intercomparison exercise at Mauritius Island. J Environ Radioact 104:24–45

    Article  CAS  Google Scholar 

  • Ravindran AA, Ramanujam N (2014) Detection of submarine groundwater discharge to coastal zone study using 2d electrical resistivity imaging study at Manapad, Tuticorin, India. Ind J GeoMarine Sci 43(2):224–228

    Google Scholar 

  • Reilly T (1993) Analysis of groundwater systems in freshwater-saltwater environments (Chapter 18). In: Alley WM (ed) Regional groundwater quality. Van Nostrand Reinhold, New York, pp 443–469

    Google Scholar 

  • Reilly TE, Goodman AS (1985) Quantitative analysis of saltwater-freshwater relationships in groundwater systems—a historical perspective. J Hydrol 80:125–160

    Article  CAS  Google Scholar 

  • Reilly TE, Plummer LN, Phillips PJ, Busenberg E (1994) The use of simulation and multiple environmental tracers to quantify groundwater flow in a shallow aquifer. Water Resour Res 30(2):421–433

    Article  Google Scholar 

  • Rosenberry DO, Morin RH (2004) Use of an electromagnetic seepage meter to investigate temporal variability in lake seepage. Ground Water 42(1):68–77

    Article  CAS  Google Scholar 

  • Santos IR (2008) Submarine groundwater discharge driving mechanisms and biogeochemical aspects. Electronic Theses, Treatises and Dissertations, 145 p

    Google Scholar 

  • Santos IR, Eyre BD, Huettel M (2012) The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuar Coast Shelf Sci 98:1–15

    Article  Google Scholar 

  • Santos IR, de Weys J, Tait DR, Eyre BD (2013) The contribution of groundwater discharge to nutrient exports from a coastal catchment: post-flood seepage increases estuarine N/P ratios. Estuar Coasts 36:56–73

    Article  CAS  Google Scholar 

  • Sayles FL, Dickinson WH (1990) The seep meter: a benthic chamber for the sampling and analysis of low velocity hydrothermal vents. Deep-Sea Res 88:1–13

    Google Scholar 

  • Schluter M, Sauter EJ, Andersen CE, Dahlgaard H, Dando PR (2004) Spatial distribution and budget for submarine groundwater discharge in Eckernforde Bay (Western Baltic Sea). Limnol Oceanogr 49(1):157–167

    Article  Google Scholar 

  • Schubert M, Scholten J, Schmidt A, Comanducci JF, Pham MK, Mallast U, Knoeller K (2014) Submarine groundwater discharge at a single spot location: evaluation of different detection approaches. Water 6:584–601

    Article  Google Scholar 

  • Shinn EA, Reich CD, Hickey TD (2003) Reply to comments by Corbett and Cable on our paper, “Seepage meters and Bernoulli’s revenge.”. Estuaries 26:1388–1389

    Article  Google Scholar 

  • Simmons GM (1992) Importance of submarine groundwater discharge (SGWD) and seawater cycling to material flux across sediment/water interfaces in marine environments. Mar Ecol Prog Ser 84:173–184

    Article  CAS  Google Scholar 

  • Slomp CP, Van Cappellen P (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86

    Article  CAS  Google Scholar 

  • Smith AJ, Nield SP (2003) Groundwater discharge from the superficial aquifer into Cockburn Sound Western Australia: estimation by inshore water balance. Biogeochemistry 66:125–144

    Article  Google Scholar 

  • Smith AJ, Turner JV, Herne DE, Hick WP (2003) Quantifying submarine groundwater discharge and nutrient discharge into Cockburn Sound Western Australia. CSIRO Land and Water. Perth, 185 p

    Google Scholar 

  • Sonrel L (1868) Le fond de la mer. L. Hachette & Cie, Paris

    Google Scholar 

  • Stieglitz T, Taniguchi M, Neylon S (2008) Spatial variability of submarine groundwater discharge, Ubatuba, Brazil. Estuar Coast Shelf Sci 76:493–500

    Article  CAS  Google Scholar 

  • Stieglitz TC, Cook PG, Burnett WC (2010) Inferring coastal processes from regional-scale mapping of 222Radon and salinity: examples from the Great Barrier Reef, Australia. J Environ Radioact 101:544–552

    Article  CAS  Google Scholar 

  • Swarzenski PW (2007) U/TH series radionuclides as coastal groundwater tracers. Chem Rev 107:663–674

    Article  CAS  Google Scholar 

  • Swarzenski PW, Bratton JF, Crusius J (2004) Submarine ground-water discharge and its role in coastal processes and ecosystems. USGS open file report, 2004–1226

    Google Scholar 

  • Taniguchi M, Fukuo Y (1993) Continuous measurements of ground-water seepage using an automatic seepage meter. Ground Water 31:675–679

    Article  Google Scholar 

  • Taniguchi M, Iwakawa H (2001) Measurements of submarine groundwater discharge rates by a continuous heat-type automated seepage meter in Osaka Bay, Japan. J Groundw Hydrol 43:271–277

    Article  Google Scholar 

  • Taniguchi M, Burnett WC, Cable JE, Turner JV (2002) Investigations of submarine groundwater discharge. Hydrol Process 16:2115–2129

    Article  Google Scholar 

  • Taniguchi M, Burnett WC, Cable JE, Turner JV (2003) Assessment methodologies of submarine ground-water discharge. In: Taniguchi M, Wang K, Gamo T (eds) Land and marine hydrogeology. Elsevier, Amsterdam, pp 1–23

