Skip to main content

Natural Nano-based Polymers for Packaging Applications

  • Chapter
  • First Online:
Eco-friendly Polymer Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 74))

Abstract

Natural nanoscale materials can be used in many applications like packaging industry. The main reason is to provide packaging which would protect the food from dust, gases, light, pathogens, and moisture. These materials are mainly safe, inert, cheap to produce, easy to dispose, and reuse. In addition, the characteristics of these nanocomposites such as mechanical, electrical, thermal, optical, and electrochemical properties will differ markedly from that of the component materials. One of the most practical uses of nanocomposites in the food packaging is adding the nanosized components to the traditional packaging materials such as metal, glass, paper, various synthetic plastics like PE, PP, PS, PVC. Also, the use of nanofiller materials in the biofilm preparation has been subjected in the many recent studies. Therefore, this chapter is an attempt to introduce various bionanocomposites to readers and provide a general overview of these natural nanopolymer applications in the food packaging industry as well as some practical examples. In effect, nanopackaging materials were developed by clay minerals, e.g., montmorriolonite, in 1986 and are still being grown using many different natural polymers . However, natural nanopolymer applications in the packaging industry can be organized around the main topics, to introduce nanocomposite organic/inorganic materials and to introduce some good examples to produce films, coatings, etc. Detailed discussions about each of these topics are also considered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Antimony trioxide (Sb2O3) is the inorganic compound with melting point of 656 °C, and boiling point of 1,425 °C. It is the most important commercial compound of antimony. It is found in nature as minerals, valentinite and senarmontite.

References

  1. Ajayan PM (2003) Bulk metal and ceramics nanocomposites. In: Ajayan PM, Schadler LS, Braun PV (eds) Nanocomposite science and technology, pp 1–75. Wiley-VCH, New York

    Google Scholar 

  2. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1–63

    Article  Google Scholar 

  3. Angellier-Coussy H, Chalier P, Gastaldi E, Guillard V, Guillaume C, Gontard N, Peyron S (2013) Protein-based nanocomposites for food packaging. In: Dufresne A, Thomas S, Pothan LA (eds) Biopolymer nanocomposites: processing, properties, and applications, pp 613–654. Wiley, New York

    Google Scholar 

  4. Anonymous (2000) Antimicrobial products-test for antimicrobial activity and efficacy. Japanese industrial standard test (JIS Z 2801:2000) Japanese Standards Association Tokyo Japan

    Google Scholar 

  5. Anonymous (2001) Introduction to fourier transform infrared spectrometry. Thermo Nicolet Corporation 7 pp

    Google Scholar 

  6. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innovative Food Sci Emerg Technol 3:113–126

    Article  CAS  Google Scholar 

  7. Argüello-García E, Solorza-Feria J, Rendón-Villalobos JR, Rodríguez-González F, Jiménez-Pérez A, Flores-Huicochea E (2014) Properties of edible films based on oxidized starch and zein. Int J Polym Sci 2014 Article ID 292404 9 pp

    Google Scholar 

  8. Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75:43–49

    Article  Google Scholar 

  9. Asgari P, Moradi O, Tajeddin B (2014) The effect of nanocomposite packaging carbon nanotube base on organoleptic and fungal growth of Mazafati brand dates. Int Nano Lett 4:98

    Article  Google Scholar 

  10. Avella M, Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474

    Article  CAS  Google Scholar 

  11. Asadi Asadabadi M, Khosravi-Darani K, Mortazavi A, Hajseyed Javadi N, Azadnia E, Kiani Harchegani A, Ahmadi N (2014) Antimicrobial effect of silver nanoparticles produced by chemical reduction on Staphylococcus aureus and Escheirchia coli. Iran J Nutr Sci Food Technol 8(4):83–92 (Text in Persian)

    Google Scholar 

  12. ASTM 882-09 (2009) Standard test method for tensile properties of thin plastic sheeting. American Society for Testing and Materials West Conshohocken Pa USA

    Google Scholar 

  13. ASTM E96-95 (1995) Standard test methods for water vapour transmission of materials in sheet form. American Society for Testing and Materials West Conshohocken Pa USA

