Skip to main content

Transplastomics: A Convergence of Genomics and Biotechnology

  • Chapter
  • First Online:
PlantOmics: The Omics of Plant Science

Abstract

Transplastomics are developed predominantly for biotechnological applications since heterologous proteins can be expressed to high levels with bona fide structures and because of maternal inheritance of tailored traits in most of cultivated plants as rare gene leakage through pollens is experimentally witnessed. Further, advances in plastome sequencing and research have been exponential in the post-genomic era; hence, expressing multiple genes to develop biologically functional pharmaceuticals under strong promoters and translation control elements in operons is made possible. This chapter summarizes the developments from plastid genomics to gene expression and briefly describes how transplastome facilitates expression of vaccines, therapeutics, and plantibodies, in addition to tailoring agronomic traits in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonhammer ELL (2000) The Pfam protein families database. Nucleic Acids Res 28:263–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bendich AJ (1987) Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays 6:279–282

    Article  CAS  PubMed  Google Scholar 

  • Bock R (2001) Transgenic chloroplasts in basic research and plant biotechnology. J Mol Biol 312:425–438

    Article  CAS  PubMed  Google Scholar 

  • Bock R, Khan MS (2004) Taming plastids for a green future. Trends Biotechnol 22:311–318

    Article  CAS  PubMed  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538

    Article  CAS  PubMed  Google Scholar 

  • Briat J-F, Bisanz-Seyer C, Laulhere J-P, Lerbs S, Lescure A-M, Mache R (1987) The RNA polymerase from chloroplasts and its use for in vitro transcription of plastid genes. Plant Physiol 25:273

    CAS  Google Scholar 

  • Cao J, Duan XL, McElroy D, Wu R (1992) Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Rep 11:586–591

    Article  CAS  PubMed  Google Scholar 

  • Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241:49–56

    Article  CAS  PubMed  Google Scholar 

  • Cary JW, Rajasekaran K, Jayens JM, Cleveland TE (2000) Transgenic expression of a gene coding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci 154:171–181

    Article  CAS  PubMed  Google Scholar 

  • Cerutti H, Osman M, Grandoni P, Jagendorf AT (1992) A homolog of Escherichia coliRecA protein in plastids of higher plants. Proc Natl Acad Sci U S A 89:8068–8072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  • Collier RJ, Young JA (2003) Anthrax toxin. Annu Rev Cell Dev Biol 19:45–70

    Article  CAS  PubMed  Google Scholar 

  • Cui C, Song F, Tan Y, Zhou X, Zhao W, Ma F, Liu Y, Hussain J, Wang Y, Yang G, He G (2011) Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.). Acta Biochim Biophys Sin 43:284–291

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Datta R, Verma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Lee S-B, Panchal T, Wiebe PO (2001) Expression of cholera toxin B subunit oligomers in transgenic tobacco chloroplasts. J Mol Biol 311:1001–1009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Hyper-expression of the Bt Cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    Article  PubMed  Google Scholar 

  • De Gray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862

    Article  CAS  Google Scholar 

  • De Marchis F, Wang Y, Stevanato P, Arcioni S, Bellucci M (2009) Genetic transformation of the sugar beet plastome. Transgenic Res 18:17–30

    Article  CAS  PubMed  Google Scholar 

  • Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489

    Article  CAS  PubMed  Google Scholar 

  • Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659–668

    Article  CAS  PubMed  Google Scholar 

  • Farran I, Sanchez-Serrano JJ, Medina JF, Prieto J, Mingo-Castel AM (2002) Targeted expression of human serum albumin to potato tubers. Transgenic Res 11:337–346

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-San Millan A, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper-express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J 1:71–79

    Article  CAS  PubMed  Google Scholar 

  • Freytag LC, Clements JD (2005) Mucosal adjuvants. Vaccine 23:1804–1813

    Article  CAS  PubMed  Google Scholar 

  • Glenz K, Bouchon B, Stehle T, Wallich R, Simon MM, Warzecha H (2006) Production of a recombinant bacterial lipoprotein in higher plant chloroplasts. Nat Biotechnol 24:76–77

    Article  CAS  PubMed  Google Scholar 

  • Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res 19:4083–4089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gray JC, Hird SM, Dyer TA (1990) Nucleotide sequence of a wheat chloroplast gene encoding the proteolytic subunit of an ATP-dependent protease. Plant Mol Biol 15:947–954

    Article  CAS  PubMed  Google Scholar 

  • Gruissem W, Tonkyn J (1993) Control mechanisms of plastid gene expression. Crit Rev Plant Sci 12:19–55

    Article  CAS  Google Scholar 

  • Guda C, Lee SB, Daniell H (2000) Stable expression of a biodegradable protein-based polymer in tobacco chloroplasts. Plant Cell Rep 19:257–262

    Article  CAS  Google Scholar 

  • Hajdukiewics P, Allison LA, Maliga P (1997) The two plastid RNA polymerases encoded by the nuclear and plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048

    Article  Google Scholar 

  • Hedtke B, Borner T, Weihe A (1997) Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science 277:809–811

    Article  CAS  PubMed  Google Scholar 

  • Hibbered JM, Linley PJ, Khan MS, Gray JC (1998) Transient expression of green fluorescent protein in various plastid types following microprojectile bombardment. Plant J 16:627–632

    Article  Google Scholar 

  • Hirose T, Sugiura M (1996) Cis-acting elements and trans-acting factors for accurate translation of chloroplast psbA mRNAs: development of an in vitro translation system from tobacco chloroplasts. EMBO J 15:1687–1695

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hirose T, Sugiura M (1997) Both RNA editing and RNA cleavage are required for translation of tobacco chloroplast ndhD mRNA: a possible regulatory mechanism for expression of a chloroplast operon consisting of functionally unrelated genes. EMBO J 16:6804–6811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirose T, Sugiura M (2001) Involvement of a site-specific trans-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast in vitro RNA editing system. EMBO J 20:1144–1152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH, Hu ZM (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12:111–114

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Bogorad L (1990) Maize chloroplast RNA polymerase: the 180-, 120-, and 38-kilodalton polypeptides are encoded in chloroplast genes. Proc Natl Acad Sci U S A 87:1531–1535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu J, Troxler RF, Bogorad L (1991) Maize chloroplast RNA polymerase: the 78-kilodalton polypeptide is encoded by the plastid rpoCl gene. Nucleic Acids Res 19:3431–3434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hudson GS, Holton TA, Whitfeld PR, Bottomley W (1988) Spinach chloroplast rpoB/C genes encode three subunits of the chloroplast RNA polymerase. J Mol Biol 200:639–654

    Article  CAS  PubMed  Google Scholar 

  • Igloi GL, Kössel H (1992) The transcriptional apparatus of chloroplast. Crit Rev Plant Sci 10:525–558

    Article  CAS  Google Scholar 

  • Kapoor S, Sugiura M (1999) Identification of two essential sequence elements in the non-consensus type II PatpB-290 plastid promoter by using plastid transcription extracts from cultured tobacco BY-2 cells. Plant Cell 11:1799–1810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kapoor S, Suzuki JY, Sugiura M (1997) Identification and functional significance of a new class of non-consensus-type plastid promoters. Plant J 11:327–337

    Article  CAS  PubMed  Google Scholar 

  • Khan MS (1997) Tobacco chloroplast transformation using microprojectile bombardment. PhD dissertation, University of Cambrige, UK

    Google Scholar 

  • Khan MS (2001) Utilizing heterologous promoters to express green fluorescent protein from jellyfish in tobacco chloroplasts. Pak J Bot 33:43–52

    CAS  Google Scholar 

  • Khan MS (2012) Plastid genome engineering in plants: present status and future trends. Mol Plant Breed 3:91–102

    Google Scholar 

  • Khan MS (2013) Towards engineering dark-operative chlorophyll synthesis pathway in transgenic plastids. In: Barh D et al (eds) OMICS: applications in biomedical, agricultural and environmental sciences. Taylor & Francis, New York, pp 423–436

    Google Scholar 

  • Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17:910–915

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Nurjis F (2012) Synthesis and expression of recombinant interferon alpha-5 gene in tobacco chloroplasts, a non-edible plant. Mol Biol Rep 39:4391–4400

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Hameed W, Nozoe M, Shiina T (2007) Disruption of the psbA gene by the copy correction mechanism reveals that the expression of plastid-encoded genes is regulated by photosynthesis activity. J Plant Res 120:421–430

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Ali S, Iqbal J (2011) Developmental and photosynthetic regulation of Bacillus thuringiensis δ-endotoxin reveals that engineered sugarcane conferring resistance to ` dead heart` contains no toxins in cane juice. Mol Biol Rep 38:2359–2369

    Article  CAS  PubMed  Google Scholar 

  • Kota M, Daniell H, Varma S, Garczynski SF, Gould F, Moar WJ (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci U S A 96:1840–1845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koya V, Moayeri M, Leppla SH, Daniell H (2005) Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Infect Immun 73:8266–8274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004a) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004b) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuroda H, Maliga P (2001) Sequences downstream of the translation initiation codon are important determinants of the translation efficiency in chloroplasts. Plant Physiol 125:430–436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuroda H, Maliga P (2002) Overexpression of the clpP 5-untranslated region in a chimeric context causes a mutant phenotype. Suggesting competition for a clpP-specific RNA maturation factor in tobacco chloroplasts. Plant Physiol 129:1600–1606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuroda H, Maliga P (2003) The plastid clpP1 protease gene is essential for plant development. Nature 425:86–89

    Article  CAS  PubMed  Google Scholar 

  • Lelivelt C, McCabe M, Newell C, DeSnoo C, Dun K, Birch-Machin I, Gray J, Mills K, Nugent J (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774

    Article  CAS  PubMed  Google Scholar 

  • Lerbs-Mache S (1993) The 110-kDa polypeptide of spinach plastid DNA-dependent RNA polymerase: Single-subunit enzyme or catalytic core of multimeric enzyme complexes? Proc Natl Acad Sci U S A 90:5509–5513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li S-J, Coronan JE (1992) A putative zing finger protein encoded by a conserved chloroplast gene is very likely a subunit of a biotin-dependent carboxylase. Plant Mol Biol 20:759–761

    Article  CAS  PubMed  Google Scholar 

  • Liu CW, Lin CC, Chen J, Tseng MJ (2007) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep 26:1733–1744

    Article  CAS  PubMed  Google Scholar 

  • Lutz KA, Knapp J, Maliga P (2001) Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol 125:1585–1590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  CAS  PubMed  Google Scholar 

  • McBride KE, Svab Z, Schaaf DJ, Hoga PS, Stalker DM, Maliga P (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology 13:362–365

    Article  CAS  PubMed  Google Scholar 

  • Monde RM, Schuster G, Stern DB (2000) Processing and degradation of chloroplast mRNA. Biochimie 82:573–582

    Article  CAS  PubMed  Google Scholar 

  • Mustafa G (2011) Development of plastid transformation in sugarcane. PhD dissertation, Quaid-i-Azam University, Islamabad

    Google Scholar 

  • Nugenta GD, Coyne S, Nguyen TT, Kavanaghb TA, Dix PJ (2006) Nuclear and plastid transformation of Brassica oleracea var. botrytis(cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Sci 170:135–142

    Article  CAS  Google Scholar 

  • Nurjis F, Khan MS (2011) Expression of recombinant interferon alpha-2a in tobacco chloroplasts using microprojectile bombardment. Afr J Biotechnol 10:17016–17022

    CAS  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete nucleotide sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574

    Article  CAS  Google Scholar 

  • Okumura S, Sawada M, Park Y, Hayashi T, Shimamura M, Takase H, Tomizawa KI (2006) Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15:637–646

    Article  CAS  PubMed  Google Scholar 

  • Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Bogorad L, Vasil IK (eds) The molecular biology of plastids, vol 7A, Cell culture and somatic cell genetics of plants. Academic, New York, pp 5–53

    Chapter  Google Scholar 

  • Palmer JD, Thompson WF (1982) Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 29:537–550

    Article  CAS  PubMed  Google Scholar 

  • Purton N, Gray JC (1989) The plastid rpoA gene encoding a protein homologous to the bacterial RNA polymerase alpha subunit is expressed in pea chloroplasts. Mol Gen Genet 217:77–84

    Article  CAS  PubMed  Google Scholar 

  • Ruf M, Kossel H (1988) Structure and expression of the gene coding for the alpha-subunit of DNA-dependent RNA polymerase from the chloroplast gene of Zea mays. Nucleic Acids Res 16:5741–5755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    Article  CAS  PubMed  Google Scholar 

  • Schwarz Z, Kossel H (1980) The primary structure of 16S rDNA from Zea mays chloroplast is homologous to E. coli 16S rRNA. Nature 283:739–742

    Article  CAS  Google Scholar 

  • Seki M, Shigemoto N, Sugita M, Sugiura M, Koop H-U, Irifune K, Morikawa H (1995) Transient expression of β-glucuronidase in plastids of various plant cells and tissues delivered by a pneumatic particle gun. J Plant Res 108:235–240

    Article  CAS  Google Scholar 

  • Shiina T, Tsunoyama Y, Nakahira Y, Khan MS (2005) RNA polymerases: promoters and transcription regulators in higher plant chloroplasts. Int Rev Cytol Cell Biol 244:1–68

    Article  CAS  Google Scholar 

  • Shimada H, Sugiura M (1991) Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes. Nucleic Acids Res 19:983–995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome; its gene organization and expression. EMBO J 5:2043–2049

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PTJ, Staub JM, Nehra NS (1999) Stable chloroplast transformation in potato: Use of green fluorescent protein as a plastid marker. Plant J 19:209–216

    Article  CAS  PubMed  Google Scholar 

  • Sijben-Muller G, Hallick RB, Alt J, Westhof P, Herrmann RG (1986) Spinach plastid genes coding for initiation factor IF-1, ribosomal protein S-11 and RNA polymerase a-subunit. Nucleic Acids Res 14:1029–1045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, Elzen VD, Peter JM, Hoekema A (1990) Production of correctly processed human serum albumin in transgenic plants. Bio/Technology 8:217–221

    Article  CAS  PubMed  Google Scholar 

  • Sikdar SR, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20–24

    Article  CAS  Google Scholar 

  • Singh AK, Verma SS, Bansal KC (2010) Plastid transformation in eggplant (Solanum melongena L.). Transgenic Res 19:113–119

    Article  CAS  PubMed  Google Scholar 

  • Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed brassicaceae. Transgenic Res 12:115–122

    Article  CAS  PubMed  Google Scholar 

  • Spencer TM, Gordon-Kamm WJ, Daines RJ, Start WG, Lemaux PG (1990) Bialaphos selection of stable transformants from maize cell culture. Theor Appl Genet 79:625–631

    Article  CAS  PubMed  Google Scholar 

  • Staub JM, Maliga P (1994) Translation of psbA mRNA is regulated by light via the 5’-untranslated region in tobacco plastids. Plant J 6:547–553

    Article  CAS  PubMed  Google Scholar 

  • Staub JM, Garcia B, Graves J, Hajdukiewicz PTJ, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L et al (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338

    Article  CAS  PubMed  Google Scholar 

  • Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89

    Article  CAS  PubMed  Google Scholar 

  • Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19:149–168

    Article  CAS  PubMed  Google Scholar 

  • Sugiura M (1995) The chloroplast genome. Essays Biochem 30:49–57

    CAS  PubMed  Google Scholar 

  • Sugiura M, Shinozaki K, Zaita N, Kusuda M, Kumano M (1986) Clone bank of the tobacco (Nicotiana tabacum) chloroplast genome as a set of overlapping restriction endonuclease fragments: mapping of eleven ribosomal protein genes. Plant Sci 44:211–216

    Article  CAS  Google Scholar 

  • Sugiura M, Kusumegi T, Sugishita H, Murakami K, Ideue T, Hirose T (1998) Translational control of photosynthetic genes in tobacco plastids. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol IV. Kluwer Academic, Dordrecht, pp 2943–2946

    Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci U S A 90:913–917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Svab Z, Hajduckiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci U S A 87:8526–8530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi I, Nochi T, Yuki Y, Kiyono H (2009) New horizon of mucosal immunity and vaccines. Curr Opin Immunol 21:352–358

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Tozawa Y, Mochizuki N, Shinozaki K, Nagatani A, Wakasa K, Takahashi H (1997) Characterization of three cDNA species encoding plastid RNA polymerase sigma factor heterogeneity in higher plant plastids. FEBS Lett 413:309–313

    Article  CAS  PubMed  Google Scholar 

  • Thompson RJ, Mosig G (1988) Integration host factor (IHF) represses a Chlamydomonas chloroplast promoter in E. coli. Nucleic Acids Res 16:3313–3326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tiller K, Eisermann A, Link G (1991) The chloroplast transcription apparatus from mustard. Evidence for three different transcription factors which resemble bacterial sigma factors. Eur J Biochem 198:93–99

    Article  CAS  PubMed  Google Scholar 

  • Tregoning JS, Nixon P, Kuroda H, Svab Z, Clare S, Bowe F, Fairweather N, Ytterberg J, van Wijk KJ, Dougan G, Maliga P (2003) Expression of tetanus toxin fragment C in tobacco chloroplasts. Nucleic Acids Res 31:1174–1179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578

    Article  CAS  PubMed  Google Scholar 

  • Vasil V, Castillo A, Fromm M, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotechnology 10:667–674

    Article  CAS  Google Scholar 

  • Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as revealed by sequencing the entire chloroplast genome of black pine, Pinus thunbergii. Proc Natl Acad Sci U S A 91:9794–9798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wakasugi T, Tsudzuki T, Sugiura M (2001) The genomics of land plant chloroplasts: gene content and alteration of genomic information by RNA editing. Photosynth Res 70:107–118

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104:37–48

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wei Z, Liu Y, Lin C, Wang Y, Cai Q, Dong Y, Xing S (2011) Transformation of alfalfa chloroplasts and expression of green fluorescent protein in a forage crop. Biotechnol Lett 33:2487–2494

    Article  CAS  PubMed  Google Scholar 

  • Ye G-N, Hajdukiewics PTJ, Broyles D, Rodriguez D, Xu CE, Nehra NS, Staub JM (2001) Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J 25:261–270

    Article  CAS  PubMed  Google Scholar 

  • Zubkot MK, Zubko EI, Zuilen KV, Meyer P, Day A (2004) Stable transformation of petunia plastids. Transgenic Res 13:523–530

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sarwar Khan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Khan, M.S. (2015). Transplastomics: A Convergence of Genomics and Biotechnology. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_19

Download citation

Publish with us

Policies and ethics