    Chapter  Google Scholar 

  • Tiessen H (1995) Phosphorus in the global environment, transfers, cycles and management. SCOPE, vol 54, Wiley, New York, 462 p

    Google Scholar 

  • Todd DK (1980) Groundwater hydrology. Wiley, New York, 535

    Google Scholar 

  • Top Z, Brand LE, Corbett RD, Burnett W, Chanton J (2001) Helium and Radon as tracers of groundwater input into Florida Bay. J Coast Res 17(4):859–868

    Google Scholar 

  • Torgersen CE, Faux RN, Mcintosh BA, Poage NJ, Norton DJ (2001) Airborne thermal remote sensing for water temperature assessment in rivers and streams. Remote Sens Environ 76:386–398

    Article  Google Scholar 

  • Uchiyama Y, Nadaoka K, Rolke P, Adachi K, Yagi H (2000) Submarine groundwater discharge into the sea and associated nutrient transport in a sandy beach. Water Resour Res 36:1467–1479

    Article  CAS  Google Scholar 

  • UNESCO (2004). Submarine groundwater discharge: management implications, measurements and effects- prepared for international hydrological program (IHP), intergovernmental oceanographic commission (IOC) by scientific committee on oceanic Research (SCOR) and Land-Ocean Interactions in the Coastal Zone (LOICZ). Published in 2004 by the United Nations Educational, Scientific and Cultural Organization 7, place de Fontenoy, 75352 Paris 07 SP. 35 p

    Google Scholar 

  • Valiela I, Costa J, Foreman K, Teal JM, Howes B, Aubrey D (1990) Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters. Biogeochemistry 10(3):177–197

    Article  CAS  Google Scholar 

  • Valiela I, Foreman K, LaMontagne M, Hersh D, Costa J, Peckol P (1992) Couplings of watersheds and coastal waters: sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts. Estuaries 15:443–457

    Article  CAS  Google Scholar 

  • Valiela I, Bowen JL, Kroeger KD (2002) Assessment of models for estimation of land-derived nitrogen loads to shallow estuaries. Appl Geochem 17:935–953

    Article  CAS  Google Scholar 

  • Volker RE, Rushton KR (1982) An assessment of the importance of some parameters for seawater intrusion and a comparison of dispersive and sharp-interface modeling approaches. J Hydrol 56:239–250

    Article  Google Scholar 

  • Voss CI (1984) SUTRA—a finite-element simulation model for saturated-unsaturated fluid density dependent groundwater flow with energy transport or chemically reactive single species solute transport. USGS water resources ınvestigations report 84-4369, USGS, 409 p

    Google Scholar 

  • Voss CI, Provost AM (2002) SUTRA, a model for saturated-unsaturated variable-density groundwater flow with solute or energy transport. USGS water-resources ınvestigations report 02-4231, 250 p

    Google Scholar 

  • Weiss E (1982) A model for the simulation of flow of variable-density groundwater in three-dimensions under steady state conditions. USGS, Reston, USGS open file report 82-352, 59 p

    Google Scholar 

  • Wilson J, Rocha C (2013) Developing remote sensing as a tool for detection, quantification and evaluation of submarine groundwater discharge (SGD) to Irish Coastal Waters. EPA STRIVE Report Series No. 112. Environmental Protection Agency, Johnstown Castle, Wexford

    Google Scholar 

  • Xia Y, Li H, Yang Y, Huang W (2012) The enhancing effect on todal signals of a submarine spring connected to a semi-infinite confined aquifer. Hydrol Sci J 57(6):1231–1248

    Article  CAS  Google Scholar 

  • Xin P, Robinson C, Li L, Barry DA, Bakhtyar R (2010) Effects of wave forcing on a subterranean estuary. Water Resour Res 46(12), W12505. doi:10.1029/2010wr009632

    Article  Google Scholar 

  • Xin P, Wang SSJ, Robinson C, Li L, Wang Y-G, Barry DA (2014) Memory of past random wave conditions in submarine groundwater discharge. Geophys Res Lett 41:2401–2410

    Article  Google Scholar 

  • Xin P, Wang SSJ, Robinson C, Li L, Wang Y-G, Barry DA (2015) Nonlinear interactions of waves and tides in a subterranean estuary. Geophys Res Lett 42:1–8. doi:10.1002/2015GL063643

    Article  Google Scholar 

  • Younger PL (1996) Submarine groundwater discharge. Nature 382:121–122

    Article  CAS  Google Scholar 

  • Zektser IS, Loaiciga HA (1993) Groundwater fluxes in the global hydrological cycle: past, present and future. J Hydrol 144:405–427

    Article  Google Scholar 

  • Zektser IS, Dzhamalov RG, Everett LG (2007) Submarine groundwater. CRC Press, Boca Raton, 466

    Google Scholar 

  • Zektzer IS, Ivanov VA, Meskheteli AV (1973) The problem of direct groundwater discharge to the seas. J Hydrol 20:1–36

    Article  Google Scholar 

  • Zhang J, Mandal AK (2012) Linkages between submarine groundwater systems and the environment. Curr Opin Environ Sustain 4:219–226

    Article  Google Scholar 

  • Zheng C, Wang PP (1999) MT3DMS, a modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. Waterways Experiment Station, U.S. Army Corps of Engineers, Vicksburg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram L. Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ray, R.L., Dogan, A. (2016). Contemporary Methods for Quantifying Submarine Groundwater Discharge to Coastal Areas. In: Fares, A. (eds) Emerging Issues in Groundwater Resources. Advances in Water Security. Springer, Cham. https://doi.org/10.1007/978-3-319-32008-3_12

Download citation

Publish with us

Policies and ethics