Skip to main content

The PTH/Vitamin D/FGF23 Axis

  • Chapter
  • First Online:
Hypoparathyroidism

Abstract

Calcium and phosphorus are essential for a myriad of intracellular functions and also form the basis for the structural integrity of bone. As such, mechanisms have evolved to ensure exquisite control over their circulating concentrations. These concentrations are largely maintained by fluxes of these mineral ions across the intestine, kidney, and bone and are regulated by three major hormones, parathyroid hormone (PTH), the active form of vitamin D, 1,25-dihydroxyvitamin D, and fibroblast growth factor-23 (FGF23). Each hormone acts to directly influence mineral ion transport across intestine or kidney and may also regulate mineral ion entry into and out of bone. The production and secretion of each hormone may in turn be modulated by circulating concentrations of these mineral ions and by the action of the other hormones, producing a complex network of negative and positive feedback systems. Disruption of these homeostatic systems can produce dramatic disease profiles but improved understanding of the underlying molecular mechanisms may lead to more salutary approaches to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christakos S (2012) Recent advances in our understanding of 1,25-dihydroxyvitamin D(3) regulation of intestinal calcium absorption. Arch Biochem Biophys 523:73–76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Forster IC, Hernando N, Biber J, Murer H (2006) Proximal tubular handling of phosphate: A molecular perspective. Kidney Int 70:1548–1559

    Article  CAS  PubMed  Google Scholar 

  3. Brown EM (2013) Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract Res Clin Endocrinol Metab 27:333–343

    Article  CAS  PubMed  Google Scholar 

  4. Demay MB, Kiernan MS, DeLuca HF, Kronenberg HM (1992) Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A 89:8097–8101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kremer R, Bolivar I, Goltzman D, Hendy GN (1989) Influence of calcium and 1,25-dihydroxycholecalciferol on proliferation and proto-oncogene expression in primary cultures of bovine parathyroid cells. Endocrinology 125:935–941

    Article  CAS  PubMed  Google Scholar 

  6. Panda DK, Miao D, Bolivar I et al (2004) Inactivation of the 25-hydroxyvitamin D 1alpha-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem 279:16754–16766

    Article  CAS  PubMed  Google Scholar 

  7. Tregear GW, Van Rietschoten J, Greene E et al (1973) Bovine parathyroid hormone: minimum chain length of synthetic peptide required for biological activity. Endocrinology 93:1349–1353

    Article  CAS  PubMed  Google Scholar 

  8. Goltzman D, Peytremann A, Callahan E et al (1975) Analysis of the requirements for parathyroid hormone action in renal membranes with the use of inhibiting analogues. J Biol Chem 250:3199–3203

    CAS  PubMed  Google Scholar 

  9. Jüppner H, Abou-Samra AB, Freeman M et al (1991) A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 254:1024

    Article  PubMed  Google Scholar 

  10. Abou-Samra AB, Jüppner H, Force T et al (1992) Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc Natl Acad Sci U S A 89:2732–2736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lambers TT, Bindels RJ, Hoenderop JG (2006) Coordinated control of renal Ca2+ handling. Kidney Int 69:650–654

    Article  CAS  PubMed  Google Scholar 

  12. van Abel M, Hoenderop JG, van der Kemp AW et al (2005) Coordinated control of renal Ca(2+) transport proteins by parathyroid hormone. Kidney Int 68:1708–1721

    Article  PubMed  Google Scholar 

  13. Cha SK, Wu T, Huang CL (2008) Protein kinase C inhibits caveolae-mediated endocytosis of TRPV5. Am J Physiol Renal Physiol 294:F1212–F1221

    Article  CAS  PubMed  Google Scholar 

  14. Topala CN, Schoeber JP, Searchfield LE et al (2009) Activation of the Ca(2+)-sensing receptor stimulates the activity of the epithelial Ca(2+) channel TRPV5. Cell Calcium 45:331–339