    Google Scholar 

  14. Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253

    Article  Google Scholar 

  15. Balcerzak J, Kucharska M, Gruchała B (2013) Preparation of micro and nanostructures of chitosan by ultrasonic coalescence of w/o emulsions. Prog Chem Appl Chitin Deriv XVIII:13–20

    Google Scholar 

  16. Baker AMM, Mead J (2000) Thermoplastics. In: Harper CA (ed) Modern plastics handbook, 1.1–1.92. McGraw-Hill, New York

    Google Scholar 

  17. Barenholz Y (2001) Liposome application: problems and prospects. Curr Opin Colloid Interface Sci 7(1):66–77

    Article  Google Scholar 

  18. Barry CMF, Orroth SA (2000) Processing of thermoplastics. In: Harper CA (ed) Modern plastics handbook, 5.1–5.125. McGraw-Hill, New York

    Google Scholar 

  19. Berglund L (2005) Cellulose-based nanocomposites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites, pp 807–832. CRC Press

    Google Scholar 

  20. Bongarde US, Shinde VD (2014) Review on natural fiber reinforcement polymer composites. Int J Eng Sci Innovative Technol (IJESIT) 3(2):431

    Google Scholar 

  21. Braun PV (2003) Natural nanobiocomposites, biomimetic nanocomposites, and biologically inspired nanocomposites. In: Ajayan PM, Schadler LS, Braun PV (eds) Nanocomposite science and technology, pp 155–214

    Google Scholar 

  22. Busolo MA, Fernandez P, Ocio MJ, Lagaron JM (2010) Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Addit Contam 27(11):1617–1626

    Article  CAS  Google Scholar 

  23. Chang PR, Yang Y, Huang J, Xia W, Feng L, Wu J (2009) Effects of layered silicate structure on mechanical properties and structures of protein-based bionanocomposites. J Appl Polym Sci 113(2):1247–1256

    Article  CAS  Google Scholar 

  24. Chang PR, Yu J, Ma X (2009) Fabrication and characterization of Sb2O3/carboxymethyl cellulose sodium and the properties of plasticized starch composite films. Macromol Mater Eng 294(11):762–767

    Article  CAS  Google Scholar 

  25. Chang PR, Yu J, Ma X, Anderson DP (2011) Polysaccharides as stabilizers for the synthesis of magnetic nanoparticles. Carbohydr Polym 83(2):640–644

    Article  CAS  Google Scholar 

  26. Chen Z, Zhang L, Wang L (2011) Study on filming of oxidized starch/PVA. Frontiers Agric China 5(4):649–654

    Article  Google Scholar 

  27. Cowie JMG (2008) Polymers: chemistry & physics of modern materials. Taylor & Francis, Boca Raton

    Google Scholar 

  28. Dadashi S, Mousavi SM, Emam D-Jomeh Z, Oromiehie A (2012) Films based on poly(lactic acid) biopolymer: effect of clay and cellulosic nanoparticles on their physical, mechanical and structural properties. Iran J Polym Sci Technol 25(2):127–136 (Text in Persian)

    Google Scholar 

  29. Damm C, Neumann M, Münstedt H (2006) Properties of nanosilver coatings on polymethyl methacrylate. Soft Mater 3:71–88

    Article  CAS  Google Scholar 

  30. Dehnad D, Mirzaee H, Emam D-Jomeh Z, Jafari SM, Dadashi S (2014) Assessing thermal and antimicrobial properties of chitosan-nanocellulose nanocomposites to enhance the shelf life of ground meat. Iran J Nutr Sci Food Technol 8(4):163–173 (Text in Persian)

    Google Scholar 

  31. Del Nobile MA, Conte A, Buonocore GC, Incoronato AL, Massaro A, Panza O (2008) Active packaging by extrusion processing of recyclable and biodegradable polymers. J Food Eng 93:1–6

    Article  Google Scholar 

  32. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24

    Article  CAS  Google Scholar 

  33. Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2008) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182

    Article  Google Scholar 

  34. Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75(9):2973–2976

    Article  CAS  Google Scholar 

  35. Ehrenstein GW, Riedel G, Trawiel P (2004) Thermal analysis of plastics, theory and practice. Carl Hanser Verlag, München

    Google Scholar 

  36. Emamifar A, Kadivar M, Shahedi M, Soleimanianzadeh S (2011) Effects of nanocomposite packaging containing silver and zinc oxide on the shelf-life of fresh orange juice. Iran J Nutr Sci Food Technol 6(1):57–67 (Text in Persian)

    Google Scholar 

  37. Eshghi S, Hashemi M, Mohammadi A, Badie F, Mohammad Hosseini Z, Ahmadi Sumehe K, Ghanati K (2013) Effect of nano-emulsion coating containing chitosan on storability and qualitative characteristics of strawberries after picking. Iran J Nutr Sci Food Technol 8(2):9–19 (Text in Persian)

    Google Scholar 

  38. Evangelos M (2007) Nanocomposites: stiffer by design. Nat Mater 6(1):9–11

    Article  Google Scholar 

  39. Faraji M, Fadavi G (2013) Application of magnetic nanoparticles in food science and technology. Iran J Nutr Sci Food Technol 8(2):239–252 (Text in Persian)

    Google Scholar 

  40. Galeano B, Korff E, Nicholson WL (2003) Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation. Appl Environ Microbiol 69:4329–4331

    Article  CAS  Google Scholar 

  41. Galus S, Lenart A, Voilley A, Debeaufort F (2013) Effect of oxidized potato starch on the physicochemical properties of soy protein isolate-based edible films. Food Technol Biotechnol 5(3):403–409

    Google Scholar 

  42. Gao Y, Cranston R (2008) Recent advances in antimicrobial treatment of textiles. Text Res J 78:60–72

    Article  CAS  Google Scholar 

  43. Ghanbarzadeh B, Oromiehi AR (2008) Biodegradable biocomposite films based on whey protein and zein: barrier, mechanical properties and AFM analysis. Int J Biol Macromol 43:209–215

    Article  CAS  Google Scholar 

  44. Grehna A (2012) Chitosan nanoparticles: a survey of preparation methods. J Drug Target 20(4):291–300

    Article  Google Scholar 

  45. Guoa Y, Liub Z, And H, Lia M, Hu J (2005) Nano-structure and properties of maize zein studied by atomic force microscopy. J Cereal Sci 41:277–281

    Article  Google Scholar 

  46. Hadian Z, Sahari MA, Moghimi HR, Barzegar M, Abbasi S (2013) Preparation and characterization of nanoliposomes containing docosahexaenoic and eicosapentaenoic acids by extrusion and probe sonication. Iran J Nutr Sci Food Technol 8(1):219–230 (Text in Persian)

    Google Scholar 

  47. Haldorai Y, Shim JJ, Lim KT (2012) Synthesis of polymer–inorganic filler nanocomposites in supercritical CO2. J Supercrit Fluids 71:45–63

    Article  CAS  Google Scholar 

  48. Han W, Yu YJ, Li NT, Wang L (2011) Application and safety assessment for nano-composite materials in food packaging. Chin Sci Bull 56:1216–1225

    Article  Google Scholar 

  49. Herrera F, Pedro J, Valadez-Gonzalez A (2005) Fiber- matrix adhesion in natural fiber composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites, pp 177–230, CRC Press

    Google Scholar 

  50. Hu H, Onyebueke L, Abatan A (2010) Characterizing and modeling mechanical properties of nanocomposites-review and evaluation. J Miner Mater Charact Eng 9(4):275–319

    Google Scholar 

  51. Huang L, Dai T, Xuan Y, Tegos GP, Hamblin MR (2011) Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: efficacy against bacterial burn infections. Antimicrob Agents Chemother 55(7):3432–3438

    Article  CAS  Google Scholar 

  52. Huyghebaert A, Van Huffel X, Houins G (2010) Preface. In: International symposium on nanotechnology in the food Chain, Opportunities & Risks, pp 3–9

    Google Scholar 

  53. Islam MR, Beg MDH, Gupta A (2013) Characterization of Laccase-treated kenaf fibre reinforced recycled polypropylene composites. BioResources 8(3):3753–3770

    Article  Google Scholar 

  54. Ivask A (2013) Potential and actual applications of nanoparticles as food ingredients and in food packaging. National Institute of Chemical Physics and Biophysics Laboratory of Environmental Toxicology Tallinn Estonia 16th April 2013 Warsaw

    Google Scholar 

  55. Jiménez A, Arab-Tehrany E, Sánchez-González L (2014) Progress in biodegradable packaging materials. Progress Nanomaterials Food Packag 50–56

    Google Scholar 

  56. Kato M, Usuki A (2006) Layerd silicates. In: Mai YW, Yu ZZ (eds) Polymer nanocomposites, pp 3–28. CRC Press

    Google Scholar 

  57. Keshavarzian F, Badii F, Seyedin Ardebili SM, Hashemi M, Ahmadi Z, Hosseini SE (2014) Effect of packaging in polyethylene-clay nanocomposite film on quality and storage life of sliced bread. Iran J Nutr Sci Food Technol 9(1):93–100 (Text in Persian)

    Google Scholar 

  58. Khoshnoudinia S, Sedaghat N (2013) Effect of gelatin edible coating containing antioxidant agents on hardness, and color of roasted pistachio nuts. Res Innovation Food Sci Technol 2(4):295–310 (Text in Persian)

    Google Scholar 

  59. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Karauchi T, Kamigaito O (1993) Mechanical properties of nylon-6-clay hybrid. J Mater Res 6:1185–1189

    Article  Google Scholar 

  60. Kumar R, Münstedt H (2005) Polyamide/silver antimicrobials: effect of crystallinity on the silver ion release. Polym Int 54(8):1180–1186

    Article  CAS  Google Scholar 

  61. Lagaron JM (2010) Nanotechnology trends to enhance biopackaged food, food quality and safety. In: Huyghebaert A, Van Huffel X, Houins G (eds) International symposium on nanotechnology in the Food Chain, Opportunities & Risks, pp 45–52

    Google Scholar 

  62. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504

    Article  CAS  Google Scholar 

  63. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. Rsc Adv 1:576–578

    Article  CAS  Google Scholar 

  64. Mamin HJ, Poggio M, Degen CL, Rugar D (2007) Nuclear magnetic resonance imaging with 90-nm resolution. Nat Nanotechnol 2:301–306

    Article  CAS  Google Scholar 

  65. Martelli M, Barros T, Moura M, Mattoso L, Assis O (2012) Effect of chitosan nanoparticles and pectin content on mechanical properties and water vapor permeability of banana puree films. J Food Sci 78:98–104

    Article  Google Scholar 

  66. Martínez-Camacho AP, Cortez-Rocha MO, Ezquerra-Brauer JM, Graciano-Verdugo AZ, Rodriguez-Félix F, Castillo-Ortega MM, Yépiz-Gómez MS, Plascencia-Jatomea M (2010) Chitosan composite films: thermal, structural, mechanical and antifungal properties. Carbohydr Polym 82(2):305–315

    Article  Google Scholar 

  67. Miller E (1996) Introduction to plastics and composites, mechanical properties and engineering applications. Marcel Dekker Inc., New York

    Google Scholar 

  68. Mohammadi M, Jahadi M, Ehsani MR, Khosravi-Darani K (2013) Application of liposome nano carrier in cheese production and ripening. Iran J Nutr Sci Food Technol 7(4):25–34 (Text in Persian)

    Google Scholar 

  69. Mohammadi M, Ghanbarzadeh B, Hamishehkar H, Rezayi Mokarram R, Mohammadifar MA (2014) Physical properties of vitamin D3-loaded nanoliposomes prepared by thin layer hydration-sonication. Iran J Nutr Sci Food Technol 8(4):175–188 (Text in Persian)

    Google Scholar 

  70. Moradi M, Tajik H, Razavi Rohani SM, Oromiehie A, Malekinejad H, Saei-Dehkordi SS (2010) Antioxidant, color and antibacterial properties of edible chitosan film incorporated with Zataria multiflora Boiss essential oil against Listeria monocytogenes. Armaghane- Danesh 15(4):303–315 (Text in Persian)

    Google Scholar 

  71. Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C (2008) J Liposome Res 18:309–327

    Google Scholar 

  72. Mozafari MR, Khosravi-Darani K, Borazan GG, Cui J, Pardakhty A, Yurdugul S (2008) Encapsulation of food ingredients using nanoliposome technology. Int J Food Prop 11:833–844

    Article  CAS  Google Scholar 

  73. Osaka T, Matsunaga T, Nakanishi T, Arakaki A, Niwa D, Iida H (2006) Synthesis of magnetic nanoparticles and their application to bioassays. Anal Bioanal Chem 384:593–600

    Article  CAS  Google Scholar 

  74. Parris N, Coffin DR (1997) Composition factors affecting the water permeability and tensile properties of hydrophilic zein films. J Agric Food Chem 45:1596–1599

    Article  CAS  Google Scholar 

  75. Paz L, Reain A, Howard K, Sutherland D, Wejse L (2011) Antimicrobial effect of chitosan nanoparticles on Streptococcus mutans biofilms. Appl Environ Microbiol 77:3892–3895

    Article  Google Scholar 

  76. Petersen K, Nielsen PV, Bertelsen G, Lawther M, Olsen MB, Nilsson NH, Mortense G (1999) Potential of biobased materials for food packaging. Trends Food Sci Technol 10(2):52–68

    Article  CAS  Google Scholar 

  77. Ravi Kumar MV (2001) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Article  Google Scholar 

  78. Rhim JW, Ng PK (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47(4):411–433

    Article  CAS  Google Scholar 

  79. Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370

    Article  CAS  Google Scholar 

  80. Sanchez C, Julián B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592

    Article  CAS  Google Scholar 

  81. Sanchez-Garcia MD, Lagaron JM, Hoa SV (2010) Effect of addition of carbon nanofibers and carbon nanotubes on properties of thermoplastic biopolymers. Compos Sci Technol 70(7):1095–1105

    Article  CAS  Google Scholar 

  82. Sardabi F, Mohtadinia J, Shavakhi F, Jafari AA (2013) Effect of 1-methylcyclopropene and potassium permanganate-coated zeolite nanoparticles on extending the shelf life and quality of Golden and Red Delicious apples. Iran J Nutr Sci Food Technol 8(2):135–144 (Text in Persian)

    Google Scholar 

  83. SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks) (2007) Opinion on the scientific aspects of the existing and proposed definitions relating to products of nanoscience and nanotechnologies. The 21st plenary on 29 Nov 2007, 22 pp

    Google Scholar 

  84. Schadler LS (2003) Polymer-based and polymer-filled nanocomposites. In: Ajayan PM, Schadler LS, Braun PV (eds) Nanocomposite science and technology, pp 77–154

    Google Scholar 

  85. Schneider YJ, Bazes A, Brasseur A, Geys J, Mast J, Pussemier L (2010) Toxicodynamic aspects of nanoparticles in food: interactions with the intestinal barrier. In: Huyghebaert A, Van Huffel X, Houins G (eds) International symposium on nanotechnology in the Food Chain, Opportunities & Risks, pp 59–65

    Google Scholar 

  86. Skewis LR, Demas V, Lowery TJ (2013) Nuclear magnetic resonance nanotechnology: applications in clinical diagnostics and monitoring. Encycl Anal Chem

    Google Scholar 

  87. Siegel DP, Tenchov BG (2008) Influence of the lamellar phase unbinding energy on the relative stability of lamellar and inverted cubic phases. Biophys J 94:3987–3995

    Article  CAS  Google Scholar 

  88. Silva DA, Paula RCM, Feitosa JPA, Brito ACF, Maciel JS, Paula HCB (2004) Carboxymethylation of cashew tree exudate polysaccharide. Carbohydr Polym 58(2):163–171

    Article  CAS  Google Scholar 

  89. Simon P, Chaudhry Q, Bakos D (2008) Migration of engineered nanoparticles from polymer packaging to food-a physicochemical view. J Food Nutr Res 47(3):105–113

    CAS  Google Scholar 

  90. Simoneau C (2012) Nano in packaging. In: ILSI expert Workshop on nanotechnologies for food packaging. European Commission (JRC) 08–10 Feb 2012

    Google Scholar 

  91. Singha AS, Thakur VK (2008) Effect of fibre loading on urea-formaldehyde matrix based green composites. Iran Polym J 17:861–873

    CAS  Google Scholar 

  92. Singha AS, Thakur VK (2008) Saccaharum cilliare fiber reinforced polymer composites. E-J Chem 5:782–791

    Article  CAS  Google Scholar 

  93. Singha AS, Thakur VK (2008) Synthesis and characterization of pine needles reinforced RF matrix based biocomposites. E-J Chem 5:1055–1062

    Article  CAS  Google Scholar 

  94. Singha AS, Thakur VK (2009) Grewia optiva fiber reinforced novel, low cost polymer composites. J Chem 6:71–76

    CAS  Google Scholar 

  95. Singha AS, Thakur VK (2009) Synthesis, characterisation and analysis of hibiscus sabdariffa fibre reinforced polymer matrix based composites. Polym Polym Compos 17:189–194

    CAS  Google Scholar 

  96. Singha AS, Thakur VK (2009) Fabrication and characterization of H. sabdariffa fiber-reinforced green polymer composites. Polym-Plast Technol Eng 48:482–487

    Article  CAS  Google Scholar 

  97. Singha AS, Thakur VK (2009) Fabrication and characterization of S. cilliare fibre reinforced polymer composites. Bull Mater Sci 32:49–58

    Article  CAS  Google Scholar 

  98. Singha AS, Thakur VK (2009) Physical, chemical and mechanical properties of hibiscus sabdariffa fiber/polymer composite. Int J Polym Mater 58:217–228

    Article  CAS  Google Scholar 

  99. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study of E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  100. Sotirou GA, Blattmann CO, Pratsinis SE (2013) Flexible, multifunctional, magnetically actuated nanocomposite films. Adv Funct Mater 23(1):1616–3028

    Google Scholar 

  101. Strawhecker KE (2006) Nanocomposites based on water soluble polymers and unmodified smectite clays. In: Mai YW, Yu ZZ (eds) Polymer nanocomposites, pp 206–233. CRC Press

    Google Scholar 

  102. Tajeddin B (2009) Preparation and characterization of kenaf cellulose-polyethylene glycol- polyethylene biocomposites. Ph.D. thesis UPM Malaysia

    Google Scholar 

  103. Tajeddin B, Hashemi M, Khayam Nekouei SM (2013) The effect of a chitosan-based nano-emulsion on extending the shelf life of apricot. Final research report Iranian Agricultural Engineering Research Institute (IAERI) no 44007 (Text in Persian)

    Google Scholar 

  104. Tajeddin B, Ramedani N (2013) Shellac is a suitable natural production for using in food packaging. In: 6th congress on advances in agriculture research 15–16 May 2013 University of Kurdistan Sanandaj Iran (Text in Persian)

    Google Scholar 

  105. Tajeddin B, Ramedani N (2014) Investigation of nanostructure of CMC/PVA/Nanoclay films using XRD. In: 15th nanotechnology iranian student conference Tehran Tarbiat Modares University 24–25 April 2014 (Text in Persian)

    Google Scholar 

  106. Thakur VK, Tan EJ, Lin M-F, Lee PS (2011) Poly(vinylidene fluoride)-graft-poly(2-hydroxyethyl methacrylate): a novel material for high energy density capacitors. J Mater Chem 21:3751–3759

    Article  CAS  Google Scholar 

  107. Thakur VK, Tan EJ, Lin M-F, Lee PS (2011) Polystyrene grafted polyvinylidenefluoride copolymers with high capacitive performance. Polym Chem 2:2000–2009

    Article  CAS  Google Scholar 

  108. Thakur VK, Yan J, Lin M-F et al (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969

    Article  CAS  Google Scholar 

  109. Thakur VK, Ding G, Ma J et al (2012) Hybrid materials and polymer electrolytes for electrochromic device applications. Adv Mater 24:4071–4096

    Article  CAS  Google Scholar 

  110. Thakur VK, Singha AS, Thakur MK (2012) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421

    Article  CAS  Google Scholar 

  111. Thakur VK, Singha AS, Thakur MK (2012) Graft copolymerization of methyl acrylate onto cellulosic biofibers: synthesis, characterization and applications. J Polym Environ 20:164–174

    Article  CAS  Google Scholar 

  112. Thakur VK, Lin M-F, Tan EJ, Lee PS (2012) Green aqueous modification of fluoropolymers for energy storage applications. J Mater Chem 22:5951–5959

    Article  CAS  Google Scholar 

  113. Thakur VK, Thakur MK, Gupta RK (2013) Development of functionalized cellulosic biopolymers by graft copolymerization. Int J Biol Macromol 62:44–51

    Article  CAS  Google Scholar 

  114. Thakur VK, Thakur MK, Gupta RK (2013) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98:820–828

    Article  CAS  Google Scholar 

  115. Thakur VK, Thakur MK, Gupta RK (2013) Synthesis of lignocellulosic polymer with improved chemical resistance through free radical polymerization. Int J Biol Macromol 61:121–126

    Article  CAS  Google Scholar 

  116. Thakur VK, Thakur MK, Gupta RK (2013) Graft copolymers from natural polymers using free radical polymerization. Int J Polym Anal Charact 18:495–503

    Article  CAS  Google Scholar 

  117. Thakur VK, Thakur MK, Gupta RK (2013) Graft copolymers from cellulose: Synthesis, characterization and evaluation. Carbohydr Polym 97:18–25

    Article  CAS  Google Scholar 

  118. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    Article  CAS  Google Scholar 

  119. Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19(3):256–271

    Article  CAS  Google Scholar 

  120. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092

    Article  CAS  Google Scholar 

  121. Tiwari RR, Khilar KC, Natarajan U (2008) Synthesis and characterization of novel organo-montmorillonites. Appl Clay Sci 38(3–4):203–208

    Article  CAS  Google Scholar 

  122. Tonejc A (1999) High resolution transmission electron microscopy (HRTEM): image processing analysis of defects and grain boundaries in nanocrystalline materials. Acta Chim Slov 46(3):435–461

    CAS  Google Scholar 

  123. Vroman I, Tighzert L (2009) Biodegradable polymer. Materials 2(2):307–344

    Article  CAS  Google Scholar 

  124. Wang LZ, Liu L, Holmes J, Kerry JF, Kerry JP (2007) Assessment of film-forming potential and properties of protein and polysaccharide-based biopolymer films. Int J Food Sci Technol 42(9):1128–1138

    Article  CAS  Google Scholar 

  125. Wang Y, Jiang L, Duan J, Shao S (2013) Effect of the carbonyl content on the properties of composite films based on oxidized starch and gelatin. J Appl Polym Sci 130(4):2753–2763

    Article  Google Scholar 

  126. Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71(9):R107–R116

    Article  CAS  Google Scholar 

  127. Westman MP, Laddha SG, Fifield LS, Kafentzis TA, Simmons KL (2010) Natural fiber composites: a review.Prepared for the U.S. Department of Energy, under Contract DE-AC05-76RL01830 (PNNL19220)

    Google Scholar 

  128. Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49(3–4):125–170

    Article  CAS  Google Scholar 

  129. Wirawan R, Zainudin ES, Sapuan SM (2009) Mechanical properties of natural fibre reinforced PVC composites: a review. Sains Malaysiana 38(4):531–535

    CAS  Google Scholar 

  130. Yien Ing L, Zin N, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 632698:1–9

    Google Scholar 

  131. Zandi K, Weisany W, Ahmadi H, Bazargan I, Naseri L (2013) Effect of nanocomposite-based packaging on postharvest quality of strawberry during storage. Bull Environ Pharmacol Life Sci 2(5):28–36

    Google Scholar 

  132. Zavareze EDR, Pinto VZ, Klein B, Halal SLME, Elias MC, Prentice-Hernández C, Dias ARG (2012) Development of oxidised and heat-moisture treated potato starch film. Food Chem 132(1):344–350

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behjat Tajeddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Tajeddin, B. (2015). Natural Nano-based Polymers for Packaging Applications. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 74. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2473-0_8

Download citation

Publish with us

Policies and ethics