Skip to main content

Avian Circadian Organization

  • Chapter
  • First Online:
Biological Timekeeping: Clocks, Rhythms and Behaviour

Abstract

This chapter details the organization of the avian circadian clock systems starting with the systemic levels of circadian organization that perceives the external cue (light) and then generates the timing. It has been shown that unlike the mammals, there are three different master clocks that regulate the timing and they are functionally organized in such a way that they produce synchronized events in daily life in birds. The molecular mechanism that generates the timing and then the mechanism by which the circadian clock is entrained to the external environment are discussed. Finally, the chapter explains the role of circadian clocks in the regulation of physiology and behavior of birds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cassone VM (2014) Avian circadian organization: a chorus of clocks. Front Neuroendocrinol 35:76–88

    Article  PubMed  Google Scholar 

  2. Cassone VM, Westneat DF (2012) The bird of time: cognition and the avian biological clock. Front Mol Neurosci 5:32

    Article  PubMed  PubMed Central  Google Scholar 

  3. Smith SM (1993) In: Poole A, Stettenheim P, Gill F (eds) Black-capped Chickadee. The birds of North America No39. The Academy of Natural Sciences, Philadelphia, p 39

    Google Scholar 

  4. Sherry D (1984) Food storage by black-capped chickadees: memory for the location and contents of caches. Anim Behav 32:451–464

    Article  Google Scholar 

  5. Ehrlich PR, Dobkin DS, Wheye D (1988) The Birder’s handbook. A field guide to the natural history of North American birds. Touchstone, New York, p 3

    Google Scholar 

  6. Oksche A (1984) Evolution of the pineal complex: correlation of structure and function. Ophthalmic Res 16:88–95

    Article  CAS  PubMed  Google Scholar 

  7. Taniguchi M, Murakami N, Nakamura H, Nasu T, Shinohara S, Etoh T (1993) Melatonin release from pineal cells of diurnal and nocturnal birds. Brain Res 620:297–300

    Article  CAS  PubMed  Google Scholar 

  8. Murakami N, Kawano T, Nakahara K, Nasu T, Shiota K (2001) Effect of melatonin on circadian rhythm, locomotor activity and body temperature in the intact house sparrow, Japanese quail and owl. Brain Res 889:220–224

    Article  CAS  PubMed  Google Scholar 

  9. Yoshimura T, Suzuki Y, Makino E, Suzuki T, Kuroiwa A, Matsuda Y, Namikawa T, Ebihara S (2000) Molecular analysis of avian circadian clock genes. Brain Res Mol Brain Res 78:207–215

    Article  CAS  PubMed  Google Scholar 

  10. Brandstatter R, Abraham U, Albrecht U (2001) Initial demonstration of rhythmic per gene expression in the hypothalamus of a non-mammalian vertebrate, the house sparrow. Neuroreport 12:1167–1170

    Article  CAS  PubMed  Google Scholar 

  11. Abraham U, Albrecht U, Gwinner E, Brandstatter R (2002) Spatial and temporal variation of passer Per2 gene expression in two distinct cell groups of the suprachiasmatic hypothalamus in the house sparrow (Passer domesticus). Eur J Neurosci 16:429–436

    Article  PubMed  Google Scholar 

  12. Bailey MJ, Beremand PD, Hammer R, Bell-Pedersen D, Thomas TL, Cassone VM (2003) Transcriptional profiling of the chick pineal gland, a photoreceptive circadian oscillator and pacemaker. Mol Endocrinol 17:2084–2095

    Article  CAS  PubMed  Google Scholar 

  13. Fidler AE, Gwinner E (2003) Comparative analysis of avian BMAL1 and CLOCK protein sequences: a search for features associated with owl nocturnal behaviour. Comp Biochem Physiol B Biochem Mol Biol 136:861–874

    Article  PubMed  Google Scholar 

  14. Chakarov N, Jonker RM, Boerner M, Hoffman JI, Kruger O (2013) Variation at phenological candidate genes correlates with timing of dispersal and plumage morph in a sedentary bird of prey. Mol Ecol 22:5430–5440

    Article  CAS  PubMed  Google Scholar 

  15. Benoit J, Assenmacher I (1954) Comparative sensitivity of superficial and deep receptors in photosexual reflex in duck. Comptesrendushebdomadaires des seances de l’Academie des Sci 239:105–107

    CAS  Google Scholar 

  16. Menaker M (1968) Extraretinal light perception in the sparrow. I. Entrainment of the biological clock. Proc Natl Acad Sci U S A 59:414–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Menaker M, Underwood H (1976) Extraretinal photoreception in birds. Photophysiology 23:299–306

    CAS  PubMed  Google Scholar 

  18. Bailey MJ, Cassone VM (2004) Opsin photoisomerases in the chick retina and pineal gland: characterization, localization, and circadian regulation. Invest Ophthalmol Vis Sci 45:769–775

    Article  PubMed  Google Scholar 

  19. Peirson SN, Halford S, Foster RG (2009) The evolution of irradiance detection: melanopsin and the non-visual opsins. Philos Trans R Soc Lond B Biol Sci 364:2849–2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakane Y, Yoshimura T (2010) Deep brain photoreceptors and a seasonal signal transduction cascade in birds. Cell Tissue Res 342:341–344

    Article  PubMed  Google Scholar 

  21. Okano T, Yoshizawa T, Fukada Y (1994) Pinopsin is a chicken pineal photoreceptive molecule. Nature 372:94–97

    Article  CAS  PubMed  Google Scholar 

  22. Max M, McKinnon PJ, Seidenman KJ, Barrett RK, Applebury ML, Takahashi JS, Margolskee RF (1995) Pineal opsin: a nonvisual opsin expressed in chick pineal. Science 267:1502–1506

    Article  CAS  PubMed  Google Scholar 

  23. Bailey MJ, Cassone VM (2005) Melanopsin expression in the chick retina and pineal gland. Brain Res Mol Brain Res 134:345–348

    Article  CAS  PubMed  Google Scholar 

  24. Chaurasia SS, Rollag MD, Jiang G, Hayes WP, Haque R, Natesan A, Zatz M, Tosini G, Liu C, Korf HW, Iuvone PM, Provencio I (2005) Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J Neurochem 92:158–170

    Article  CAS  PubMed  Google Scholar 

  25. Masuda H, Oishi T, Ohtani M, Michinomae M, Fukada Y, Shichida Y, Yoshizawa T (1994) Visual pigments in the pineal complex of the Japanese quail, Japanese grass lizard and bullfrog: immunocytochemistry and HPLC analysis. Tissue Cell 26:101–113

    Article  CAS  PubMed  Google Scholar 

  26. Natesan A, Geetha L, Zatz M (2002) Rhythm and soul in the avian pineal. Cell Tissue Res 309:35–45

    Article  CAS  PubMed  Google Scholar 

  27. Davies WL, Hankins MW, Foster RG (2010) Vertebrate ancient opsin and melanopsin: divergent irradiance detectors. Photochem Photobiol Sci 9:1444–1457

    Article  CAS  PubMed  Google Scholar 

  28. Davies WI, Turton M, Peirson SN, Follett BK, Halford S, Garcia-Fernandez JM, Sharp PJ, Hankins MW, Foster RG (2012) Vertebrate ancient opsin photopigment spectra and the avian photoperiodic response. Biol Lett 8:291–294

    Article  PubMed  Google Scholar 

  29. Wang G, Wingfield JC (2011) Immunocytochemical study of rhodopsin-containing putative encephalic photoreceptors in house sparrow, Passer domesticus. Gen Comp Endocrinol 170:589–596

    Article  CAS  PubMed  Google Scholar 

  30. Wada Y, Okano T, Adachi A, Ebihara S, Fukada Y (1998) Identification of rhodopsin in the pigeon deep brain. FEBS Lett 424:53–56

    Article  CAS  PubMed  Google Scholar 

  31. Kubo Y, Akiyama M, Fukada Y, Okano T (2006) Molecular cloning, mRNA expression, and immunocytochemical localization of a putative blue-light photoreceptor CRY4 in the chicken pineal gland. J Neurochem 97:1155–1165

    Article  CAS  PubMed  Google Scholar 

  32. Emery P, So WV, Kaneko M, Hall JC, Rosbash M (1998) CRY, a drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95:669–679

    Article  CAS  PubMed  Google Scholar 

  33. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gaston S, Menaker M (1968) Pineal function: the biological clock in the sparrow? Science 160:1125–1127

    Article  CAS  PubMed  Google Scholar 

  35. Zimmerman NH, Menaker M (1979) The pineal gland: a pacemaker within the circadian system of the house sparrow. Proc Natl Acad Sci 76:999–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klein DC, Coon SL, Roseboom PH, Weller JL, Bernard M, Gastel JA, Zatz M, Iuvone PM, Rodriguez IR, Begay V, Falcon J, Cahill GM, Cassone VM, Baler R (1997) The melatonin rhythm-generating enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog Horm Res 52:307–357, discussion 357–308

    CAS  PubMed  Google Scholar 

  37. Csernus V, Faluhelyi N, Nagy AD (2005) Features of the circadian clock in the avian pineal gland. Ann N Y Acad Sci 1040:281–287

    Article  CAS  PubMed  Google Scholar 

  38. Chong NW, Cassone VM, Bernard M, Klein DC, Iuvone PM (1998) Circadian expression of tryptophan hydroxylase mRNA in the chicken retina. Brain Res Mol Brain Res 61:243–250

    Article  CAS  PubMed  Google Scholar 

  39. Bernard M, Iuvone PM, Cassone VM, Roseboom PH, Coon SL, Klein DC (1997) Avian melatonin synthesis: photic and circadian regulation of serotonin N-acetyltransferase mRNA in the chicken pineal gland and retina. J Neurochem 68:213–224

    Article  CAS  PubMed  Google Scholar 

  40. Bernard M, Voisin P, Guerlotte J, Collin JP (1991) Molecular and cellular aspects of hydroxyindole-O-methyltransferase expression in the developing chick pineal gland. Brain Res Dev Brain Res 59:75–81

    Article  CAS  PubMed  Google Scholar 

  41. Cassone VM (1992) The pineal gland influences rat circadian activity rhythms in constant light. J Biol Rhythms 7:27–40

    Article  CAS  PubMed  Google Scholar 

  42. Chabot CC, Menaker M (1992) Effects of physiological cycles of infused melatonin on circadian rhythmicity in pigeons. J Comp Physiol A Sens Neural Behav Physiol 170:615–622

    Article  CAS  Google Scholar 

  43. Lu J, Cassone VM (1993) Daily melatonin administration synchronizes circadian patterns of brain metabolism and behavior in pinealectomized house sparrows, Passer domesticus. J Comp Physiol A 173:775–782

    Article  Google Scholar 

  44. Gwinner E, Hau M, Heigl S (1994) Phasic and tonic effects of melatonin on avian circadian systems. In: Honma K, Honma N (eds) Circadian clocks and evolution. Hokkaido University Press, p 127–137

    Google Scholar 

  45. Cassone VM, Bartell PA, Earnest BJ, Kumar V (2008) Duration of melatonin regulates seasonal changes in song control nuclei of the house sparrow, Passer domesticus: independence from gonads and circadian entrainment. J Biol Rhythms 23:49–58

    Article  CAS  PubMed  Google Scholar 

  46. Wang G, Harpole CE, Trivedi AK, Cassone VM (2012) Circadian regulation of bird song, call, and locomotor behavior by pineal melatonin in the zebra finch. J Biol Rhythms 27:145–155

    Article  PubMed  Google Scholar 

  47. Gwinner E, Hau M, Heigl S (1997) Melatonin: generation and modulation of avian circadian rhythms. Brain Res Bull 44:439–444

    Article  CAS  PubMed  Google Scholar 

  48. Binkley SA, Riebman JB, Reilly KB (1978) The pineal gland: a biological clock in vitro. Science 202:1198–1120

    Article  CAS  PubMed  Google Scholar 

  49. Binkley S, Riebman JB, Reilly KB (1977) Timekeeping by the pineal gland. Science 197:1181–1183

    Article  CAS  PubMed  Google Scholar 

  50. Deguchi T (1979) Circadian rhythm of serotonin N-acetyltransferase activity in organ culture of chicken pineal gland. Science 203:1245–1247

    Article  CAS  PubMed  Google Scholar 

  51. Karaganis SP, Kumar V, Beremand PD, Bailey MJ, Thomas TL, Cassone VM (2008) Circadian genomics of the chick pineal gland in vitro. BMC Genomics 9:206

    Article  PubMed  PubMed Central  Google Scholar 

  52. Takahashi JS, Hamm H, Menaker M (1980) Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro. Proc Natl Acad Sci 77:2319–2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li Y, Cassone VM (2015) Clock-controlled regulation of the acute effects of norepinephrine on chick pineal melatonin rhythms. J Biol Rhythms 30:519–532

    Article  CAS  PubMed  Google Scholar 

  54. Zatz M, Mullen DA (1988) Norepinephrine, acting via adenylate cyclase, inhibits melatonin output but does not phase-shift the pacemaker in cultured chick pineal cells. Brain Res 450:137–143

    Article  CAS  PubMed  Google Scholar 

  55. Ebihara S, Uchiyama K, Oshima I (1984) Circadian organization in the pigeon, Columba livia: the role of the pineal organ and the eye. J Comp Physiol A 154:59–69

    Article  Google Scholar 

  56. Underwood H, Siopes T (1984) Circadian organization in Japanese quail. J Exp Zool 232:557–566

    Article  CAS  PubMed  Google Scholar 

  57. Ebihara S, Adachi A, Hasegawa M, Nogi T, Yoshimura T, Hirunagi K (1997) In vivo microdialysis studies of pineal and ocular melatonin rhythms in birds. Biol Signals 6:233–240

    Article  CAS  PubMed  Google Scholar 

  58. Cassone VM, Moore RY (1987) Retinohypothalamic projection and suprachiasmatic nucleus of the house sparrow, Passer domesticus. J Comp Neurol 266:171–182

    Article  CAS  PubMed  Google Scholar 

  59. Cantwell EL, Cassone VM (2006) Chicken suprachiasmatic nuclei: I. Efferent and afferent connections. J Comp Neurol 496:97–120

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cantwell EL, Cassone VM (2006) Chicken suprachiasmatic nuclei: II. Autoradiographic and immunohistochemical analysis. J Comp Neurol 499:442–457

    Article  PubMed  Google Scholar 

  61. Cassone VM, Roberts MH, Moore RY (1988) Effects of melatonin on 2-deoxy-[1-14C]glucose uptake within rat suprachiasmatic nucleus. Am J Physiol 255(2 Pt 2):R332–R337

    CAS  PubMed  Google Scholar 

  62. Lu J, Cassone VM (1993) Pineal regulation of circadian rhythms of 2-deoxy[14C]glucose uptake and 2[125I]iodomelatonin binding in the visual system of the house sparrow, Passer domesticus. J Comp Physiol A 173:765–774

    Article  Google Scholar 

  63. JussTS DI, Follett BK, Mason R (1994) Circadian rhythm in neuronal discharge activity in the quail lateral hypothalamic retinorecipient nucleus (LHRN) recorded in vitro. J Physiol (Cambridge):475p–475p 132p–132p

    Google Scholar 

  64. Cantwell EL, Cassone VM (2002) Daily and circadian fluctuation in 2-deoxy[(14)C]-glucose uptake in circadian and visual system structures of the chick brain: effects of exogenous melatonin. Brain Res Bull 57:603–611

    Article  CAS  PubMed  Google Scholar 

  65. Cassone VM (1988) Circadian variation of [14C]2-deoxyglucose uptake within the suprachiasmatic nucleus of the house sparrow, Passer domesticus. Brain Res 459:178–182

    Article  CAS  PubMed  Google Scholar 

  66. Rivkees SA, Cassone VM, Weaver DR, Reppert SM (1989) Melatonin receptors in chick brain: characterization and localization. Endocrinology 125:363–368

    Article  CAS  PubMed  Google Scholar 

  67. Cassone VM, Brooks DS, Kelm TA (1995) Comparative distribution of 2[125I]iodomelatonin binding in the brains of diurnal birds: outgroup analysis with turtles. Brain Behav Evol 45:241–256

    Article  CAS  PubMed  Google Scholar 

  68. King V, Follett B (1997) C-fos expression in the putative avian suprachiasmatic nucleus. J Comp Physiol A 180:541–551

    Article  CAS  PubMed  Google Scholar 

  69. Yoshimura T, Yasuo S, Suzuki Y, Makino E, Yokota Y, Ebihara S (2001) Identification of the suprachiasmatic nucleus in birds. Am J Physiol Regul Integr Comp Physiol 280:R1185–R1189

    CAS  PubMed  Google Scholar 

  70. Yasuo S, Yoshimura T, Bartell PA, Iigo M, Makino E, Okabayashi N, Ebihara S (2002) Effect of melatonin administration on qPer2, qPer3, and qClock gene expression in the suprachiasmatic nucleus of Japanese quail. Eur J Neurosci 16:1541–1546

    Article  PubMed  Google Scholar 

  71. Abraham U, Albrecht U, Brandstatter R (2003) Hypothalamic circadian organization in birds. II. Clock gene expression. Chronobiol Int 20:657–669

    Article  CAS  PubMed  Google Scholar 

  72. Ebihara S, Kawamura H (1981) The role of the pineal organ and the suprachiasmatic nucleus in the control of circadian locomotor rhythms in the Java sparrow, Padda oryzivora. J Comp Physiol 141:207–214

    Article  Google Scholar 

  73. Takahashi JS, Menaker M (1982) Role of the suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus. J Neurosci 2:815–828

    CAS  PubMed  Google Scholar 

  74. Cassone VM, Menaker M (1984) Is the avian circadian system a neuroendocrine loop? J Exp Zool 232:539–549

    Article  CAS  PubMed  Google Scholar 

  75. Gwinner E (1989) Photoperiod as a modifying and limiting factor in the expression of avian circannual rhythms. J Biol Rhythms 4:237–250

    Article  CAS  PubMed  Google Scholar 

  76. Cassone VM, Menaker M (1983) Sympathetic regulation of chicken pineal rhythms. Brain Res 272:311–317

    Article  CAS  PubMed  Google Scholar 

  77. Menaker M (1985) Eyes – the second (and third) pineal glands? Ciba Found Symp 117:78–92

    CAS  PubMed  Google Scholar 

  78. Steele CT, Tosini G, Siopes T, Underwood H (2006) Time keeping by the quail’s eye: circadian regulation of melatonin production. Gen Comp Endocrinol 145:232–236

    Article  CAS  PubMed  Google Scholar 

  79. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  CAS  PubMed  Google Scholar 

  80. Rosbash M, Bradley S, Kadener S, Li Y, Luo W, Menet JS, Nagoshi E, Palm K, Schoer R, Shang Y, Tang CH (2007) Transcriptional feedback and definition of the circadian pacemaker in Drosophila and animals. Cold Spring Harb Symp Quant Biol 72:75–83

    Article  CAS  PubMed  Google Scholar 

  81. Bailey MJ, Beremand PD, Hammer R, Reidel E, Thomas TL, Cassone VM (2004) Transcriptional profiling of circadian patterns of mRNA expression in the chick retina. J Biol Chem 279:52247–52254

    Article  CAS  PubMed  Google Scholar 

  82. Bailey MJ, Chong NW, Xiong J, Cassone VM (2002) Chickens’ Cry2: molecular analysis of an avian cryptochrome in retinal and pineal photoreceptors. FEBS Lett 513:169–174

    Article  CAS  PubMed  Google Scholar 

  83. Chong NW, Chaurasia SS, Haque R, Klein DC, Iuvone PM (2003) Temporal-spatial characterization of chicken clock genes: circadian expression in retina, pineal gland, and peripheral tissues. J Neurochem 85:851–860

    Article  CAS  PubMed  Google Scholar 

  84. Helfer G, Fidler AE, Vallone D, Foulkes NS, Brandstaetter R (2006) Molecular analysis of clock gene expression in the avian brain. Chronobiol Int 23:113–127

    Article  CAS  PubMed  Google Scholar 

  85. Karaganis SP, Bartell PA, Shende VR, Moore AF, Cassone VM (2009) Modulation of metabolic and clock gene mRNA rhythms by pineal and retinal circadian oscillators. Gen Comp Endocrinol 161:179–192

    Article  CAS  PubMed  Google Scholar 

  86. Zeman M, Szantoova K, Herichova I (2009) Ontogeny of circadian oscillations in the heart and liver in chicken. Comp Biochem Physiol A Mol Integr Physiol 154:78–83

    Article  PubMed  Google Scholar 

  87. Poirel VJ, Boggio Y, Dardente H, Pevet P, Masson-Pevet M, Gauer F (2003) Contrary to other non-photic cues, acute melatonin injection does not induce immediate changes in clock gene mRNA expression in the rat suprachiasmatic nuclei. Neuroscience 120:745–755

    Article  CAS  PubMed  Google Scholar 

  88. Cassone VM, Speh JC, Card JP, Moore RY (1988) Comparative anatomy of the mammalian hypothalamic suprachiasmatic nucleus. J Biol Rhythms 3:71–91

    Article  CAS  PubMed  Google Scholar 

  89. Shibata S, Cassone VM, Moore RY (1989) Effects of melatonin on neuronal activity in the rat suprachiasmatic nucleus in vitro. Neurosci Lett 97(1–2):140–144

    Article  CAS  PubMed  Google Scholar 

  90. Paulose JK, Peters JL, Karaganis SP, Cassone VM (2009) Pineal melatonin acts as a circadian zeitgeber and growth factor in chick astrocytes. J Pineal Res 46(3):286–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Adachi A, Natesan AK, Whitfield-Rucker MG, Weigum SE, Cassone VM (2002) Functional melatonin receptors and metabolic coupling in cultured chick astrocytes. Glia 39(3):268–278

    Article  PubMed  Google Scholar 

  92. Peters JL, Cassone VM, Zoran MJ (2005) Melatonin modulates intercellular communication among cultured chick astrocytes. Brain Res 1031(1):10–19

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent M. Cassone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Cassone, V.M., Paulose, J.K., Harpole, C.E., Li, Y., Whitfield-Rucker, M. (2017). Avian Circadian Organization. In: Kumar, V. (eds) Biological Timekeeping: Clocks, Rhythms and Behaviour. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3688-7_11

Download citation

Publish with us

Policies and ethics