    Article  CAS  PubMed  Google Scholar 

  15. Custer M, Lotscher M, Biber J et al (1994) Expression of Na-P(i) cotransport in rat kidney: localization by RT-PCR and immunohistochemistry. Am J Physiol 266:F767–F774

    CAS  PubMed  Google Scholar 

  16. Bacic D, Lehir M, Biber J et al (2006) The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int 69:495–503

    Article  CAS  PubMed  Google Scholar 

  17. Segawa H, Yamanaka S, Onitsuka A et al (2007) Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter. Am J Physiol Renal Physiol 292:F395–F403

    Article  CAS  PubMed  Google Scholar 

  18. Traebert M, Volkl H, Biber J et al (2000) Luminal and contraluminal action of 1–34 and 3–34 PTH peptides on renal type IIa Na-P(i) cotransporter. Am J Physiol Renal Physiol 278:F792–F798

    CAS  PubMed  Google Scholar 

  19. Brenza HL, Kimmel-Jehan C, Jehan F et al (1998) Parathyroid hormone activation of the 25-hydroxyvitamin D3-1alpha-hydroxylase gene promoter. Proc Natl Acad Sci U S A 95:1387–1391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Rouleau MF, Mitchell J, Goltzman D (1990) Characterization of the major parathyroid hormone target cell in the endosteal metaphysis of rat long bones. J Bone Miner Res 5:1043–1053

    Article  CAS  PubMed  Google Scholar 

  21. Miao D, He B, Karaplis AC, Goltzman D (2002) Parathyroid hormone is essential for normal fetal bone formation. J Clin Invest 109:1173–1182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  CAS  PubMed  Google Scholar 

  23. Silva BC, Costa AG, Cusano NE et al (2011) Catabolic and anabolic actions of parathyroid hormone on the skeleton. J Endocrinol Invest 34:801–810

    PubMed Central  CAS  PubMed  Google Scholar 

  24. MacLaughlin JA, Anderson RR, Holick MF (1982) Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin. Science 216:1001–1003

    Article  CAS  PubMed  Google Scholar 

  25. Dastani Z, Berger C, Langsetmo L et al (2014) In healthy adults, biological activity of vitamin D, as assessed by serum PTH, is largely independent of DBP concentrations. J Bone Miner Res 29:494–499

    Article  CAS  PubMed  Google Scholar 

  26. Zhu JG, Ochalek JT, Kaufmann M et al (2013) CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci U S A 110:15650–15655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Jones G, Strugnell SA, DeLuca HF (1998) Current understanding of the molecular actions of vitamin D. Physiol Rev 78:1193–1231

    CAS  PubMed  Google Scholar 

  28. Murayama A, Takeyama K, Kitanaka S et al (1999) Positive and negative regulations of the renal 25-hydroxyvitamin D3 1alpha-hydroxylase gene by parathyroid hormone, calcitonin, and 1alpha,25(OH)2D3 in intact animals. Endocrinology 140:2224–2231

    CAS  PubMed  Google Scholar 

  29. Liu P, Stenger S, Li H et al (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:1770–1773

    Article  CAS  PubMed  Google Scholar 

  30. St-Arnaud R (2010) CYP24A1-deficient mice as a tool to uncover a biological activity for vitamin D metabolites hydroxylated at position 24. J Steroid Biochem Mol Biol 121:254–256

    Article  CAS  PubMed  Google Scholar 

  31. Shimada T, Hasegawa H, Yamazaki Y et al (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435

    Article  CAS  PubMed  Google Scholar 

  32. Pike JW, Meyer MB (2014) Fundamentals of vitamin D hormone-regulated gene expression. J Steroid Biochem Mol Biol 144PA:5–11. pii: S0960-0760(13)00234-3. doi:10.1016/j.jsbmb.2013.11.004. PMID: 24239506

