Skip to main content

Part of the book series: Topics in Neuroscience ((TOPNEURO))

  • 1352 Accesses

Abstract

Conventional magnetic resonance imaging (MRI) is widely used for the diagnosis and monitoring of multiple sclerosis (MS), because it is more sensitive than clinical assessment in detecting disease dissemination over space and time [1] and for revealing the occurrence of disease activity and the accumulation of disease burden over time. Nevertheless, the discrepancies between clinical and conventional MRI findings in patients with established MS [2] highlight the fact that conventional MRI is unable to reliably assess the more disabling pathological features of the disease, including axonal and neuronal loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  2. Filippi M, Grossman RI (2002) MRI techniques to monitor MS evolution: the present and the future. Neurology 58:1147–1153

    PubMed  Google Scholar 

  3. Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    PubMed  Google Scholar 

  4. Le Bihan D, Turner R, Pekar J, Moonen CTW (1991) Diffusion and perfusion imaging by gradient sensitization: design, strategy and significance. J Magn Reson Imaging 1:7–8

    Article  PubMed  Google Scholar 

  5. Basser PJ, Mattiello J, Le Bihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin-echo. J Magn Reson B 103:247–254

    Article  PubMed  CAS  Google Scholar 

  6. Pierpaoli C, Jezzard P, Basser PJ et al (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    PubMed  CAS  Google Scholar 

  7. Basser PJ, Pierpaoli C (1996)Microstructural features measured using diffusion tensor imaging. J Magn Reson B 111:209–219

    Article  PubMed  CAS  Google Scholar 

  8. Mottershead JP, Schmierer K, Clemence M et al (2003) High field MRI correlates of myelin content and axonal density in multiple sclerosis: a post-mortem study of the spinal cord. J Neurol 250:1293–1301

    Article  PubMed  CAS  Google Scholar 

  9. Rovaris M, Iannucci G, Cercignani M et al (2003) Age-related changes in conventional, magnetization transfer, and diffusion-tensor MR imaging findings: study with whole-brain tissue histogram analysis. Radiology 227:731–738

    Article  PubMed  Google Scholar 

  10. Bozzali M, Franceschi M, Falini A et al (2001) Quantification of tissue damage in AD using diffusion tensor and magnetization transfer MRI. Neurology 57:1135–1137

    PubMed  CAS  Google Scholar 

  11. Bozzali M, Falini A, Franceschi M et al (2002) White matter damage in Alzheimer’s disease assessed in vivo using diffusion tensor magnetic resonance imaging. J Neurol Neurosurg Psychiat 72:742–746

    Article  PubMed  CAS  Google Scholar 

  12. Horsfield MA, Lai M, Webb SL et al (1996) Apparent diffusion coefficients in benign and secondary progressive multiple sclerosis by nuclear magnetic resonance. Magn Reson Med 36:393–400

    Article  PubMed  CAS  Google Scholar 

  13. Droogan AG, Clark CA, Werring DJ et al (1999) Comparison of multiple sclerosis clinical subgroups using navigated spin echo diffusion-weighted imaging. Magn Reson Imaging 17:653–661

    Article  PubMed  CAS  Google Scholar 

  14. Werring DJ, Clark CA, Barker GJ et al (1999) Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52:1626–1632

    PubMed  CAS  Google Scholar 

  15. Werring DJ, Brassat D, Droogan AG et al (2000) The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MRI study. Brain 123:1667–1676

    Article  PubMed  Google Scholar 

  16. Filippi M, Iannucci G, Cercignani M et al (2000) A quantitative study of water diffusion in multiple sclerosis lesions and normal-appearing white matter using echo-planar imaging. Arch Neurol 57:1017–1021

    Article  PubMed  CAS  Google Scholar 

  17. Filippi M, Cercignani M, Inglese M et al (2001) Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 56:304–311

    PubMed  CAS  Google Scholar 

  18. Cercignani M, Iannucci G, Rocca MA et al (2000) Pathologic damage in MS assessed by diffusion-weighted and magnetization transfer MRI. Neurology 54:1139–1144

    PubMed  CAS  Google Scholar 

  19. Cercignani M, Bozzali M, Iannucci G et al (2001) Magnetisation transfer ratio and mean diffusivity of normal appearing white and grey matter from patients with multiple sclerosis. J Neurol Neurosurg Psychiat 70:311–317

    Article  PubMed  CAS  Google Scholar 

  20. Rocca MA, Cercignani M, Iannucci G et al (2000) Weekly diffusion-weighted imaging of normal-appearing white matter in MS. Neurology 55:882–884

    PubMed  CAS  Google Scholar 

  21. Bammer R, Augustin M, Strasser-Fuchs S et al (2000) Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal white matter abnormalities in multiple sclerosis. Magn Reson Med 44:583–589

    Article  PubMed  CAS  Google Scholar 

  22. Nusbaum AO, Lu D, Tang CY, Atlas SW (2000) Quantitative diffusion measurements in focal multiple sclerosis lesions: correlations with appearance on T1-weighted MR images. Am J Roentgenol 175:821–825

    CAS  Google Scholar 

  23. Roychowdhury S, Maldijan JA, Grossman RI (2000) Multiple sclerosis: comparison of trace apparent diffusion coefficients with MR enhancement pattern of lesions. Am J Neuroradiol 21:869–874

    PubMed  CAS  Google Scholar 

  24. Castriota-Scanderbeg A, Fasano F, Hagberg G et al (2003) Coefficient Dav is more sensitive than fractional anisotropy in monitoring progression of irreversible tissue damage in focal nonactive multiple sclerosis lesions. Am J Neuroradiol 24:663–670

    PubMed  Google Scholar 

  25. van Walderveen MA, Kamphorst W, Scheltens P et al (1998) Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 50:1282–1288

    PubMed  Google Scholar 

  26. Castriota-Scanderbeg A, Sabatini U, Fasano F et al (2002) Diffusion of water in large demyelinating lesions: a follow-up study. Neuroradiology 44:764–767

    Article  PubMed  CAS  Google Scholar 

  27. Rovaris M, Gass A, Bammer R et al (2005) Diffusion MRI in multiple sclerosis. Neurology 65:1526–1532

    Article  PubMed  CAS  Google Scholar 

  28. Griffin CM, Chard DT, Ciccarelli O et al (2001) Diffusion tensor imaging in early relapsing-remitting multiple sclerosis. Mult Scler 7:290–297

    PubMed  CAS  Google Scholar 

  29. Rashid W, Hadjiprocopis A, Griffin CM et al (2004) Diffusion tensor imaging of early relapsing-remitting multiple sclerosis with histogram analysis using automated segmentation and brain volume correction. Mult Scler 10:9–15

    Article  PubMed  CAS  Google Scholar 

  30. Caramia F, Pantano P, Di Legge S et al (2000) A longitudinal study of MR diffusion changes in normal appearing white matter of patients with early multiple sclerosis. Magn Reson Imaging 20:383–388

    Article  Google Scholar 

  31. Gallo A, Rovaris M, Riva R et al (2005) Diffusion tensor MRI detects normal-appearing white matter damage unrelated to short-term disease activity in patients at the earlier stage of multiple sclerosis. Arch Neurol 62:803–808

    Article  PubMed  Google Scholar 

  32. Bozzali M, Cercignani M, Sormani MP, Comi G, Filippi M (2002) Quantification of brain gray matter damage in different MS phenotypes by use of diffusion tensor MR imaging. Am J Neuroradiol 23:985–988.

    PubMed  Google Scholar 

  33. Rovaris M, Bozzali M, Iannucci G et al (2002) Assessment of normal-appearing white and gray matter in patients with primary progressive multiple sclerosis: a diffusiontensor magnetic resonance imaging study. Arch Neurol 59:1406–1412

    Article  PubMed  Google Scholar 

  34. Rovaris M, Gallo A, Valsasina P et al (2005) Short-term accrual of gray matter pathology in patients with progressive multiple sclerosis: an in vivo study using diffusion tensor MRI. Neuroimage 24:1139–1146

    Article  PubMed  Google Scholar 

  35. Oreja-Guevara C, Rovaris M, Iannucci G et al (2005) Progressive gray matter damage in patients with relapsing-remitting MS: a longitudinal diffusion tensor MRI study. Arch Neurol 62:578–584

    Article  PubMed  Google Scholar 

  36. Schmierer K, Altmann DR, Kassim N et al (2004) Progressive change in primary progressive multiple sclerosis normal-appearing white matter: a serial diffusion magnetic resonance imaging study. Mult Scler 10:182–187

    Article  PubMed  Google Scholar 

  37. Cercignani M, Bozzali M, Iannucci G et al (2002) Intra-voxel and inter-voxel coherence in patients with multiple sclerosis assessed using diffusion tensor MRI. J Neurol 249:875–883

    Article  PubMed  CAS  Google Scholar 

  38. Ciccarelli O, Werring DJ, Wheeler-Kingshott CA et al (2001) Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations. Neurology 56:926–933

    PubMed  CAS  Google Scholar 

  39. Cercignani M, Inglese M, Pagani E et al (2001) Mean diffusivity and fractional anisotropy histograms in patients with multiple sclerosis. Am J Neuroradiol 22:952–958

    PubMed  CAS  Google Scholar 

  40. Nusbaum AO, Tang CY, Wei TC et al (2000) Whole-brain diffusion MR histograms differ between MS subtypes. Neurology 54:1421–1426

    PubMed  CAS  Google Scholar 

  41. Castriota-Scanderbeg A, Tomaiuolo F, Sabatini U et al (2000) Demyelinating plaques in RR and secondary-progressive multiple sclerosis: assessment with diffusion MR imaging. Am J Neuroradiol 21:862–868

    PubMed  CAS  Google Scholar 

  42. Rovaris M, Iannucci G, Falautano M et al (2002) Cognitive dysfunction in patients with mildly disabling relapsing-remitting multiple sclerosis: an exploratory study with diffusion tensor MR imaging. J Neurol Sci 195:103–109

    Article  PubMed  Google Scholar 

  43. Vrenken H, Pouwels PJ, Geurts JJ et al (2006) Altered diffusion tensor in multiple sclerosis normal-appearing brain tissue: cortical diffusion changes seem related to clinical deterioration. J Magn Reson Imaging 23:628–636

    Article  PubMed  Google Scholar 

  44. Oh J, Henry RG, Genain C et al (2004) Mechanisms of normal appearing corpus callosum injury related to pericallosal T1 lesions in multiple sclerosis using directional diffusion tensor and 1H MRS imaging. J Neurol Neurosurg Psychiat 75:1281–1286

    Article  PubMed  CAS  Google Scholar 

  45. Mainero C, De Stefano N, Iannucci G et al (2001) Correlates of MS disability assessed in vivo using aggregates of MR quantities. Neurology 56:1331–1334

    PubMed  CAS  Google Scholar 

  46. Pulizzi A, Rovaris M, Judica E et al (2007) Determinants of disability in multiple sclerosis at various disease stages: a multiparametric magnetic resonance study. Arch Neurol (in press)

    Google Scholar 

  47. Rovaris M, Judica E, Gallo A et al (2006) Grey matter damage predicts the evolution of primary progressive multiple sclerosis at 5 years. Brain 129:2628–2634

    Article  PubMed  CAS  Google Scholar 

  48. Hickman SJ, Wheeler-Kingshott CAM, Jones SJ et al (2005) Optic nerve diffusion measurement from diffusion weighted imaging in optic neuritis. Am J Neuroradiol 26:951–956

    PubMed  Google Scholar 

  49. Valsasina P, Rocca MA, Agosta F et al (2005) Mean diffusivity and fractional anisotropy histogram analysis of the cervical cord in MS patients. NeuroImage 26:822–828

    Article  PubMed  Google Scholar 

  50. Agosta F, Benedetti B, Rocca MA et al (2005) Quantification of cervical cord pathology in primary progressive MS using diffusion tensor MRI. Neurology 64:631-635

    Google Scholar 

  51. Henry RG, Oh J, Nelson SJ, Pelletier D (2003) Directional diffusion in relapsingremitting multiple sclerosis: a possible in vivo signature of Wallerian degeneration. J Magn Reson Imaging 18:420–426

    Article  PubMed  Google Scholar 

  52. Conturo TE, Lori NF, Cull TS et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96:10422–10427

    Article  PubMed  CAS  Google Scholar 

  53. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    Article  PubMed  CAS  Google Scholar 

  54. Mori S, Kaufmann WE, Davatzikos C et al (2002) Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med 47:215–223

    Article  PubMed  Google Scholar 

  55. Wilson M, Tench CR, Morgan PS, Blumhardt LD (2003) Pyramidal tract mapping by diffusion tensor magnetic resonance imaging in multiple sclerosis: improving correlations with disability. J Neurol Neurosurg Psychiat 74: 203–207

    Article  PubMed  CAS  Google Scholar 

  56. Vaithianathar L, Tench CR, Morgan PS et al (2002) Tl relaxation time mapping of white matter tracts in multiple sclerosis defined by diffusion tensor imaging. J Neurol 249:1272–1278

    Article  PubMed  Google Scholar 

  57. Pagani E, Filippi M, Rocca MA, Horsfield MA (2005) A method for obtaining tractspecific diffusion tensor MRI measurements in the presence of disease: application to patients with clinically isolated syndromes suggestive of multiple sclerosis. NeuroImage 26:258–265

    Article  PubMed  CAS  Google Scholar 

  58. Lin X, Tench CR, Morgan PS et al (2005) ‘Importance sampling’ in MS: use of diffusion tensor tractography to quantify pathology related to specific impairment. J Neurol Sci 237:13–19

    Article  PubMed  Google Scholar 

  59. Assaf Y, Ben-Bashat D, Chapman J et al (2002) High b-value q-space analyzed diffusion-weighted MRI: application to multiple sclerosis. Magn Reson Med 47:115–126

    Article  PubMed  CAS  Google Scholar 

  60. Assaf Y, Cohen Y (2000) Assignment of the water slow-diffusing component in the central nervous system using q-space diffusion MRS: implications for fiber tract imaging. Magn Reson Med 43:191–199

    Article  PubMed  CAS  Google Scholar 

  61. Assaf Y, Chapman J, Ben-Bashat D (2005) White matter changes in multiple sclerosis: correlation of q-space diffusion MRI and 1H MRS. Magn Reson Imaging 23:703–710

    Article  PubMed  CAS  Google Scholar 

  62. Rovaris M, Filippi M (2005) “Importance sampling”: a strategy to overcome the clinical/MRI paradox in MS? J Neurol Sci 237:1–3

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Italia

About this chapter

Cite this chapter

Rovaris, M., Perego, E., Filippi, M. (2007). Diffusion-Weighted Imaging. In: Filippi, M., Rovaris, M., Comi, G. (eds) Neurodegeneration in Multiple Sclerosis. Topics in Neuroscience. Springer, Milano. https://doi.org/10.1007/978-88-470-0391-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0391-0_7

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0390-3

  • Online ISBN: 978-88-470-0391-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics