Skip to main content

Therapeutic Radionuclides Decay with Particle Emission for Therapeutic Applications

  • Chapter
  • First Online:
Radiopharmaceuticals for Therapy

Abstract

The use of radiation for treatment of cancer and for therapy of many other chronic conditions has a long history and involves the use of radiation from X-ray and gamma photon-generating devices, as well as particle-generating devices which provide protons and neutrons. In addition, reusable sealed sources are used in radiation oncology for brachytherapy, and unsealed radioactive sources (radiopharmaceuticals) are used for patient administration in nuclear medicine. The use of unsealed sources for therapy has traditionally focused primarily on the use of beta-particle (β)-emitting radioisotopes, because of their availability. More recently, alpha-emitting (α) radioisotopes have been introduced for biological research and clinical applications, and the potential use of Auger-emitting radioisotopes continues to be discussed. This chapter focuses on a general overview of radioisotopes which are used as unsealed sources and provides an overview of the types of particle emissions which are used in therapeutic applications and their general characteristics and general production requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akabani G, Carlin S, Welsh P, Zalutsky MR. In vitro cytotoxicity of 211At-labeled trastuzumab in human breast cancer cell lines: effect of specific activity and HER2 receptor heterogeneity on survival fraction. Nucl Med Biol. 2006;33(3):333–47.

    Google Scholar 

  • Allen BJ. Clinical trials of targeted alpha therapy for cancer. Rev Rec Clin Trials. 2008;3:185–91.

    Google Scholar 

  • Brechbiel MW. Targeted alpha-therapy: past, present, future? Dalton Trans. 2007;43:4918–28.

    Article  PubMed  CAS  Google Scholar 

  • Britton KE. Towards the goal of cancer-specific imaging and therapy. Nucl Med Commun. 1997;18(11):992–1007.

    Google Scholar 

  • Buchegger F, Perillo-Adamer F, Dupertuis YM, et al. Auger radiation targeted into DNA: a therapy perspective. Eur J Nucl Med Mol Imaging. 2006;33(11):1352–63.

    Article  PubMed  Google Scholar 

  • Chatal J-F, Hoefnagel CA. Radionuclide therapy. Lancet. 1999;354:931–5.

    Article  PubMed  CAS  Google Scholar 

  • Cuaron JJ, Hirsch JA, Medich DC, et al. A proposed methodology to select radioisotopes for use in radionuclide therapy. AJNR Am J Neuroradiol. 2009;10:1824–9.

    Article  Google Scholar 

  • Cutler CS, Hennkens HM, Sisay N, et al. Radiometals for combined imaging and therapy. Chem Rev. 2013;113:858–83.

    Article  PubMed  CAS  Google Scholar 

  • Das T, Pillai MRA. Options to meet the future global demand of radionuclides for radionuclide therapy. Nucl Med Biol. 2013;40(1):23–32.

    Article  PubMed  CAS  Google Scholar 

  • Ehrhardt GJ, Ketring AR, Ayers LM. Reactor-produced radionuclides at the University of Missouri Research Reactor. Appl Radiat Isot. 1998;49:295–7.

    Article  PubMed  CAS  Google Scholar 

  • Ercan MT, Caglar M. Therapeutic radiopharmaceuticals. Curr Pharm Des. 2000;6:1085–121.

    Article  PubMed  CAS  Google Scholar 

  • Hall EJ. Radiobiology for the radiologist. 4th ed. Philadelphia: JB Lippincott Company; 1994.

    Google Scholar 

  • Heeg MJ, Jurisson S. The role of inorganic chemistry in the development of radiometal agents for cancer therapy. Acc Chem Res. 1999;32:1053–60.

    Article  CAS  Google Scholar 

  • Hoefnagel CA. Radionuclide therapy revisited. Eur J Nucl Med. 1991;18:408.

    Article  PubMed  CAS  Google Scholar 

  • Huclier-Markai S, Alliot C, Varmenot N, et al. Alpha-emitters for immuno-therapy: a review of recent developments from chemistry to clinics. Curr Top Med Chem. 2012;12(23):2642–54.

    Article  PubMed  CAS  Google Scholar 

  • International Atomic Energy Agency (IAEA). Cyclotron produced radionuclides: physical characteristics and production methods. Technical report series 468. Vienna: IAEA; 2009.

    Google Scholar 

  • International Atomic Energy Agency (IAEA). Nuclear data for production of therapeutic radionuclides. Technical report series 473. Vienna: IAEA; 2012.

    Google Scholar 

  • Joensuu H, Tenhunen M. Physical and biological targeting of radiotherapy. Acta Oncol Suppl. 1999;13:75–83.

    Google Scholar 

  • Karelin YA, Efimov VN, Filimonov VT, et al. Radionuclide production using a fast flux reactor. Appl Radiat Isot. 2000;53:825–7.

    Article  PubMed  CAS  Google Scholar 

  • Karenlin YA, Toporov YG. RIAR reactor produced radionuclides. Appl Radiat Isot. 1998;49:299–304.

    Article  Google Scholar 

  • Kim YS, Brechbiel M. An overview of targeted alpha therapy. Tumour Biol. 2012;33(3):573–90.

    Article  PubMed  CAS  Google Scholar 

  • Knapp Jr FF (R), Mirzadeh S, Beets AL. Reactor-produced radioisotopes from ORNL for bone pain palliation. Appl Radiat Isot. 1998;49:309–15.

    Article  PubMed  CAS  Google Scholar 

  • Lindegren S, Frost SH. Pretargeted radioimmunotherapy with α-particle emitting radionuclides. Curr Radiopharm. 2011;4(3):248–60.

    Article  PubMed  CAS  Google Scholar 

  • Mausner LF, Srivastava SC. Selection of radionuclides for radioimmuno- therapy. Med Phys. 1993;20:503–9.

    Article  PubMed  CAS  Google Scholar 

  • Mausner LF, Kolsky KL, Joshi V, et al. Radionuclide development at BNL for nuclear medicine therapy. Appl Radiat Isot. 1988;49:285–94.

    Article  Google Scholar 

  • McDevitt MR, Sgouros G, Finn RD, et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med. 1998;25:1341–51.

    Article  PubMed  CAS  Google Scholar 

  • McDougall IR. Systemic radiation therapy with unsealed radionuclides. Semin Radiat Oncol. 2000;10(2):94–102.

    Article  PubMed  CAS  Google Scholar 

  • McEwan AJB. Unsealed source therapy of painful bone metastases: an update. Semin Nucl Med. 1997;27:165–82.

    Article  PubMed  CAS  Google Scholar 

  • Mirzadeh S. Generator-produced alpha-emitters. Appl Radiat Isot. 1998;49:345–9.

    Article  CAS  Google Scholar 

  • Mulford DA, Scheinberg DA, Jurcic JG. The promise of targeted {alpha}-particle therapy. J Nucl Med. 2005;46:199S–204.

    PubMed  Google Scholar 

  • Neves M, Kling A, Lambrecht RM. Radionuclide production for therapeutic radiopharmaceuticals. Appl Radiat Isot. 2002;57:657–64.

    Article  PubMed  CAS  Google Scholar 

  • Neves M, Kling A, Oliveira A. Radionuclides used for therapy and suggestion for new candidates. J Radioanal Nucl Chem. 2005;266(3):377–84.

    Article  CAS  Google Scholar 

  • Nilsson S, Larsen RH, Fossa SD et al. First clinical experience with α-emitting radium-223 in the treatment of skeletal metastases, Clin Cancer Res 2005;11: 4451–59

    Google Scholar 

  • O’Donoghue JA, Bardibs M, Wheldon TE. Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med. 1995;36:1902–9.

    PubMed  Google Scholar 

  • Pohlman B, Sweetenham J, Macklis RM. Review of clinical radioimmunotherapy. Expert Rev Antican. Ther. 2006;6(3):445–61.

    Google Scholar 

  • Qaim SM. The present and future of medical radionuclide production. Radiochim Acta. 2012;100:635–51.

    Article  CAS  Google Scholar 

  • Qaim SM, Coenen HH. Produktion pharmazeutisch relevanter. Radionuk Pharm Unser Zeit. 2005;34:460–6 (German).

    Article  CAS  Google Scholar 

  • Ruth TJ. Accelerator production of medical radionuclides: a review. Nucl Phys News. 2013;23:30–3.

    Article  Google Scholar 

  • Ruth TJ, Pate BD, Robertson D, et al. Radionuclide production for biosciences. Nucl Med Biol. 1989;16:323–36.

    CAS  Google Scholar 

  • Serafini AN. Current status of systemic intravenous radiopharmaceuticals for the treatment of painful metastatic bone diseases. Int J Radiat Oncol Biol Phys. 1994;30:1187–94.

    Article  PubMed  CAS  Google Scholar 

  • Spencer RP, Seevers RH, Friedman AM, editors. Radionuclides in therapy. Boca Raton: CRC Press; 1987.

    Google Scholar 

  • Srivastava SC. Therapeutic radionuclides: making the right choice. In: Mather SJ, editor. Current directions in radiopharmaceutical research and development. Dordrecht: Kluwer Academic Publishers; 1996a. p. 63–79.

    Chapter  Google Scholar 

  • Srivastava SC. Criteria for the selection of radionuclides for targeting nuclear antigens for cancer radioimmunotherapy. Cancer Biother Radiopharm. 1996b;11:43–50.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava SC, Dadachova E. Recent advances in radionuclide therapy. Semin Nucl Med. 2001;31(4):330–41.

    Article  PubMed  CAS  Google Scholar 

  • Stanciu AE. Radionuclide targeted therapy of cancer. Rev Roum Chim. 2012;57(1):5–13.

    CAS  Google Scholar 

  • Stöcklin G, Qaim SM, Rösch F. The impact of radioactivity on medicine. Radiochim Acta. 1995;70/71:249.

    Google Scholar 

  • Tolmachev V, Carlsson J, Lundqvist H. A limiting factor for the progress of radionuclide-based cancer diagnostics and therapy – availability of suitable radionuclides. Acta Oncol. 2004;43(3):264–7.

    Article  PubMed  CAS  Google Scholar 

  • Troutner DE. Chemical and physical properties of radionuclides. Int J Radiat Appl Instrum B Nucl Med Biol. 1987;14(3):171–6.

    Article  CAS  Google Scholar 

  • Unak P, Enginar H, Biber FZ, Lambrecht FY, Aslani MA, Ozkilic H. A correlative study between 99mTc-ESTCPTA and 99mTc-MIBI in rats. Appl Radiat Isot. 2002;57(5):733-42.

    Google Scholar 

  • Vaidyanathan G, Zalutsky MR. Applications of 211At and 223Ra in targeted alpha-particle radiotherapy. Curr Radiopharm. 2011;4:283–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volkert WA, Hoffman TJ. Therapeutic radiopharmaceuticals. Chem Rev. 1999;99:2269–92.

    Article  PubMed  CAS  Google Scholar 

  • Volkert WA, Goeckeler WF, Ehrhardt GJ, et al. Therapeutic radionuclides: production and decay property considerations. J NucI Med. 1991;32:174–85.

    CAS  Google Scholar 

  • Yeong C-H, Cheng M-H, Ng K-H. Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ Sci B. 2014;15(10):845–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhuikov BL. Production of medical radionuclides in Russia: status and future—a review. Appl Radiat Isot. 2014;84:48–56.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Knapp, F.F.(., Dash, A. (2016). Therapeutic Radionuclides Decay with Particle Emission for Therapeutic Applications. In: Radiopharmaceuticals for Therapy . Springer, New Delhi. https://doi.org/10.1007/978-81-322-2607-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2607-9_2

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2606-2

  • Online ISBN: 978-81-322-2607-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics