Skip to main content

New Insights into Cardiovascular Monitoring: Continuous Arterial Thermodilution and Intrathoracic Blood Volume

  • Conference paper
Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.
  • 140 Accesses

Abstract

The measurement of cardiac output (CO) is often done when the patient is in need of advanced haemodynamic monitoring. The current method for measurement of cardiac output is by thermodilution and necessitates the insertion of a pulmonary artery catheter (PAC), a procedure which is associated with a number of known complications, including a possible increase in mortality in critically ill patients. In addition, the CO that is derived from the PAC is influenced by the significant respiratory variations, and hence from the phase of the mechanical breath in which the injection is made. Mechanical ventilation was also shown to cause a high incidence of significant tricuspid insufficiency and mild to severe vena caval backward flow, which, like other valvular regurgitations, may reduce the accuracy of CO measured by PAC thermodilution (TD) [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jullien T et al (1995) Incidence of tricuspid regurgitation and in mechanically ventilated patients. A color Doppler and contrast echocardiographic study. Chest 107:488–493

    Article  PubMed  CAS  Google Scholar 

  2. Bek JC et al (1989) Cardiac output measurement using femoral artery thermodilution in patients. J Crit Care 4:105–111

    Google Scholar 

  3. McLuckie A et al (1996) Comparison of pulmonary and femoral artery thermodilution cardiac indices in paediatric intensive care patients. Acta Paediatr 85:336–338

    Article  PubMed  CAS  Google Scholar 

  4. Weyland A et al (1994) Application of a transpulmonary double indicator dilution method for postoperative assessment of cardiac index, pulmonary vascular resistance index, and extravascular lung water in children undergoing total cavo-pulmonary anastomosis: Preliminary results in six patients. J Cardiothorac Vase Anesth 8:636–641

    Article  CAS  Google Scholar 

  5. Lewis FR et al (1982) The measurement of extravascular lung water by the thermal-green dye indicator dilution. Ann NY Acad Sci, pp 394–410

    Google Scholar 

  6. Wickerts et al (1990) Measurement of extravascular lung water by the thermal-dye dilution technique: Mechanisms of cardiac output dependence. Intensive Care Med 10:115–120

    Article  Google Scholar 

  7. Hoeft A (1995) Transpulmonary indicator dilution: An alternative approach for hemo-dynamic monitoring. In: Yearbook of Intensive Care and Emergency Medicine, Springer, pp 594–605

    Google Scholar 

  8. von Spiegel T et al (1996) Cardiac output evaluation by means of transpulmonary thermodilution. An alternative to the pulmonary artery catheter? Anaesthesist 45:1045–1050

    Article  Google Scholar 

  9. Godje O et al (1998) Reproducibility of double indicator dilution measurements of intrathoracic blood volume compartments, extravascular lung water, and liver function. Chest 113: 1070–1077

    Article  PubMed  CAS  Google Scholar 

  10. Tibby SM et al (1997) Clinical validation of cardiac output measurements using femoral artery thermodilution with direct Fick in ventilated children and infants. Intensive Care Med 23:987–991

    Article  PubMed  CAS  Google Scholar 

  11. Perel et al (1987) The systolic pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67:498–502

    Article  PubMed  CAS  Google Scholar 

  12. Pizov et al (1989) The arterial pressure waveform during acute ventricular failure and synchronized external chest compression. Anesth Analg 68:150–157

    Article  PubMed  CAS  Google Scholar 

  13. Coriat et al (1994) A comparison of systolic blood pressure and echocardiographic estimates of end-diastolic left ventricular size in patients following aortic surgery. Anesth Analg 78: 46–53

    Article  PubMed  CAS  Google Scholar 

  14. Preisman et al (1997) New monitors of intravascular volume: A comparison of arterial pressure waveform analysis and intrathoracic blood volume. Intensive Care Med 23:651–657

    Article  PubMed  CAS  Google Scholar 

  15. Beaussier et al (1995) Determinants of systolic pressure variation in patients ventilated after vascular surgery. J Cardiothoracic Vase Anesth 9:547–551

    Article  CAS  Google Scholar 

  16. Hedenstierna G (1992) What value does the recording of intrathoracic blood volume have in clinical practice? Intensive Care Med 18:137–138

    Article  PubMed  CAS  Google Scholar 

  17. Hoeft A et al (1994) Bedside assessment of intravascular volume status in patients undergoing coronary bypass surgery. Anesthesiology 81:76–86

    Article  PubMed  CAS  Google Scholar 

  18. Lichtwarck-Aschoff M et al (1996) Central venous pressure, pulmonary artery occlusion pressure, intrathoracic blood volume, and right ventricular end-diastolic volume as indicators of cardiac preload. J Crit Care 11:180–189

    Article  PubMed  CAS  Google Scholar 

  19. Lichtwarck-Aschoff M et al (1992) Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med 18: 142–147

    Article  PubMed  CAS  Google Scholar 

  20. Huttermann E et al (1996) Intrathoracic blood volume versus echocardiographic parameters in surgical patients. Clin Intens Care Med [Suppl]7:20

    Google Scholar 

  21. Pfeiffer UJ et al (1990) Sensitivity of central venous pressure, pulmonary capillary wedge pressure, and intrathoracic blood volume as indicators for acute and chronic hypovolemia. In: Lewis FR, Pfeiffer UJ (eds) Practical applications of fiberoptics in critical care monitoring. Springer, pp 25–31

    Google Scholar 

  22. Eisenberg et al (1987) A prospective study of lung water measurement during patient management in the intensive care unit. Am Rev Respir Dis 136:662–668

    Article  PubMed  CAS  Google Scholar 

  23. Mitchell JP et al (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Resp Dis 145:990–998

    Article  PubMed  CAS  Google Scholar 

  24. Schuster DP (1993) The case for and against fluid restriction and occlusion pressure reduction in adult respiratory distress syndrome. New Horizons 1:478–488

    PubMed  CAS  Google Scholar 

  25. Sturm JA (1990) Development and significance of lung water measurement in clinical and experimental practice. In: Lewis FR, Pfeiffer UJ (eds) Practical applications of fiberoptics in critical care monitoring, pp 129–139

    Google Scholar 

  26. Zeravik et al (1989) Efficacy of high frequency ventilation combined with volume controlled ventilation in dependency of extravascular lung water. Acta Anaesthesiol Scand 33:568–574

    Article  PubMed  CAS  Google Scholar 

  27. Zeravik et al (1990) Efficacy of pressure support ventilation is dependent on extravascular lung water. Chest 97:1412–1499

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia

About this paper

Cite this paper

Perel, A., Berkenstadt, H., Segal, E. (1999). New Insights into Cardiovascular Monitoring: Continuous Arterial Thermodilution and Intrathoracic Blood Volume. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2145-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2145-7_45

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0051-3

  • Online ISBN: 978-88-470-2145-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics