Skip to main content
Log in

Daily melatonin administration synchronizes circadian patterns of brain metabolism and behavior in pinealectomized house sparrows,Passer domesticus

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Recent research in our laboratory has indicated that in sparrows the visual suprachiasmatic nucleus (vSCN) is metabolically rhythmic such that 2-deoxy[14C]glucose (2DG) uptake and specific binding of 2[125I]iodomelatonin (IMEL) are high during subjective day for up to 10 circadian cycles in constant darkness (DD). These rhythms damp to arrhythmicity in pinealectomized birds (PINX). The present study was designed to test the hypothesis that exogenous melatonin rhythmically applied can restore disrupted behavioral and cerebral rhythmicity. Pinealectomized house sparrows were placed in constant dim light and allowed to become arrhythmic. Experimental birds received 0.86 mM melatonin in 0.01% ethanol (ETOH) to drink for 12 of every 24 h for 14 days. Control birds received 0.01% ETOH only. Behavioral rhythmicity was restored by melatonin but not by ETOH. Birds were injected with 2DG 6 or 18 h following the beginning of melatonin (for experimental birds: MT06 and MT18 respectively) or ETOH (for control birds: ET06 and ET18 respectively) administration, allowed to survive 1 h and killed for 2DG and IMEL autoradiography. The data indicated 2DG rhythmicity such that uptake was high at MT18 in vSCN and several visual, auditory and limbic system structures in birds receiving melatonin but not in birds receiving ETOH. Similarly, IMEL binding rhythms were restored in vSCN and other visual, auditory and limbic system structures in birds receiving melatonin but not in those receiving ETOH. These data indicate that melatonin cycles are responsible for generating and/or driving a wide array of cerebral metabolic rhythms and that this influence is inhibitory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronin N, Sagar SM, Sharp FR, Schwartz WJ (1990) Light regulates expression of a c-fos related protein in rat suprachiasmatic nucleus. Proc Natl Acad Sci USA 87:5959–5962

    Article  PubMed  CAS  Google Scholar 

  • Binkley S, Kluth K, Menaker M (1971) Pineal functions in sparrows: circadian rhythms and body temperature. Science 174:311–314

    PubMed  CAS  Google Scholar 

  • Binkley S, JB Riebman, Reilly B (1978) The pineal gland: a biological clock in vitro. Science 202:1198–1201

    PubMed  CAS  Google Scholar 

  • Brooks DS, Cassone VM (1992) Daily and circadian regulation of 2-[125I]iodomelatonin binding in the chick brain. Endocrinology 131:297–304

    Article  Google Scholar 

  • Cassone VM (1988) Circadian variation of [14C]2-deoxyglucose uptake within the suprachiasmatic nucleus of the house sparrows,Passer domesticus. Brain Res 459:178–82

    Article  PubMed  CAS  Google Scholar 

  • Cassone VM, Brooks DS (1991) Sites of melatonin action in the brain of the house sparrow,Passer domesticus. J Exp Zool 260:302–309

    Article  CAS  Google Scholar 

  • Cassone VM, Menaker M (1984) Is the avian circadian system a neuroendocrine loop? J Exp Zool 232:529–549

    Article  Google Scholar 

  • Cassone VM, Moore RY (1987) Retinohypothalamic projection and suprachiasmatic nucleus of the house sparrow,Passer domesticus. J Comp Neurol 266:171–182

    Article  PubMed  CAS  Google Scholar 

  • Cassone VM, Chesworth MJ, Armstrong SM (1986) Entrainment of circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nucleus. Physiol Behav 36:1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Cassone VM, Robert MH, Moore RY (1987) Melatonin inhibits metabolic activity in the rat suprachiasmatic nucleus. Neurosci Lett 81:29–34

    Article  PubMed  CAS  Google Scholar 

  • Cassone VM, Roberts MH, Moore RY (1988) Effects of melatonin on 2-deoxy[14C]glucose within the rat suprachiasmatic nucleus. Am J Physiol 255: R332-R337

    PubMed  CAS  Google Scholar 

  • Cassone VM, Brooks DS, Hodges DB, Kelm TA, Lu J, Warren WS (1992) Integration of circadian and visual function in mammals and birds: brain imaging and role of melatonin in biological clock regulation. In: Gonzales-Lima F, Finkenstaedt T, Scheich H (eds) Advances in metabolic mapping technique for brain imaging of behavioral and learning functions. Nato ASI Series 68, Karger, pp 299–319

  • Chabot CC, Menaker M (1992a) Circadian feeding and locomotor rhythms in pigeons and the house sparrows. J Biol Rhythms 7:287–299

    PubMed  CAS  Google Scholar 

  • Chabot CC, Menaker M (1992b) Effects of physiological cycles of infused melatonin on circadian rhythms in pigeons. J Comp Physiol A 170:615–622

    Article  PubMed  CAS  Google Scholar 

  • Cozzi B, Viglietti-Panzica C, Capsoni S, Aste N, Lucini V, Fraschini F, Panzica G (1993) The characterization of melatonin receptors in the brain of the Japanese quail,Coturnix japonica. Neurosci Lett 150:149–152

    Article  PubMed  CAS  Google Scholar 

  • Daan S (1981) Adaptive strategies in behavior. In: Aschoff J (ed) Handbook of behavioral neurobiology, vol. 4. Plenum NY, pp 275–298

    Google Scholar 

  • Darrow JM, Doyle SE (1990) Melatonin infusions in wheel-running Siberian hamsters in constant darkness: possible entrainment of the locomotor activity rhythm. Trans Soc Res Biol Rhythms 2:94

    Google Scholar 

  • Deguchi T (1979) Ontogenesis and phylogenesis of circadian rhythm of serotonin N-acetyltransferase activity in the pineal gland. In: Suda M, Hayaishi O, Nakagawa H (eds) Biological rhythms and their central mechanism. Elsvier/North-Holland, Amsterdam, pp 158–169

    Google Scholar 

  • Ebihara S, Kawamura K (1981) The role of pineal organ and the suprachiasmatic nucleus in the control of circadian locomotor rhythms in the Java sparrow,Padda oryzivora. J Comp Physiol 141:207–214

    Article  Google Scholar 

  • Ebihara S, Uchiyama K, Oshima I (1984) Circadian organization in the pigeon,Columba livia: the role of the pineal organ and the eye. J Comp Physiol A 154:59–69

    Article  Google Scholar 

  • Fuchs JL (1983) Effects of pinealectomy and subsequent melatonin on activity rhythms in the house finch (Carpodacus mexicanus). J Comp Physiol 153:413–419

    Article  Google Scholar 

  • Gaston S (1971) The influence of the pineal organ on circadian activity rhythms in birds. In: Menaker M (ed) Biochronometry. NAS, Washington, DC pp 27–53

    Google Scholar 

  • Gaston S, Menaker M (1968) Pineal function: the biological clock in sparrows? Science 160:1125–1127

    PubMed  CAS  Google Scholar 

  • Gwinner E (1978) Effects of pinealectomy on circadian locomotor activity rhythms in European starling,Sturnus vulgaris. J Comp Physiol 126:123–129

    Article  Google Scholar 

  • Gwinner E (1989) Melatonin in the circadian system of birds: model of internal resonance. In Hiroshige T, Honma K (eds) Circadian clocks and ecology. Hokkaido Press, Sapporo, pp 27–53

    Google Scholar 

  • Gwinner E, Benzinger I (1978) Synchronization of a circadian rhythm in pinealectomized European starlings by daily injection of melatonin. J Comp Physiol 127:209–213

    Article  CAS  Google Scholar 

  • Heigl S, Gwinner E (1992) Exogenous melatonin entrains circadian rhythm of house sparrow,Passer domesticus. Trans Soc Res Biol Rhythm 4:95

    Google Scholar 

  • Janik D, Dittami J, Gwinner E (1992) The effect of pinealectomy on circadian plasma melatonin levels in house sparrows and European starlings J Biol Rhythms 7:277–286

    PubMed  CAS  Google Scholar 

  • Karten H, Hodos W (1967) A stereotaxic atlas of the brain of the pigeon. John Hopkins Press

  • Kelm TA, Cassone VM (1990) Comparative distribution of 2-[125I]iodomelatonin binding in avian brain. Soc Neurosci Abstr 20:245

    Google Scholar 

  • Kilduff TS, Landel HB, Nagy GS, Sutin EL, Dement WC, Heller HC (1992) Melatonin influences Fos expression in the rat suprachiasmatic nucleus. Molecular Brain Res 16:47–56

    Article  CAS  Google Scholar 

  • Kornhauser JM, Nelson DE, Mayo KE, Takahashi JS (1990) Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron 1990:127–134

    Article  Google Scholar 

  • Lu J, Cassone VM (1993) Pineal regulation circadian rhythms of 2-[14C]-deoxyglucose uptake and 2[125I]iodomelatonin binding the in visual system of the house sparrow,Passer domesticus J Comp Physiol A 173:109–118

    Article  Google Scholar 

  • MacArthur AJ, Gillette MU, Prosser RA (1992) Melatonin directly resets the rat suprachiasmatic nucleus in vitro. Brain Res 565:158–161

    Article  Google Scholar 

  • MacMillan JP (1972) Pinealectomy abolishes the circadian rhythm of migratory restlessness. J Comp Physiol 79:105–112

    Article  Google Scholar 

  • Margraf RR, Lynch GR (1993) Melatonin injection effect on circadian behavior and SCN neurophysiology in Djungarian hamster. Am J Physiol R615: R621

    Google Scholar 

  • Mason R, Brooks A (1988) The electrophysiological effects of melatonin and putative melatonin antagonist (N-acetyltryptamine) on rat suprachiasmatic nucleus in vitro. Neurosci Lett 95:296–301

    Article  PubMed  CAS  Google Scholar 

  • Menaker M (1968) Extraretinal light perception in the sparrow. Proc Natl Acad Sci USA 59:414–421

    Article  PubMed  CAS  Google Scholar 

  • Menaker M (1982) The search for principles of physiological organization in vertebrate circadian systems. In: Aschoff J, Daan S, Gross G (eds) Vertebrate circadian systems. Springer, Berlin Heidelberg New York, pp 1–12

    Google Scholar 

  • Menaker M, Takahashi JS, Eskin A (1978) The physiology of circadian pacemakers. Annu Rev Physiol 40:501–526

    Article  PubMed  CAS  Google Scholar 

  • Moore RY (1983) Organization and function of a central nervous system circadian oscillator: the suprachiasmatic nucleus. Fed Proc 42:2783–2789

    PubMed  CAS  Google Scholar 

  • Redman J, Armstrong S, Ng KT (1983) Free-running activity rhythms in rat: entrainment by melatonin. Science 219:1089–1091

    PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR, Rivkees SA, Stopa EG (1988) Putative melatonin receptors in a human biological clock. Science 242:78–81

    PubMed  CAS  Google Scholar 

  • Rivkees SA, Cassone VM, Weaver DR, Reppert SM (1989) Melatonin receptors in chick brain: characterization and localization Endocrinology 125:363–368

    Article  PubMed  CAS  Google Scholar 

  • Rusak B, Robertsonn HA, Eisden W, Hunt SP (1990) Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 248:1237–1240

    PubMed  CAS  Google Scholar 

  • Sack RL, Lewy AJ, Blood ML, Stevenson J, Keith LD (1991) Melatonin administration to blind people: phase advances and entrainment. J Biol Rhythms 97:140–144

    Google Scholar 

  • Shibata S, Cassone VM, Moore RY (1989) Effects of melatonin on neuronal activity in the rat suprachiasmatic nucleus. Neurosci Lett 97:140–144

    Article  PubMed  CAS  Google Scholar 

  • Simpson SM, Follett BK (1981) Pineal and hypothalamic pacemakers: their role in regulating circadian rhythmicity in Japanese quail. J Comp Physiol 144:381–389

    Article  Google Scholar 

  • Siuciak JA, Krause ND, Dubocovich ML (1991) Quantitative pharmacological analysis of 2-125I-iodomelatonin binding sites in discrete areas of the chicken brain. J Neurosci 11:2855–2864

    PubMed  CAS  Google Scholar 

  • Sokoloff L (1992) Imaging techniques in studies of neural functions. In: Gonzales-Lima F, Finkenstaedt T, Scheich H (eds) Advances in metabolic mapping techniques for brain imaging of behavioral and learning functions. Nato ASI Series 68, Karger, Basel, pp 1–31

    Google Scholar 

  • Stankov B, Capsoni S, Lucini V, Fauteck J, Gatti S, Gridelli B, Biella, Cozzi B, Fraschini FF (1993) Autoradiographic localization of putative melatonin receptors in brains of two old world primates:Cercopithecus aethiops andPapio ursinus. Neuroscience 52:459–468

    Article  PubMed  CAS  Google Scholar 

  • Stehle J (1990) Melatonin binding sites in brain of the 2-day-old chicken: an autoradiographic localization. J Neural Transm 81:83–89

    Article  CAS  Google Scholar 

  • Stehle J, Vanecek J, Vollrath L (1989) Effects of melatonin on spontaneous electrical activity of neurons in rat suprachiasmatic nucleian in vitro iontophoretic study. J Neural. Trans 78:173–177

    Article  CAS  Google Scholar 

  • Stokes, TM, CM Leonard, Nottebohm F (1973) The telencephalon, diencephalon, and mesencephalon of the canary,Serinus canarius, in stereotaxic coordinates. J Comp Neurol 156:337–374

    Article  Google Scholar 

  • Takahashi JS, Menaker M (1982a) Entrainment of the circadian system of the house sparrow: a population of oscillators in pinealectomized birds. J Comp Physiol 146:245–253

    Article  Google Scholar 

  • Takahashi JS, Menaker M (1982b) Role of suprachiasmtic nucleus in the circadian system of the house sparrow,Passer domesticus. J Neurosci 154:815–828

    Google Scholar 

  • Takahashi JS, Hamm H, Menaker M (1980) Circadian rhythms of melatonin release from individual superfused chicken pineal gland in vitro. Proc Natl Acad Sci USA 77:2319–2322

    Article  PubMed  CAS  Google Scholar 

  • Takahashi JS, Murakami N, Nikaido SS, Pratt BL, Robertson LM (1989) The avian pineal, a vertebrate model system of circadian oscillator: cellular regulation of circadian rhythms by light, second messengers, and macromolecular synthesis. Recent Prog Horm Res 45:279–352

    PubMed  CAS  Google Scholar 

  • Turek FW, McMillan JP, Menaker M (1976) Melatonin: effects on circadian locomotor rhythm in sparrows Science 194:1441–1443

    PubMed  CAS  Google Scholar 

  • Underwood H, Siopes T (1984) Circadian organization in Japanese quail. J Exp Zool 232:557–566

    Article  PubMed  CAS  Google Scholar 

  • Van Tienhoven A, Juhasz LP (1962) The chicken telencephalon, diencenphalon and mesencephalon in sterotaxic coordinates. J Comp Neurol 118:185–198

    Article  Google Scholar 

  • Vanecek J, Pavlik A, Illnerova H (1987) Hypothalamic melatonin receptor sites revealed by autoradiography. Brain Res 435:359–362

    Article  PubMed  CAS  Google Scholar 

  • Weaver DR, Rivkees SA, Reppert SM (1989) Localization and characterization of melatonin receptors in rodent brain by in vitro autoradiography. J Neurosci 9:2581–2590

    PubMed  CAS  Google Scholar 

  • Zimmerman NH, Menaker M (1979) The pineal: a pacemaker within the circadian system of the house sparrow. Proc Natl Acad Sci USA 76:999–1003

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Cassone, V.M. Daily melatonin administration synchronizes circadian patterns of brain metabolism and behavior in pinealectomized house sparrows,Passer domesticus . J. Comp. Physiol. 173, 775–782 (1993). https://doi.org/10.1007/BF02451908

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02451908

Keywords

Navigation