  33. Meyer MB, Watanuki M, Kim S et al (2006) The human transient receptor potential vanilloid type 6 distal promoter contains multiple vitamin D receptor binding sites that mediate activation by 1,25-dihydroxyvitamin D3 in intestinal cells. Mol Endocrinol 20:1447–1461

    Article  CAS  PubMed  Google Scholar 

  34. Fleet JC, Wood RJ (1994) Identification of calbindin D-9 k mRNA and its regulation by 1,25-dihydroxyvitamin D3 in Caco-2 cells. Arch Biochem Biophys 308:171–174

    Article  CAS  PubMed  Google Scholar 

  35. Christakos S, Dhawan P, Ajibade D et al (2010) Mechanisms involved in vitamin D mediated intestinal calcium absorption and in non-classical actions of vitamin D. J Steroid Biochem Mol Biol 121:183–187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Haussler MR, Whitfield GK, Kaneko I et al (2013) Molecular mechanisms of vitamin D action. Calcif Tissue Int 92:77–98

    Article  CAS  PubMed  Google Scholar 

  37. Suda T, Takahashi N, Martin TJ (1992) Modulation of osteoclast differentiation. Endocr Rev 3:66–80

    Google Scholar 

  38. Miao D, He B, Lanske B et al (2004) Skeletal abnormalities in Pth-null mice are influenced by dietary calcium. Endocrinology 145:2046–2053

    Article  CAS  PubMed  Google Scholar 

  39. Tanaka H, Seino Y (2004) Direct action of 1,25-dihydroxyvitamin D on bone: VDRKO bone shows excessive bone formation in normal mineral condition. J Steroid Biochem Mol Biol 89–90:343–345

    Article  PubMed  Google Scholar 

  40. Kim S, Yamazaki M, Zella LA et al (2006) Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol 26:6469–6486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16:139–149

    Article  CAS  PubMed  Google Scholar 

  42. Mohammadi M, Olsen SK, Ibrahimi OA (2005) Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 16:107–137

    Article  CAS  PubMed  Google Scholar 

  43. Beenken A, Mohammadi M (2012) The structural biology of the FGF19 subfamily. Adv Exp Med Biol 728:1–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. White KE, Evans WE, O’Riordan JLH et al (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345–348

    Article  CAS  Google Scholar 

  45. Yamashita T (2005) Structural and biochemical properties of fibroblast growth factor 23. Ther Apher Dial 9:313–318

    Article  CAS  PubMed  Google Scholar 

  46. Kato K, Jeanneau C, Tarp MA et al (2006) Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O‑glycosylation. J Biol Chem 281:18370–18377

    Article  CAS  PubMed  Google Scholar 

  47. Goetz R, Nakada Y, Hu MC et al (2010) Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc Natl Acad Sci U S A 107:407–412. PubMed: 19966287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Bai XY, Miao D, Goltzman D, Karaplis AC (2003) The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem 278(11):9843–9849

    Article  CAS  PubMed  Google Scholar 

  49. Francis F, Hennig S, Korn B et al (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet 11:130–136

    Article  CAS  Google Scholar 

  50. Yamazaki Y, Okazaki R, Shibata M et al (2002) Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 87:4957–4960

    Article  CAS  PubMed  Google Scholar 

  51. Weber TJ, Liu S, Quarles LD (2003) Serum FGF23 levels in normal and disordered phosphorus homeostasis. J Bone Miner Res 18:1227–1234

    Article  CAS  PubMed  Google Scholar 

  52. Feng JQ, Ward LM, Liu S et al (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310–1315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Turan S, Aydin C, Bereket A, Akcay T, Güran T, Yaralioglu BA, Bastepe M, Jüppner H (2010) Identification of a novel dentin matrix protein-1 (DMP-1) mutation and dental anomalies in a kindred with autosomal recessive hypophosphatemia. Bone 46:402–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Rowe PS (2012) The chicken or the egg: PHEX, FGF23 and SIBLINGs unscrambled. Cell Biochem Funct 30:355–375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Huitema LF, Apschner A, Logister I et al (2012) Entpd5 is essential for skeletal mineralization and regulates phosphate homeostasis in zebrafish. Proc Natl Acad Sci U S A 109:21372–21377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Mackenzie NC, Zhu D, Milne EM et al (2012) Altered bone development and an increase in FGF‑23 expression in Enpp1−/− mice. PLoS One 7(2012)

    Google Scholar 

  57. Wohrle S, Bonny O, Beluch N et al (2011) FGF receptors control vitamin D and phosphate homeostasis by mediating renal FGF-23 signaling and regulating FGF-23 expression in bone. J Bone Miner Res 26:2486–2497

    Article  CAS  PubMed  Google Scholar 

  58. Wolf M, Koch TA, Bregman DB (2013) Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res 28:1793–1803

    Article  CAS  PubMed  Google Scholar 

  59. Kuro-o M, Matsumura Y, Aizawa H et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  CAS  PubMed  Google Scholar 

  60. Ichikawa S, Imel EA, Kreiter ML et al (2007) A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest 117:2684–2691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Hu MC, Shi M, Zhang J et al (2011) Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 22:124–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Shimamura Y, Hamada K, Inoue K et al (2012) Serum levels of soluble secreted α-Klotho are decreased in the early stages of chronic kidney disease, making it a probable novel biomarker for early diagnosis. Clin Exp Nephrol 16:722–729

    Article  CAS  PubMed  Google Scholar 

  63. Saito H, Maeda A, Ohtomo S et al (2005) Circulating FGF‑23 is regulated by 1α,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem 280:2543–2549

    Article  CAS  PubMed  Google Scholar 

  64. Kolek OI, Hines ER, Jones MD et al (2005) 1{alpha},25-Dihydroxyvitamin D3 upregulates FGF23gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289(6):G1036–G1042

    Article  CAS  PubMed  Google Scholar 

  65. Turner AG, Hanrath MA, Morris HA et al (2014) The local production of 1,25(OH)2D3 promotes osteoblast and osteocyte maturation. J Steroid Biochem Mol Biol 144:114–118. doi:10.1016/j.jsbmb.2013.10.003. pii: S0960-0760(13)00196-9

    Article  CAS  PubMed  Google Scholar 

  66. Ormsby RT, Findlay DM, Kogawa M et al (2014) Analysis of vitamin D metabolism gene expression in human bone: Evidence for autocrine control of bone remodelling. J Steroid Biochem Mol Biol 144:110–113. doi:10.1016/j.jsbmb.2013.09.016. pii: S0960-0760(13)00190-8

    Article  CAS  PubMed  Google Scholar 

  67. Rhee Y, Bivi N, Farrow E et al (2011) Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 49:636–643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Lavi-Moshayoff V, Wasserman G, Meir T et al (2010) PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol 299:F882–F889

    Article  CAS  PubMed  Google Scholar 

  69. Lopez I, Rodriguez-Ortiz ME, Almaden Y et al (2011) Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo. Kidney Int 80:475–482

    Article  CAS  PubMed  Google Scholar 

  70. Rodriguez-Ortiz ME, Lopez I, Munoz-Castaneda JR et al (2012) Calcium deficiency reduces circulating levels of FGF23. J Am Soc Nephrol 23:1190–1197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Haussler MR, Whitfield GK, Kaneko I et al (2011) The role of vitamin D in the FGF23, klotho, and phosphate bone-kidney endocrine axis. Rev Endocr Metab Disord 13:57–69

    Article  Google Scholar 

  72. Sato T, Tominaga Y, Ueki T et al (2004) Total parathyroidectomy reduces elevated circulating fibroblast growth factor 23 in advanced secondary hyperparathyroidism. Am J Kidney Dis 44:481–487

    Article  CAS  PubMed  Google Scholar 

  73. Yamashita H, Yamazaki Y, Hasegawa H et al (2007) Fibroblast growth factor-23 (FGF23) in patients with transient hypoparathyroidism: its important role in serum phosphate regulation. Endocr J 54(3):465–470

    Article  CAS  PubMed  Google Scholar 

  74. Gupta A, Winer K, Econs MJ et al (2004) FGF-23 is elevated by chronic hyperphosphatemia. J Clin Endocrinol Metab 89:4489–4492

    Article  CAS  PubMed  Google Scholar 

  75. Quinn SJ, Thomsen AR, Pang JL et al (2013) Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo. Am J Physiol Endocrinol Metab 304(3):E310–E320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Juppner H, Wolf M (2012) αKlotho: FGF23 coreceptor and FGF23-regulating hormone. J Clin Invest 122:4336–4339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Kurosu H, Ogawa Y, Miyoshi M et al (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Kurosu H, Yamamoto M, Clark JD et al (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Tohyama O, Imura A, Iwano A et al (2004) Klotho is a novel β-glucuronidase capable of hydrolyzing steroid β-glucuronides. J Biol Chem 279:9777–9784

    Article  CAS  PubMed  Google Scholar 

  80. Goetz R, Beenken A, Ibrahimi OA et al (2007) Molecular insights into the Klotho dependent, endocrine mode of action of FGF19 subfamily members. Mol Cell Biol 27:3417–3428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Urakawa I, Yamazaki Y, Shimada T et al (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  CAS  PubMed  Google Scholar 

  82. Murer H, Hernando N, Forster I, Biber J (2003) Regulation of Na/Pi transporter in the proximal tubule. Annu Rev Physiol 65:531–542

    Article  CAS  PubMed  Google Scholar 

  83. Farrow EG, Davis SI, Summers LJ, White KE (2009) Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J Am Soc Nephrol 20:955–960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Hu MC, Shi M, Zhang J et al (2010) Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J 24:3438–3450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Shimada T, Kakitani M, Yamazaki Y et al (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113(4):561–568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V et al (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Krajisnik T, Bjorklund P, Marsell R et al (2007) Fibroblast growth factor-23 regulates parathyroid hormone and 1α-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol 195:125–131

    Article  CAS  PubMed  Google Scholar 

  88. Canalejo R, Canalejo A, Martinez-Moreno JM et al (2010) FGF23 fails to inhibit uremic parathyroid glands. J Am Soc Nephrol 21:1125–1135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Bai X, Miao D, Li J et al (2004) Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinology 145(11):5269–5279

    Article  CAS  PubMed  Google Scholar 

  90. Galitzer H, Ben Dov IZ, Silver J, Naveh-Many T (2010) Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int 77:211–218

    Article  CAS  PubMed  Google Scholar 

  91. Komaba H, Goto S, Fujii H et al (2010) Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int 77:232–238

    Article  CAS  PubMed  Google Scholar 

  92. Hofman-Bang J, Martuseviciene G, Santini MA et al (2010) Increased parathyroid expression of klotho in uremic rats. Kidney Int 78:1119–1127

    Article  CAS  PubMed  Google Scholar 

  93. Bai X, Miao D, Goltzman D, Karaplis AC (2007) Early lethality in Hyp mice with targeted deletion of Pth gene. Endocrinology 148(10):497

    Article  Google Scholar 

  94. Slatopolsky E, Finch J, Denda M et al (1996) Phosphorus restriction prevents parathyroid gland growth-high phosphorus directly stimulates PTH secretion in vitro. J Clin Invest 97:2534–2540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Goltzman MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Italia

About this chapter

Cite this chapter

Goltzman, D., Karaplis, A.C. (2015). The PTH/Vitamin D/FGF23 Axis. In: Brandi, M., Brown, E. (eds) Hypoparathyroidism. Springer, Milano. https://doi.org/10.1007/978-88-470-5376-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5376-2_8

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5375-5

  • Online ISBN: 978-88-470-5376-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics