Skip to main content

Polymer Template-Directed Synthesis

  • Chapter
  • First Online:
Noble Metal Nanoparticles

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The use of spatially and dimensionally constrained (co)polymers as templates is an effective method to prepare metal nanocrystals. These spatially and dimensionally constrained polymers can serve as reaction cages to control the growth of the particles, leading to the formation of nanoparticles with a morphology complementary to that of the template. By varying the shape of the sacrificial template nanoparticle and its ratio to the more noble metal precursor added, one can obtain a variety of morphologies such as, for example, triangular rings, wires, tubes, boxes, or cages. Block copolymers, especially amphiphilic, have been used to prepare aggregation-free noble metal nanoparticles. New template methods based on a synergistic soft-hard template mechanism were suggested for the preparation of flexible noble metal/cross-linked nanomaterials. Infinite coordination polymer particles are a class of emerging functional materials that are formed by bridging repeating organic ligands with metallic nodes. Noble metal nanoparticles have also been synthesised using biopolymer template such as proteins, nucleic acids, and polysaccharides known as polyelectrolytes. The synthetic polymers known as polyelectrolytes can be used as reducing/stabilizing agents in one single-step syntheses. Highly branched macromolecules-dendrimers are well defined with hollow cores and dense shells. They are constructed from an initiator core to which radially branched layers are covalently attached. Most of the dendritic containers reported so far use the concept of closing the dendritic box in order to keep the guest metal particle inside the dendrimer host. Dendrimer-entrapped nanoparticles are often formed using fast reduction and nucleation chemistry. With PAMAM dendrimers as templates, dendrimer-entrapped metal nanoparticles can be formed with each noble metal nanoparticle entrapped within each dendrimer molecule. Likewise, bimetallic core@shell or alloy dendrimer-(stabilized) entrapped metal nanoparticles can be prepared by coreduction of the metal ions within the dendrimer templates. Colloidally stable and water-soluble functional nanoparticles can be formed with plasmonic and fluorescent activities. The functionalized plasmonic-fluorescent nanoparticles have been used as cell imaging and plasmon-based optical detection probe. Dendrimers find many applications in drug delivery due to the opportunity of their internal niches to host a variety of molecules. They have also been reported to enter tumors and carry either chemotherapeutic agents or genetic therapeutics. Incorporation of photoactive components in either the core or the periphery of these nanostructures enriches them with new functionalities opening new perspectives in nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

{Au@DMAP}NP:

Gold nanoparticle decorated with DMAP

{Au@MUA}NP:

Gold nanoparticle decorated with MUA

0D:

Zero dimensional

1D:

One dimensional

3T6C:

Thiophene dendrons

ABCs:

Amphiphilic block copolymers

AFM:

Atomic force microscopy

AgDENPs:

Dendrimer-entrapped silver nanoparticles

AgDSNPs:

Dendrimer-stabilized silver nanoparticles

AgNP/THI/ICP:

Silver nanoparticles capped with thionine and ICP

AgNPs/THI/ICP/GCE:

Conjugate AgNPs/THI/ICP on GCE

ALT:

Alanine transaminase

AM:

Acrylamide

ATRP:

Atom transfer radical polymerization

AuDENPs:

Dendrimer-encapsulated (entrapped) gold nanoparticles

AuDSNPs:

Dendrimer-stabilized gold nanoparticles

B-PEI:

Branched poly(ethylenimine)

CD:

Cyclodextrin

CEA:

Carcinoembryonic antigen

Con A:

Concanavalin A

CTAB:

Cetyltrimethylammonium bromide,

DANPs:

Dendrimer-assembled nanoparticles

DBG:

T-BOC-protected glycine-coated dendrimer

DBPA:

T-BOC-protected phenylalanine-coated dendrimer

DENPs:

Dendrimer-encapsulated (entrapped) nanoparticles

DEN:

Dendrimer

DLS:

Dynamic light scattering technique

DMAEMA:

Dimethylaminoethyl methacrylate

DPV:

Differential pulse voltammetry

DSNPs:

Dendrimer-stabilized nanoparticles

EDA:

Ethylenediamine

EDS:

Energy-dispersed spectrum

EG:

Ethylene glycol

EIS:

Electrochemical impedance spectroscopy

EMCH:

Heterobifunctional cross-linker N-(ε-maleimidocaproic acid)-hydrazide

FA:

Folic acid

FAR:

Folic acid receptor

FI:

Fluorescein isothiocyanate

FRTEM:

Freeze-etching replication transmission electron microscopy

FTIR:

Fourier transform infrared spectroscopy

fwhm:

Full width at half maximum

G4(3T6C):

Thiophene dendron-functionalized PAMAM

G5·NGlyOH:

Glycidol hydroxyl-terminated G5 dendrimers

GCE:

Glassy carbon electrode

Hb:

Hemoglobin

HCT:

Hematocrit

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HFOTAI:

CF3(CF2)7–SO2NH–(CH2)3N+(CH3)3 I

HOMO:

Highest occupied molecular orbital

HOPG:

Highly ordered (oriented) pyrolytic graphite

I907:

IRGACURE 907

ICPs:

Infinite coordination polymer particles

ITX:

2-isopropylthioxanthone

i.v.:

Intravenously

i.p.:

Intraperitoneal

L-PPI:

Lactose-coated PPI dendrimer

LBL:

Layer-by-layer

LC-SPDP:

Heterobifunctional cross-linking agent succinimidyl 6-(3′-[2-pyridyl-dithio] propionamido) hexanoate

LCST:

Lower critical solution temperature

L-PEI:

Linear poly(ethyleneimine)

LUMO:

Lowest unoccupied molecular orbital

MA:

Methyl acrylate

MCH:

Mean corpuscular hemoglobin

MC@MNPs:

Metal nanoparticles-decorated microcapsule

MOCVD:

Metal organic chemical vapor deposition

MOFs:

Metal-organic frameworks

MPC:

Monolayer-protected cluster

M-PPI:

Mannose-coated PPI dendrimer

MUA:

Mercaptoundecanoic acid

MW:

Microwave

Mw:

Molecular weight

NICISS:

Neutral impact collision ion scattering spectroscopy

Nip:

4-nitrophenol

OEG:

Oligo(ethylene glycol)

OEGMA:

Oligo (ethylene glycol) methacrylate

PA:

Polyamino oxanorbornene

PAcrA:

Poly(acrylic acid)

PAH:

Poly(allylamine hydrochloride)

PAlA:

Poly(allylamine)

PAM:

Polyacrylamide

PAMAM:

Poly(amidoamine)

PAN:

Polyacrylonitrile

PC:

Phosphorylcholine

PCP:

Porous coordination polymer

PDADMAC:

Poly(diallyl dimethylammonium chloride)

PDI:

Polydispersion (polydispersity) index

PE:

Polyelectrolyte

PEG:

Poly(ethylene glycol)

PEG-b-P4VP-b-PNIPAM:

Poly(ethylene glycol)-b-poly(4-vinylpyridine)-b-poly(N-isopropylacrylamide)

PEI:

Poly(ethylenimine)

PEO:

Poly(ethylene oxide)

PEO-PPO-PEO:

Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)

PEs:

Polyelectrolytes

PG:

Polyguanidino oxanorbornene

PGA:

Poly(γ-glutamic acid)

PISA:

Polymerization-induced self-assembled

PMMA:

Poly(methyl methacrylate)

PNG:

Polyelectrolyte gold nanoparticle

PNIPAM:

Poly(N-isopropylacrylamide)

POEGMA-b-PDMAEMA:

Diblock copolymer of oligo (ethylene glycol) methacrylate and dimethylaminoethyl methacrylate

POSS:

Polyhedral oligomeric silsesquioxane

PPI:

Poly(propylene imine)

PPI-5.0G:

5 PPI dendrimer

PPy:

Polypyrole

PSt:

Polystyrene

PSt-b-PAcrA:

Poly(styrene-block-acrylic acid)

PSt-b-PAcrA:

Polystyrene-block-poly(acrylic acid)

PSt-b-PEO:

Polystyrene-block-poly(ethylene oxide)

PSt-b-PVP:

Polystyrene-block-poly(vinyl pyridine)

PStS:

Poly (sodium 4-styrenesulfonate)

PStS:

Polystyrene-sulfonic acid, sodium salt

PTPS:

POSS containing thiol groups

PVA:

Poly(vinyl alcohol)

PVM/MAn:

Poly(methyl vinyl ether-co-maleic anhydride)

PVP:

Poly(4-vinylpyridine)

PVPo:

Poly(vinylpyrrolidone)

RAFT:

Reversible addition–fragmentation chain transfer

RBCs:

Red blood cells

Ret:

Electron-transfer resistance

RGD (Arg-Gly-Asp):

Arginine-glycine-aspartic acid

ROMP:

Ring-opening metathesis polymerization

SAED:

Selected area electron diffraction

SAMs:

Self-assembled monolayers

SERS:

Surface-enhanced Raman scattering

SFS:

Sodium formaldehyde sulfoxylate

Si-PEI:

N-[3-(trimethoxysilyl)propyl] poly(ethylenimine)

SPR:

Surface plasmon resonance

SSHM:

Synergistic soft-hard template mechanism

TG:

Thermogravimetric

TGA:

Thermogravimetric analysis

THF:

Tetrahydrofuran

TMPTA:

Trimethylolpropane triacrylate

TRIS:

Tris(hydroxymethyl)aminomethane,

WBCs:

White blood corpuscles

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

References

  1. Kim TG, Kim YW, Kim JS, Park B (2004) Silver-nanoparticle dispersion from the consolidation of Ag-attached silica colloid. J Mater Res 19:1400–1407

    Article  CAS  Google Scholar 

  2. Khanna PK, Singh N, Charan S, Subbarao VVVS, Gokhale R, Mulik UP (2005) Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Mater Chem Phys 93:117–121

    Article  CAS  Google Scholar 

  3. Muniz-Miranda M (2004) SERS-active Ag/SiO2 colloids: photoreduction mechanism of the silver ions and catalytic activity of the colloidal nanoparticles. J Raman Spectrosc 35:839–842

    Article  CAS  Google Scholar 

  4. He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15:4401–4406

    Article  CAS  Google Scholar 

  5. Adhyapak PV, Khanna PK, Dadge JW, Aiyer RC (2006) Tuned optical properties of in-situ synthesized m-nitroaniline doped Ag/PVA nano-composites. J Nanosci Nanotechnol 6:2141–2146

    Article  CAS  Google Scholar 

  6. Mbhele ZH, Salemane MG, van Sittert CGCE, Nedeljkovic JM, Djokovic V, Luyt AS (2003) Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024

    Article  CAS  Google Scholar 

  7. Lin YH, Chung CK, Chen CT, Liang HF, Chen SC, Sung HW (2005) Preparation of nanoparticles composed of chitosan/poly-gamma-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromol 6:1104–1112

    Article  CAS  Google Scholar 

  8. Huo Z, Tsung C, Huang W, Zhang X, Yang P (2008) Sub-two nanometer single crystal Au nanowires. Nano Lett 8:2041–2044

    Article  CAS  Google Scholar 

  9. Yener DO, Sindel J, Randall CA, Adair JH (2002) Synthesis of nanosized silver platelets in octylamine-water bilayer systems. Langmuir 18:8692–8699

    Article  CAS  Google Scholar 

  10. Wei G, Zhou H, Liu Z, Song Y, Wang L, Sun L, Li Z (2005) One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network. J Phys Chem B 109:8738–8743

    Article  CAS  Google Scholar 

  11. Zhang J, Liu H, Wang Z, Ming N (2007) Shape-selective synthesis of gold nanoparticles with controlled sizes, shapes, and plasmon resonances. Adv Funct Mater 17:3295–3303

    Article  CAS  Google Scholar 

  12. Huang LM, Wang HT, Wang ZB, Mitra A, Bozhilov KN, Yan YS (2002) Nanowire arrays electrodeposited from liquid crystalline phases. Adv Mater 14:61–64

    Article  CAS  Google Scholar 

  13. Wang L, Chen X, Zhan J, Chai Y, Yang C, Xu L, Zhuang W, Jing B (2005) Synthesis of gold nano-and microplates in hexagonal liquid crystals. J Phys Chem B 109:3189–3194

    Article  CAS  Google Scholar 

  14. Kang Y, Taton TA (2005) Core/Shell gold nanoparticles by self-assembly and crosslinking of micellar, block-copolymer shells. Angew Chem Int Ed Engl 44:409–412

    Article  CAS  Google Scholar 

  15. Huang HY, Kowalewski T, Remsen EE, Gertzmann R, Wooley KL (1997) Hydrogel-coated glassy nanospheres: A novel method for the synthesis of shell cross-linked knedels. J Am Chem Soc 119:11653–11659

    Article  CAS  Google Scholar 

  16. Ge Z, Kang Y, Taton TA, Braun PV, Cahill DG (2005) Thermal transport in Au-core polymer-shell nanoparticles. Nano Lett 3:531–535

    Article  CAS  Google Scholar 

  17. Kang Y, Taton TA (2003) Micelle-encapsulated carbon nanotubes: a route to nanotube composites. J Am Chem Soc 125:5650–5651

    Article  CAS  Google Scholar 

  18. Djalali R, Chen YF, Matsui H (2002) Au nanowire fabrication from sequenced histidine-rich peptide. J Am Chem Soc 124:13660–13661

    Article  CAS  Google Scholar 

  19. Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13:1389–1393

    Article  CAS  Google Scholar 

  20. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    Article  CAS  Google Scholar 

  21. Newkome GR, Yao ZQ, Baker GR, Gupta VK (1985) Micelles. Part 1. Cascade molecules—a new approach to micelles. A [27]-arborol. J Org Chem 50:2003–2004

    Article  CAS  Google Scholar 

  22. Chechik V, Crooks RM (2000) Dendrimer-encapsulated Pd nanoparticles as fluorous-phase-soluble catalysts. J Am Chem Soc 122:1243–1244

    Article  CAS  Google Scholar 

  23. Ispasoiu RG, Balogh L, Varnavski OP, Tomalia DA, Goodson T (2000) Large optical limiting from novel metal-dendrimer nanocomposite materials. J Am Chem Soc 122:11005–11006

    Article  CAS  Google Scholar 

  24. Zheng J, Stevenson MS, Hikida RS, Van Patten PG (2002) Influence of pH on dendrimer-protected nanoparticles. J Phys Chem B 106:1252–1255

    Article  CAS  Google Scholar 

  25. Weener JW, Meijer EW (2000) Photoresponsive dendritic monolayers. Adv Mater 72:741–746

    Article  Google Scholar 

  26. Stasko NA, Johnson CB, Schoenfisch MH, Johnson TA, Holmuhamedov EL (2007) Cytotoxicity of polypropylenimine dendrimer conjugates on cultured endothelial cells. Biomacromol 8:3853–3859

    Article  CAS  Google Scholar 

  27. Horiuchi S, Fujita T, Hayakawa T, Nakao Y (2003) Three-dimensional nanoscale alignment of metal nanoparticles using block copolymer films as nanoreactors. Langmuir 19:2963–2973

    Article  CAS  Google Scholar 

  28. Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36

    Article  CAS  Google Scholar 

  29. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. Chem Commun (7):801–802

    Google Scholar 

  30. Lowe AB, Sumerlin BS, Donovan MS, McCormack CL (2002) Facile preparation of transition metal nanoparticles stabilized by well-defined (co)polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization. J Am Chem Soc 124:11562–11563

    Article  CAS  Google Scholar 

  31. Shan J, Nuopponen M, Jiang H, Viitala T, Kauppinen E, Kontturi K, Tenhu H (2005) Amphiphilic gold nanoparticles grafted with poly (N-isopropylacrylamide) and polystyrene. Macromolecules 38:2918–2926

    Article  CAS  Google Scholar 

  32. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  33. Li Z, Jin R, Mirkin CA, Letsinger RL (2002) Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Res 30:1558–1562

    Article  CAS  Google Scholar 

  34. Chen Y, Cho J, Young A, Taton TA (2007) Enhanced stability and bioconjugation of photo-cross-linked polystyrene-shell, Au-core nanoparticles. Langmuir 23:7491–7497

    Article  CAS  Google Scholar 

  35. Hong R, Han G, Fernandez JM, Kim BJ, Forbes NS, Rotello VM (2006) Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc 128:1078–1079

    Article  CAS  Google Scholar 

  36. Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736–4745

    Article  CAS  Google Scholar 

  37. Manna A, Imae T, Aoi K, Okada M, Yogo T (2001) Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles. Chem Mater 13:1674–1681

    Article  CAS  Google Scholar 

  38. Zhang Z, Patel RC, Kothari R, Johnson CP, Friberg SE, Aikens PA (2000) Stable silver clusters and nanoparticles prepared in polyacrylate and inverse micellar solutions. J Phys Chem B 104:1176–1182

    Article  CAS  Google Scholar 

  39. Zhang Z, Han M (2003) One-step preparation of size-selected and well-dispersed silver nanocrystals in polyacrylonitrile by simultaneous reduction and polymerization. J Mater Chem 13:641–643

    Article  CAS  Google Scholar 

  40. Zhu Y, Qian Y, Li X, Zhang M (1997) γ-radiation synthesis and characterization of polyacrylamide-silver nanocomposites. Chem Commun (12):1081–1082

    Google Scholar 

  41. Song J, Kang H, Lee C, Hwang SH, Jang J (2012) Aqueous synthesis of silver nanoparticle embedded cationic polymer nanofibers and their antibacterial activity. ACS Appl Mater Interfaces 4:460–465

    Article  CAS  Google Scholar 

  42. Tan S, Erol M, Attygalle A, Du H, Sukhishvili S (2007) Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions. Langmuir 23:9836–9843

    Article  CAS  Google Scholar 

  43. Abraham S, Kim I, Batt CA (2007) A facile preparative method for aggregation-free gold nanoparticles using poly(styrene-block-cysteine). Angew Chem Int Ed 46:5720–5723

    Article  CAS  Google Scholar 

  44. Kate KH, Singh K, Khanna PK (2011) Microwave formation of Polypyrrole/Ag nano-composite based on interfacial polymerization by use of AgNO3. Synth React Inorg Met-Org Chem 41:199–202

    CAS  Google Scholar 

  45. Kate KH, Damkale SR, Khanna PK, Jain GH (2011) Nano-silver mediated polymerization of pyrrole: synthesis and gas sensing properties of polypyrrole (PPy)/Ag nano-composite. J Nanosci Nanotechnol 11:7863–7869

    Article  CAS  Google Scholar 

  46. Katouki H, Komarneni S (2003) Nano- and micro- meter sized silver metal powders by microwave-polyol process. J Jpn Soc Powder Powder Metall 50:745–750

    Article  Google Scholar 

  47. El Badawy AM, Luxton TP, Silva RG, Scheckel CK, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44:1260–1266

    Article  CAS  Google Scholar 

  48. Huynh KA, Chen KL (2011) Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Technol 45:5564–5571

    Article  CAS  Google Scholar 

  49. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

    Article  CAS  Google Scholar 

  50. Hoheisel SM, Diamond S, Mount D (2012) Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas. Environ Toxicol Chem 31:2557–2563

    Article  CAS  Google Scholar 

  51. Dobias J, Bernier-Latmani R (2013) Silver release from silver nanoparticles in natural waters. Environ Sci Technol 47:4140–4146

    Article  CAS  Google Scholar 

  52. Luo S, Yang S, Sun C, Gu JD (2012) Improved debromination of polybrominated diphenyl ethers by bimetallic iron-silver nanoparticles coupled with microwave energy. Sci Total Environ 429:300–308

    Article  CAS  Google Scholar 

  53. Ma SN, Ou ZW, Sun XF, Bai M, Liu ZH (2009) In-situ synthesis of ultra-dispersion-stability nano-Ag in epoxy resin and toughening modification to resin. J Funct Mater 40:1029–1032

    CAS  Google Scholar 

  54. Pal A, Shah S, Devi S (2009) Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Mater Chem Phys 114:530–532

    Article  CAS  Google Scholar 

  55. Si MZ, Fang Y, Dong G (2008) Research on nano-silver colloids prepared by microwave synthesis method and its SERS activity. Acta Photon Sin 37:1034–1036

    CAS  Google Scholar 

  56. Yao BH, Xu GC, Zhang HY, Han X (2010) Synthesis of nanosilver with polyvinylpyrrolidone (PVP) by microwave method. Chin J Inorg Chem 26:1629–1632

    CAS  Google Scholar 

  57. Bo L, Yang W, Chen M, Gao J, Xue Q (2009) A simple and ‘green’ synthesis of polymer-based silver colloids and their antibacterial properties. Chem Biodivers 6:111–116

    Article  CAS  Google Scholar 

  58. Irzh A, Perkas N, Gedanken A (2007) Microwave-assisted coating of PMMA beads by silver nanoparticles. Langmuir 23:9891–9897

    Article  CAS  Google Scholar 

  59. Hwang BJ, Kumar SMS, Chen CH, Chang RW, Liu DG, Lee JF (2008) Size and alloying extent dependent physiochemical properties of Pt-Ag/C nanoparticles synthesized ethylene glycol method. J Phys Chem C 112:2370–2377

    Article  CAS  Google Scholar 

  60. Luo LB, Yu SH, Qian HS, Zhou T (2005) Large-scale fabrication of flexible silver/cross-linked poly(vinyl alcohol) coaxial nanocables by a facile solution approach. J Am Chem Soc 127:2822–2823

    Article  CAS  Google Scholar 

  61. Chen M, Wang LY, Han JT, Zhang JY, Li ZY, Qian DJ (2006) Preparation and study of polyacrylamide-stabilized silver nanoparticles through a one-pot process. J Phys Chem B 110:11224–11231

    Article  CAS  Google Scholar 

  62. Yang Q, Wang F, Tang KB, Wang CR, Chen ZW, Qian YT (2002) The formation of fractal Ag nanocrystallites via γ-irradiation route in isopropyl alcohol. Mater Chem Phys 78:495–500

    Article  Google Scholar 

  63. Vukovic VV, Nedeljkovic JM (1993) Surface modification of nanometer-scale silver particles by imidazole. Langmuir 9:980–983

    Article  CAS  Google Scholar 

  64. Caulfield MJ, Qiao GG, Solomon DH (2002) Some aspects of the properties and degradation of polyacrylamides. Chem Rev 102:3067–3083

    Article  CAS  Google Scholar 

  65. Silva M, Dutra ER, Mano V, Machado JC (2000) Polymer degradation and stability. Polym Degrad Stab 67:491–495

    Article  Google Scholar 

  66. Vilcu R, Irinei F, Ionescu-Bujor J, Olteanu M, Demetrescu I (1985) Kinetic parameters obtained from TG and DTG curves of acrylamide-maleic anhydride copolymers. J Therm Anal 30:495–502

    Article  CAS  Google Scholar 

  67. Vandyke JD, Kasperski KL (1993) Thermogravimetric study of polyacrylamide with evolved gas-analysis. J Polym Sci Part A Polym Chem 31:1807–1823

    Article  CAS  Google Scholar 

  68. Shan J, Nuopponen M, Jiang H, Kauppinen E, Tenhu H (2003) Preparation of poly (N-isopropylacrylamide)-monolayer-protected gold clusters: synthesis methods, core size, and thickness of monolayer. Macromolecules 36:4526–4533

    Article  CAS  Google Scholar 

  69. Li DX, He Q, Cui Y, Wang KW, Zhang XM, Li JB (2007) Thermosensitive copolymer networks modified gold nanoparticles for nanocomposite entrapment. Chem-Eur J 13:2224–2229

    Article  CAS  Google Scholar 

  70. Li DX, He QA, Li JB (2009) Smart Core/Shell nanocomposites: polymers modified gold nanoparticles. Adv Colloid Interface Sci 149:28–38

    Article  CAS  Google Scholar 

  71. Li DX, Cui Y, Wang KW, He Q, Yan XH, Li JB (2007) Binary thermosensitive nanostructures of gold nanoparticles grafted with block copolymer: fabrication, characterization and catalyst applications. Adv Funct Mater 17:3134–3138

    Article  CAS  Google Scholar 

  72. Li DX, He Q, Yang Y, Mohwald H, Li JB (2008) Two-Stage pH response of poly(4-vinylpyridine) grafted gold nanoparticles. Macromolecules 41:7254–7256

    Article  CAS  Google Scholar 

  73. Li DX, He Q, Cui Y, Li JB (2007) Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly(4-vinylpyridine). Chem Mater 19:412–417

    Article  CAS  Google Scholar 

  74. Pereira SO, Barros-Timmons A, Trindade T (2014) Biofunctionalisation of colloidal gold nanoparticles via polyelectrolytes assemblies. Colloid Polym Sci 292:33–50

    Article  CAS  Google Scholar 

  75. Dumur F, Guerlin A, Dumas E, Bertin D, Gigmes D, Mayer CR (2011) Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents. Gold Bull 44:119–137

    Article  Google Scholar 

  76. Tran NTT, Wang TH, Lin CY, Tsai YC, Lai CH, Tai Y, Yung BYM (2011) Direct synthesis of rev peptide-conjugated gold nanoparticles and their application in cancer therapeutics. Bioconjugate Chem 22:1394–1401

    Article  CAS  Google Scholar 

  77. Huang H, Yang X (2004) Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res 339:2627–2631

    Article  CAS  Google Scholar 

  78. Newman JDS, Blanchard GJ (2006) Formation of gold nanoparticles using amine reducing agents. Langmuir 22:5882–5887

    Article  CAS  Google Scholar 

  79. Sun X, Dong S, Wang E (2006) One-step polyelectrolyte-based route to well-dispersed gold nanoparticles: synthesis and insight. Mater Chem Phys 96:29–33

    Article  CAS  Google Scholar 

  80. Newman J, Blanchard G (2007) Formation and encapsulation of gold nanoparticles using a polymeric amine reducing agent. J Nanopart Res 9:861–868

    Article  CAS  Google Scholar 

  81. Sardar R, Park JW, Shumaker-Parry JS (2007) Polymer-induced synthesis of stable gold and silver nanoparticles and subsequent ligand exchange in water. Langmuir 23:11883–11889

    Article  CAS  Google Scholar 

  82. Chen H, Wang Y, Wang Y, Dong S, Wang E (2006) One-step preparation and characterization of PDDA-protected gold nanoparticles. Polymer 47:763–766

    Article  CAS  Google Scholar 

  83. Caruso F, Caruso RA, Mohwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282:1111–1114

    Article  CAS  Google Scholar 

  84. Caruso F (2000) Hollow capsule processing through colloidal templating and self-assembly. Chem Eur J 6:413–419

    Article  CAS  Google Scholar 

  85. Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13:11–22

    Article  CAS  Google Scholar 

  86. Gittins DI, Caruso F (2000) Multilayered polymer nanocapsules derived from gold nanoparticle templates. Adv Mater 12:1947–1949

    Article  CAS  Google Scholar 

  87. Mandal S, Bonifacio A, Zanuttin F, Sergo V, Krol S (2011) Synthesis and multidisciplinary characterization of polyelectrolyte multilayer-coated nanogold with improved stability toward aggregation. Colloid Polym Sci 289:269–280

    Article  CAS  Google Scholar 

  88. Djoumessi Lekeufack D, Brioude A, Lalatonne Y, Motte L, Coleman A, Miele P (2012) Reversible multi polyelectrolyte layers on gold nanoparticles. J Nanopart Res 14:1–7

    Article  Google Scholar 

  89. Dorris A, Rucareanu S, Reven L, Barrett CJ, Lennox RB (2008) Preparation and characterization of polyelectrolyte-coated gold nanoparticles. Langmuir 24:2532–2538

    Article  CAS  Google Scholar 

  90. Gittins DI, Caruso F (2001) Tailoring the polyelectrolyte coating of metal nanoparticles. J Phys Chem B 105:6846–6852

    Article  CAS  Google Scholar 

  91. Schonhoff M (2003) Self-assembled polyelectrolyte multilayers. Curr Opin Colloid Interface Sci 8:86–95

    Article  CAS  Google Scholar 

  92. Vergaro V, Scarlino F, Bellomo C, Rinaldi R, Vergara D, MaffiaM Baldassarre F, Giannelli G, Zhang X, Lvov YM, Leporatti S (2011) Drug-loaded polyelectrolyte microcapsules for sustained targeting of cancer cells. Adv Drug Delivery Rev 63:847–864

    Article  CAS  Google Scholar 

  93. Tan WB, Zhang Y (2005) Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications. J Biomed Mater Res Part A 75A:56–62

    Article  CAS  Google Scholar 

  94. Ma Z, Ding T (2009) Bioconjugates of glucose oxidase and gold nanorods based on electrostatic interaction with enhanced thermostability. Nanoscale Res Lett 4:1236–1240

    Article  CAS  Google Scholar 

  95. Zhao E, Zhao Z, Wang J, Yang C, Chen C, Gao L, Feng Q, HouW Gao M, Zhang Q (2012) Surface engineering of gold nanoparticles for in vitro siRNA delivery. Nanoscale 4:5102–5109

    Article  CAS  Google Scholar 

  96. Lee SK, Han MS, Asokan S, Tung CH (2011) Effective gene silencing by multilayered siRNA-coated gold nanoparticles. Small 7:364–370

    Article  CAS  Google Scholar 

  97. Schneider G, Decher G (2004) From functional core/shell nanoparticles prepared via layer-by-layer deposition to empty nanospheres. Nano Lett 4:1833–1839

    Article  CAS  Google Scholar 

  98. Labouta HI, Schneider M (2010) Tailor-made biofunctionalized nanoparticles using layer-by-layer technology. Int J Pharm 395:236–242

    Article  CAS  Google Scholar 

  99. Schneider G, Decher G (2008) Functional core/shell nanoparticles via layer-by-layer assembly investigation of the experimental parameters for controlling particle aggregation and for enhancing dispersion stability. Langmuir 24:1778–1789

    Article  CAS  Google Scholar 

  100. Mayya KS, Schoeler B, Caruso F (2003) Preparation and organization of nanoscale polyelectrolyte-coated gold nanoparticles. Adv Funct Mater 13:183–188

    Article  CAS  Google Scholar 

  101. Schneider G, Subr V, Ulbrich K, Decher G (2009) Multifunctional cytotoxic stealth nanoparticles. A model approach with potential for cancer therapy. Nano Lett 9:636–642

    Article  CAS  Google Scholar 

  102. Reum N, Fink-Straube C, Klein T, Hartmann RW, Lehr CM, Schneider M (2010) Multilayer coating of gold nanoparticles with drug-polymer coadsorbates. Langmuir 26:16901–16908

    Article  CAS  Google Scholar 

  103. Masereel B, Dinguizli M, Bouzin C, Moniotte N, Feron O, Gallez B, Vander Borght T, Michiels C, Lucas S (2011) Antibody immobilization on gold nanoparticles coated layer-by-layer with polyelectrolytes. J Nanopart Res 13:1573–1580

    Article  CAS  Google Scholar 

  104. Guo S, Huang Y, Jiang Q, Sun Y, Deng L, Liang Z, Du Q, Xing J, Zhao Y, Wang PC, Dong A, Liang X-J (2010) Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 4:5505–5511

    Article  CAS  Google Scholar 

  105. Schneider G, Decher G, Nerambourg N, Praho R, Werts MHV, Blanchard-Desce M (2006) Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes. Nano Lett 6:530–536

    Article  CAS  Google Scholar 

  106. Gabriel GJ, Madkour AE, Dabkowski JM, Nelson CF, Nusslein K, Tew GN (2008) Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties. Biomacromol 9:2980–2983

    Article  CAS  Google Scholar 

  107. Ilker MF, Nuesslein K, Tew GN, Coughlin EB (2004) Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J Am Chem Soc 126:15870–15875

    Article  CAS  Google Scholar 

  108. Sakai N, Futaki S, Matile S (2006) Anion hopping of (and on) functional oligoarginines: from chloroform to cells. Soft Matter 2:636–641

    Article  CAS  Google Scholar 

  109. Kolonko EM, Pontrello JK, Mangold SL, Kiessling LL (2009) General synthetic route to cell-permeable block copolymers via ROMP. J Am Chem Soc 131:7327–7333

    Article  CAS  Google Scholar 

  110. Hennig A, Gabriel GJ, Tew GN, Matile S (2008) Stimuli- responsive polyguanidino-oxanorbornene membrane transporters as multicomponent sensors in complex matrices. J Am Chem Soc 130:10338–10344

    Article  CAS  Google Scholar 

  111. Som A, Reuter A, Tew GN (2012) Protein transduction domain mimics: the role of aromatic functionality. Angew Chem Int Ed 51:980–983

    Article  CAS  Google Scholar 

  112. Baruah B, Gabriel GJ, Akbashev MJ, Booher ME (2013) Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction. Langmuir 29:4225–4234

    Article  CAS  Google Scholar 

  113. Murugadoss A, Chattopadhyay A (2008) Surface area controlled differential catalytic activities of one-dimensional chain-like arrays of gold nanoparticles. J Phys Chem C 112:11265–11271

    Article  CAS  Google Scholar 

  114. Goia DV (2004) Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions. J Mater Chem 14:451–458

    Article  CAS  Google Scholar 

  115. Medina-Ramirez I, Bashir S, Luo Z, Liu JL (2009) Green synthesis and characterization of polymer-stabilized silver nanoparticles. Colloids Surf B 73:185–191

    Article  CAS  Google Scholar 

  116. Michna A, Adamczyk Z, Owieja M, Bielaska E (2011) Kinetics of silver nanoparticle deposition onto poly(ethylene imine) modified mica determined by AFM and SEM measurements. Colloids Surf A 377:261–268

    Article  CAS  Google Scholar 

  117. Yap FL, Thoniyot P, Krishnan S, Krishnamoorthy S (2012) Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers. ACS Nano 6:2056–2070

    Article  CAS  Google Scholar 

  118. Kim YK, Han SW, Min DH (2012) Graphene oxide sheath on Ag nanoparticle/graphene hybrid films as an antioxidative coating and enhancer of surface-enhanced raman scattering. ACS Appl Mater Interfaces 4:6545–6551

    Article  CAS  Google Scholar 

  119. Stamplecoskie KG, Scaiano JC, Tiwari VS, Anis H (2011) Optimal size of silver nanoparticles for surface-enhanced raman spectroscopy. J Phys Chem C 115:1403–1409

    Article  CAS  Google Scholar 

  120. Mahato M, Pal P, Tah B, Ghosh M, Talapatra GB (2011) Study of silver nanoparticle-hemoglobin interaction and composite formation. Colloids Surf B 88:141–149

    Article  CAS  Google Scholar 

  121. Gole A, Orendorff CJ, Murphy CJ (2004) Immobilization of gold nanorods onto acid-terminated self-assembled monolayers via electrostatic interactions. Langmuir 20:7117–7122

    Article  CAS  Google Scholar 

  122. Yu DG, Lin WC, Lin CH, Chang LM, Yang MC (2007) An in situ reduction method for preparing silver/poly(vinyl alcohol) nanocomposite as surface-enhanced Raman scattering (SERS)-active substrates. Mater Chem Phys 101:93–98

    Article  CAS  Google Scholar 

  123. Porel S, Singh S, Harsha SS, Rao DN, Radhakrishnan TR (2005) Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting. Chem Mater 17:9–12

    Article  CAS  Google Scholar 

  124. Manna A, Imae T, Iida M, Hisamatsu N (2001) Formation of silver nanoparticles from a N-Hexadecylethylenediamine silver nitrate complex. Langmuir 17:6000–6004

    Article  CAS  Google Scholar 

  125. Shin HS, Yang HJ, Kim SB, Lee MS (2004) Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in gamma-irradiated silver nitrate solution. J Colloid Interface Sci 274:89–94

    Article  CAS  Google Scholar 

  126. Liu YC, Chuang TC (2003) Synthesis and characterization of gold/polypyrrole core-shell nanocomposites and elemental gold nanoparticles based on the gold-containing nanocomplexes prepared by electrochemical methods in aqueous solutions. J Phys Chem B 107:12383–12386

    Article  CAS  Google Scholar 

  127. Khanna PK, Singh N, Kulkarni D, Deshmukh S, Charan S, Adhyapak PV (2007) Water based simple synthesis of re-dispersible silver nano-particles. Mater Lett 61:3366–3370

    Article  CAS  Google Scholar 

  128. Ershov BG, Henglein A (1998) Time-resolved investigation of early processes in the reduction of Ag+ on polyacrylate in aqueous solution. J Phys Chem B 102:10667–10671

    Article  CAS  Google Scholar 

  129. García-Serrano J, Herrera AM, Ocampo-Fernández M (2011) Synthesis of Ag particles using an ion-exchange polymer with phosphonic acid groups. Mater Sci Forum 691:113–118

    Article  CAS  Google Scholar 

  130. Hebeish A, El-Shafei A, Sharaf S, Zaghloul S (2011) Novel precursors for green synthesis and application of silver nanoparticles in the realm of cotton finishing. Carbohyd Polym 84:605–613

    Article  CAS  Google Scholar 

  131. Maity D, Kanti Bain M, Bhowmick B, Sarkar J, Saha S, Acharya K, Chakraborty M, Chattopadhyay D (2011) In situ synthesis, characterization, and antimicrobial activity of silver nanoparticles using water soluble polymer. J Appl Polym Sci 122:2189–2196

    Article  CAS  Google Scholar 

  132. Norris CB, Joseph PR, Mackiewicz MR, Reed SM (2010) Minimizing formaldehyde use in the synthesis of gold-silver core-shell nanoparticles. Chem Mater 22:3637–3645

    Article  CAS  Google Scholar 

  133. Kundu S, Wang K, Liang H (2009) Size-selective synthesis and catalytic application of polyelectrolyte encapsulated gold nanoparticles using microwave irradiation. J Phys Chem C 113:5157–5163

    Article  CAS  Google Scholar 

  134. Luo Y (2007) Size-controlled preparation of polyelectrolyte-protected gold nanoparticles by natural sunlight radiation. Mater Lett 61:2164–2166

    Article  CAS  Google Scholar 

  135. Han DH, Pan C (2008) Synthesis and characterization of water-soluble gold nanoparticles stabilized by comb-shaped copolymers. J Polym Sci A Poly Chem 46:341–352

    Article  CAS  Google Scholar 

  136. Kim JH, Lee TR (2004) Thermo- and pH-responsive hydrogel-coated gold nanoparticles. Chem Mater 16:3647–3651

    Article  CAS  Google Scholar 

  137. Spatz JP, Roescher A, Möller M (1996) Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide) films-size and interparticle distance control in monoparticulate films. Adv Mater 8:337–340

    Article  CAS  Google Scholar 

  138. Spatz JP, Mössmer S, Hartmann C, Möller M, Herzog T, Krieger M, Boyen HG, Ziemann P, Kabius B (2000) Ordered deposition of inorganic clusters from micellar block copolymer films. Langmuir 16:407–415

    Article  CAS  Google Scholar 

  139. Kang Y, Taton TA (2005) Controlling shell thickness in core-shell gold nanoparticles via surface-templated adsorption of block-copolymer surfactants. Macromolecules 38:6115–6121

    Article  CAS  Google Scholar 

  140. Zubarev ER, Xu J, Sayyad A, Gibson JD (2006) Amphiphilic gold nanoparticles with V-shaped arms. J Am Chem Soc 128:4958–4959

    Article  CAS  Google Scholar 

  141. Djalali R, Li SY, Schmidt M (2002) Amphipolar core-shell cylindrical brushes as templates for the formation of gold clusters and nanowires. Macromolecules 35:4282–4288

    Article  CAS  Google Scholar 

  142. Dockendorff J, Gauthier M, Mourran A, Möller M (2008) Arborescent amphiphilic copolymers as templates for the preparation of gold nanoparticles. Macromolecules 41:6621–6623

    Article  CAS  Google Scholar 

  143. Zheng P, Jiang X, Zhang X, Zhang W, Shi L (2006) Formation of gold@polymer core-shell particles and gold particle clusters on a template of thermoresponsive and pH-responsive coordination triblock copolymer. Langmuir 22:9393–9396

    Article  CAS  Google Scholar 

  144. Yoo C, Seo D, Chung BH, Chung IS, Song H (2009) A facile one-pot synthesis of hydroxyl-functionalized gold polyhedrons by a surface regulating copolymer. Chem Mater 21:939–944

    Article  CAS  Google Scholar 

  145. Watson KJ, Zhu J, Nguyen ST, Mirkin CA (1999) Hybrid nanoparticles with block copolymer shell structures. J Am Chem Soc 121:462–463

    Article  CAS  Google Scholar 

  146. Kang Y, Erickson KJ, Taton TA (2005) Plasmonic nanoparticle chains via a morphological, sphere-to-string transition. J Am Chem Soc 127:13800–13801

    Article  CAS  Google Scholar 

  147. Huang HY, Remsen EE, Kowalewski T, Wooley KL (1999) Nanocages derived from shell cross-linked micelle templates. J Am Chem Soc 121:3805–3806

    Article  CAS  Google Scholar 

  148. Shen Z, Duan H, Frey H (2007) Water-soluble fluorescent Ag nanoclusters obtained from multiarm star poly (acrylic acid) as “molecular hydrogel” templates. Adv Mater 19:349–352

    Article  CAS  Google Scholar 

  149. Díez I, Pusa M, Kulmala S, Jiang H, Walther A, Goldmann AS, Müller AHE, Ikkala O, Ras RHA (2009) Color tunability and electrochemiluminescence of silver nanoclusters. Angew Chem Int Ed 48:2122–2125

    Article  CAS  Google Scholar 

  150. Shang L, Dong S (2008) Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem Commun (9):1088–1090

    Google Scholar 

  151. Xu H, Suslick KS (2010) Sonochemical synthesis of highly fluorescent Ag nanoclusters. Nano ACS 4:3209–3214

    Article  CAS  Google Scholar 

  152. Díez I, Hahn H, Ikkala O, Börner HG, Ras RA (2010) Controlled growth of silver nanoparticle arrays guided by a self-assembled polymer-peptide conjugate. Soft Matter 6:3160–3162

    Article  CAS  Google Scholar 

  153. Díez I, Jiang H, Ras RHA (2010) Enhanced emission of silver nanoclusters through quantitative phase transfer. ChemPhysChem 11:3100–3104

    Article  CAS  Google Scholar 

  154. Angelescu DG, Vasilescu M, Somoghi R, Donescu D, Teodorescu VS (2010) Kinetics and optical properties of the silver nanoparticles in aqueous L64 block copolymer solutions. Colloids Surf A 366:155–162

    Article  CAS  Google Scholar 

  155. Wu W, Mitra N, Yan ECY, Zhou S (2010) Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH. ACS Nano 4:4831–4839

    Article  CAS  Google Scholar 

  156. Wu W, Shen J, Banerjee P, Zhou S (2010) Core-shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials 31:7555–7566

    Article  CAS  Google Scholar 

  157. Boyer C, Bulmus V, Davis TP, Ladmiral V, Liu J, Perrier S (2009) Bioapplications of RAFT polymerization. Chem Rev 109:5402–5436

    Article  CAS  Google Scholar 

  158. Boyer C, Stenzel MH, Davis TP (2011) Building nanostructures using RAFT polymerization. J Polym Sci Part A Polym Chem 49:551–595

    Article  CAS  Google Scholar 

  159. Blanazs A, Ryan AJ, Armes SP (2012) Predictive phase diagrams for RAFT aqueous dispersion polymerization: effect of block copolymer composition, molecular weight, and copolymer concentration. Macromolecules 45:5099–5107

    Article  CAS  Google Scholar 

  160. Bleach R, Karagoz B, Prakash SM, Davis TP, Boyer C (2014) In situ formation of polymer-gold composite nanoparticles with tunable morphologies. ACS Macro Lett 3:591–596

    Article  CAS  Google Scholar 

  161. Rahme K, Vicendo P, Ayela C, Gaillard C, Payré B, Mingotaud C, Gauffre F (2009) A simple protocol to stabilize gold nanoparticles using amphiphilic block copolymers: stability studies and viable cellular uptake. Chemistry 15:11151–11159

    Article  CAS  Google Scholar 

  162. Chen H, Zou H, Paholak HJ, Ito M, Qian W, Chec Y, Sun D (2014) Thiol-reactive amphiphilic block copolymer for coating gold nanoparticles with neutral and functionable surfaces. Polym Chem 5:2768–2773

    Article  CAS  Google Scholar 

  163. Wu W, Zhou T, Zhou S (2009) Tunable photoluminescence of Ag nanocrystals in multiple-sensitive hybrid microgels. Chem Mater 21:2851–2861

    Article  CAS  Google Scholar 

  164. Zhang J, Xu S, Kumacheva E (2005) Photogeneration of fluorescent silver nanoclusters in polymer microgels. Adv Mater 17:2336–2340

    Article  CAS  Google Scholar 

  165. Oh M, Mirkin CA (2005) Chemically tailorable colloidal particles from infinite coordination polymers. Nature 438:651–654

    Article  CAS  Google Scholar 

  166. Lu X, Cheng H, Huang P, Yang L, Yu P, Mao L (2013) Hybridization of bioelectrochemically functional infinite coordination polymer nanoparticles with carbon nanotubes for highly sensitive and selective in vivo electrochemical monitoring. Anal Chem 85:4007–4013

    Article  CAS  Google Scholar 

  167. Ballesteros-Rivas M, Ota A, Reinheimer E, Prosvirin A, Valdes-Martinez J, Dunbar KR (2011) Highly conducting coordination polymers based on infinite M(4,4′-bpy) chains flanked by regular stacks of non-integer TCNQ radicals. Angew Chem Int Ed 50:9703–9707

    Article  CAS  Google Scholar 

  168. Zhang L, Gao X, Yang L, Yu P, Mao L (2013) Photodecomposition of ferrocenedicarboxylic acid in methanol to form an electroactive infinite coordination polymer and its application in bioelectrochemistry. ACS Appl Mater Interface 5:8120–8124

    Article  CAS  Google Scholar 

  169. Bae YS, Farha OK, Spokoyny AM, Mirkin CA, Hupp JT, Snurr RQ (2008) Carborane-based metal-organic frameworks as highly selective sorbents for CO2 over methane. Chem Commun (35):4135–4137

    Google Scholar 

  170. Li Z, Zeng HC (2013) Surface and bulk integrations of single-layered Au or Ag nanoparticles onto designated crystal planes 110 or 100 of ZIF-8. Chem Mater 25:1761–1768

    Article  CAS  Google Scholar 

  171. Lu W, Cao X, Tao L, Ge J, Dong J, Qian W (2014) A novel label-free amperometric immunosensor for carcinoembryonic antigen based on Ag nanoparticle decorated infinite coordination. Biosens Bioelectron 57:219–225

    Article  CAS  Google Scholar 

  172. Li H, Zhai J, Sun X (2011) Electrostatic-assembly-driven formation of supramolecular rhombus microparticles and their application for fluorescent nucleic acid detection. PLoS ONE 6:e18958

    Article  CAS  Google Scholar 

  173. Navaladian S, Viswanathan B, Varadarajan TK, Viswananth RP (2008) Microwave-assisted rapid synthesis of anisotropic Ag nanoparticles by solid state transformation. Nanotechnology 19:045603

    Article  CAS  Google Scholar 

  174. Khan MAM, Kumar S, Ahamed M, Alrokayan SA, Alsalhi MS (2011) Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res Lett 6:434–441

    Article  CAS  Google Scholar 

  175. Mendoza-Reséndez R, Núñez NO, Barriga-Castro ED, Luna C (2013) Synthesis of metallic silver nanoparticles and silver organometallic nanodisks mediated by extracts of Capsicum annuum var aviculare (piquin) fruits. RSC Adv 3:20765–20771

    Article  CAS  Google Scholar 

  176. Zhang XM, Quan ZW, Yang J, Yang PP, Lian HZ, Lin J (2008) Solvothermal synthesis of well-dispersed MF2 (M = Ca, Sr, Ba) nanocrystals and their optical properties. Nanotechnology 19:075603

    Article  CAS  Google Scholar 

  177. Stejskal J, Sapurina I, Trchova M, Konyushenko EN, Holler P (2006) The genesis of polyaniline nanotubes. Polymer 47:8253–8262

    Article  CAS  Google Scholar 

  178. Li L, Weng J (2010) Enzymatic synthesis of gold nanoflowers with trypsin. Nanotechnology 21:305603

    Article  CAS  Google Scholar 

  179. Gai S, Yang G, Li X, Li C, Dai Y, He F, Yang P (2012) Facile synthesis and up-conversion properties of monodisperse rare earth fluoride nanocrystals. Dalton Trans 41:11716–11724

    Article  CAS  Google Scholar 

  180. Beegum MF, Kumari LU, Harikumar B, Varghese HT, Panicker CY (2008) Vibrational spectroscopic studies of 4-cyanobenzoic acid. Rasayan J Chem 2:258–262

    Google Scholar 

  181. Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, dna-sensors, and enzyme biosensors. Electroanalysis 15:913–947

    Article  CAS  Google Scholar 

  182. Hermes S, Schroter MK, Schmid R, Khodeir L, Muhler M, Tissler A, Fischer RW, Fischer RA (2005) Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew Chem Int Ed 44:6237–6241

    Article  CAS  Google Scholar 

  183. Ishida T, Nagaoka M, Akita T, Haruta M (2008) Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols. Chem Eur J 14:8456–8460

    Article  CAS  Google Scholar 

  184. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665

    Article  CAS  Google Scholar 

  185. Alvarez-Paino M, Marcelo G, Munoz-Bonilla A, Fernandez-Garcia M (2013) Catecholic chemistry to obtain recyclable and reusable hybrid polymeric particles as catalytic systems. Macromolecules 46:2951–2962

    Article  CAS  Google Scholar 

  186. He J, Liu Y, Hood TC, Zhang P, Gong J, Nie Z (2013) Asymmetric organic/metal(oxide) hybrid nanoparticles: synthesis and applications. Nanoscale 5:5151–5166

    Article  CAS  Google Scholar 

  187. Song J, Zhou J, Duan H (2012) Self-Assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. J Am Chem Soc 134:13458–13469

    Article  CAS  Google Scholar 

  188. Kao J, Thorkelsson K, Bai P, Rancatore BJ, Xu T (2013) Toward functional nanocomposites: Taking the best of nanoparticles, polymers, and small molecules. Chem Soc Rev 42:2654–2678

    Article  CAS  Google Scholar 

  189. Hu J, Wu T, Zhang G, Liu S (2012) Effcient synthesis of single gold nanoparticle hybrid amphiphilic triblock copolymers and their controlled self-assembly. J Am Chem Soc 134:7624–7627

    Article  CAS  Google Scholar 

  190. Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP (2013) Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 10:831–847

    Article  CAS  Google Scholar 

  191. Mercato LL, Gonzalez E, Abbasi AZ, Parak WJ, Puntes V (2011) Synthesis and evaluation of gold nanoparticle-modified polyelectrolyte capsules under microwave irradiation for remotely controlled release for cargo. J Mater Chem 21:11468–11471

    Article  CAS  Google Scholar 

  192. Hickey RJ, Haynes AS, Kikkawa JM, Park SJ (2011) Controlling the self-assembly structure of magnetic nanoparticles and amphiphilic block-copolymers: From micelles to vesicles. J Am Chem Soc 133:1517–1525

    Article  CAS  Google Scholar 

  193. Tian J, Yuan L, Zhang M, Zheng F, Xiong Q, Zhao H (2012) Interface-directed self-assembly of gold nanoparticles and fabrication of hybrid hollow capsules by interfacial cross-linking polymerization. Langmuir 28:9365–9371

    Article  CAS  Google Scholar 

  194. Ochs M, Carregal-Romero S, Rejman J, Braeckmans K, De Smedt SC, Parak WJ (2013) Light-addressable capsules as caged compound matrix for controlled triggering of cytosolic reactions. Angew Chem Int Ed 52:695–699

    Article  CAS  Google Scholar 

  195. Kreft O, Skirtach AG, Sukhorukov GB, Möhwald H (2007) Remote control of bioreactions in multicompartment capsules. Adv Mater 19:3142–3145

    Article  CAS  Google Scholar 

  196. Kozlovskaya V, Kharlampieva E, Chang S, Muhlbauer R, Tsukruk VV (2009) pH-Responsive layered hydrogel microcapsules as gold nanoreactors. Chem Mater 21:2158–2167

    Article  CAS  Google Scholar 

  197. Angelatos AS, Radt B, Caruso F (2005) Light-responsive polyelectrolyte/gold nanoparticle microcapsules. J Phys Chem B 109:3071–3076

    Article  CAS  Google Scholar 

  198. De Geest BG, Skirtach AG, De Beer TRM, Sukhorukov GB, Bracke L, Baeyens WRG, Demeester J, De Smedt SC (2007) Stimuli-responsive multilayered hybrid nanoparticle/polyelectrolyte capsules. Macromol Rapid Commun 28:88–95

    Article  CAS  Google Scholar 

  199. Liu D, Jiang X, Yin J (2014) One-step interfacial thiol-ene photopolymerization for metal nanoparticle-decorated microcapsules (MNP@MCs). Langmuir 30:7213–7220

    Article  CAS  Google Scholar 

  200. McGilvray KL, Decan MR, Wang D, Scaiano JC (2006) Facile photochemical synthesis of unprotected aqueous gold nanoparticles. J Am Chem Soc 128:15980–15981

    Article  CAS  Google Scholar 

  201. Marin ML, McGilvray KL, Scaiano JC (2008) Photochemical strategies for the synthesis of gold nanoparticles from Au(III) and Au(I) using photoinduced free radical generation. J Am Chem Soc 130:16572–16584

    Article  CAS  Google Scholar 

  202. Liu DD, Yu B, Jiang XS, Yin J (2013) Responsive hybrid microcapsules by the one-step interfacial thiol-ene photopolymerization. Langmuir 29:5307–5314

    Article  CAS  Google Scholar 

  203. Song J, Cheng L, Liu A, Yin J, Kuang M, Duan H (2011) Plasmonic vesicles of amphiphilic gold nanocrystals: self-assembly and external-stimuli-triggered destruction. J Am Chem Soc 133:10760–10763

    Article  CAS  Google Scholar 

  204. Yu B, Jiang XS, Qin N, Yin J (2011) Thiol-ene photocrosslinked hybrid vesicles from co-assembly of POSS and poly(ether amine) (PEA). Chem Commun 47:12110–12112

    Article  CAS  Google Scholar 

  205. Galian RE, Guardia M, Pérez-Prieto J (2011) Size reduction of CdSe/ZnS core-shell quantum dots photosensitized by benzophenone: Where does the Cd(0) go? Langmuir 27:1942–1945

    Article  CAS  Google Scholar 

  206. Consuelo Cuquerella M, Pocoví-Martínez S, Pérez-Prieto J (2009) Photocatalytic coalescence of functionalized gold nanoparticles. Langmuir 26:1548–1550

    Article  CAS  Google Scholar 

  207. Wang R, Jiang XS, Yu B, Yin J (2011) Stimuli-responsive microgels formed by hyperbranched poly(ether amine) decorated with platinum nanoparticles. Soft Matter 7:8619–8627

    Article  CAS  Google Scholar 

  208. Xia B, He F, Li L (2013) Preparation of bimetallic nanoparticles using a facile green synthesis method and their application. Langmuir 29:4901–4907

    Article  CAS  Google Scholar 

  209. Astruc D, Boisselies E, Ornelas C (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110:1857–1959

    Article  CAS  Google Scholar 

  210. Sandar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present and future. Langmuir 25:13840–13851

    Article  CAS  Google Scholar 

  211. Boisselier E, Diallo AK, Salmon L, Ornelas C, Ruiz J, Astruc D (2010) Encapsulation and stabilization of gold nanoparticles with “click” polyethyleneglycol dendrimers. J Am Chem Soc 132:2729–2742

    Article  CAS  Google Scholar 

  212. Han HJ, Kannan RM, Wang S, Mao G, Kusanovic JP, Romero R (2010) Multifunctional dendrimer-templated antibody presentation on biosensor surfaces for improved biomarker detection. Adv Funct Mater 20:409–421

    Article  CAS  Google Scholar 

  213. Benters R, Niemeyer CM, Wöhrle D (2001) Dendrimer-activated solid supports for nucleic acid and protein microarrays. ChemBioChem 2:686–694

    Article  CAS  Google Scholar 

  214. Ajikumar PK, Ng JK, Tang YC, Lee JY, Stephanopoulos G, Too HP (2007) Carboxyl-terminated dendrimer-coated bioactive interface for protein microarray: high-sensitivity detection of antigen in complex biological samples. Langmuir 23:5670–5677

    Article  CAS  Google Scholar 

  215. Tomalia DA, Frechet JMJ (eds) (2001) Dendrimers and other dendritic polymers. Wiley, New York

    Google Scholar 

  216. Tomalia DA, Baker H, Dewald JR, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1986) Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules 19:2466–2468

    Article  CAS  Google Scholar 

  217. Tomalia DA, Naylor AM, Goddard WA III (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl 29:138–175

    Article  Google Scholar 

  218. Pan B, Cui D, Gao F, He R (2006) Growth of multi-amine terminated poly (amidoamine) dendrimers on the surface of carbon nanotubes. Nanotechnology 17:2483–2489

    Article  CAS  Google Scholar 

  219. Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications–reflections on the field. Adv Drug Deliv Rev 57:2106–2129

    Article  CAS  Google Scholar 

  220. Newkome GR, Shreiner CD (2010) Dendrimers derived from 1→3 branching motifs. Chem Rev 110:6338–6442

    Article  CAS  Google Scholar 

  221. Liu H, Sun K, Zhao J, Guo R, Shen M, Cao X, Zhang G, Shi X (2012) Dendrimer-mediated synthesis and shape evolution of gold-silver alloy nanoparticles. Colloid Surf A 405:22–29

    Article  CAS  Google Scholar 

  222. Yancey DF, Carino EV, Crooks RM (2010) Electrochemical synthesis and electrocatalytic properties of Au@Pt dendrimer-encapsulated nanoparticles. J Am Chem Soc 132:10988–10989

    Article  CAS  Google Scholar 

  223. Ornelas C, Méry D, Cloutet E, Ruiz J, Astruc D (2008) Cross olefin metathesis for the selective functionalization, ferrocenylation, and solubilization in water of olefin-terminated dendrimers, polymers, and gold nanoparticles and for a divergent dendrimer construction. J Am Chem Soc 130:1495–1506

    Article  CAS  Google Scholar 

  224. Astruc D (2012) Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology. Nat Chem 4:255–267

    Article  CAS  Google Scholar 

  225. Kaewtong C, Jiang G, Ponnapati R, Pulpoka B, Advincula R (2010) Redox nanoreactor dendrimer boxes: in situ hybrid gold nanoparticles via terthiophene and carbazole peripheral dendrimer oxidation. Soft Matter 6:5316–5319

    Article  CAS  Google Scholar 

  226. Esumi K (2003) Dendrimers for nanoparticle synthesis and dispersion stabilization. Top Curr Chem 227:31–52

    Article  CAS  Google Scholar 

  227. Esumi K, Isono R, Yoshimura T (2004) Preparation of PAMAM- and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Langmuir 20:237–243

    Article  CAS  Google Scholar 

  228. Balogh L, Valluzzi R, Laverdure KS, Gido SP, Hagnauer GL, Tomalia DA (1999) Formation of silver and gold dendrimer nanocomposites. J Nanopart Res 1:353–368

    Article  CAS  Google Scholar 

  229. Shan Y, Luo T, Peng C, Sehng R, Cao X, Cao H, Shen M, Guo R, Tomas H, Shi X (2012) Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials 33:3025–3035

    Article  CAS  Google Scholar 

  230. Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, Cao X, Zhang G, Shi X (2012) PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 33:1107–1119

    Article  CAS  Google Scholar 

  231. Hoffman LW, Andersson GG, Sharma A, Clarke SR, Voelcker NH (2011) New insights into the structure of PAMAM dendrimer/gold nanoparticle nanocomposites. Langmuir 27:6759–6767

    Article  CAS  Google Scholar 

  232. Namazi H, Fard AMP (2011) Preparation of gold nanoparticles in the presence of citric acid-based dendrimers containing periphery hydroxyl groups. Mater Chem Phys 129:189–194

    Article  CAS  Google Scholar 

  233. Jiang G, Wang L, Chen T, Yu H, Chen C (2006) Preparation of gold nanoparticles in the presence of poly (benzyl ether) alcohol dendrons. Mater Chem Phys 98:76–82

    Article  CAS  Google Scholar 

  234. Murugan E, Rangasamy R (2010) Synthesis, characterization, and heterogeneous catalysis of polymer-supported poly(propyleneimine) dendrimer stabilized gold nanoparticle catalyst. J Polym Sci A Polym Chem 48:2525–2532

    Article  CAS  Google Scholar 

  235. Astruc D, Liang L, Rapakousiou A, Ruiz J (2012) Click dendrimers and triazole-related aspects: catalysts, mechanism, synthesis, and functions A bridge between dendritic architectures and nanomaterials. Acc Chem Res 45:630–640

    Article  CAS  Google Scholar 

  236. Thompson D, Hermes JP, Quinn AJ, Mayor M (2012) Scanning the potential energy surface for synthesis of dendrimer-wrapped gold clusters: design rules for true single-molecule nanostructures. ACS Nano 6:3007–3017

    Article  CAS  Google Scholar 

  237. Cho TJ, Zangmeister RA, Mac-Cuspie RI, Patri AK, Hackley VA (2011) Newkome-type dendron stabilized gold nanoparticles: synthesis, reactivity, and stability. Chem Mater 23:2665–2676

    Article  CAS  Google Scholar 

  238. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190

    Article  CAS  Google Scholar 

  239. Kim YG, Oh SK, Crooks RM (2004) Preparation and characterization of 1-2 nm dendrimer-encapsulated gold nanoparticles having very narrow size-distributions. Chem Mater 16:167–172

    Article  CAS  Google Scholar 

  240. Grohn F, Bauer BJ, Akpalu YA, Jackson CL, Amis EJ (2000) Dendrimer templates for the formation of gold nanoclusters. Macromolecules 33:6042–6050

    Article  CAS  Google Scholar 

  241. Shen M, Shi X (2010) Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications. Nanoscale 2:1596–1610

    Article  CAS  Google Scholar 

  242. Shi X, Wang SH, Sun H, Baker JR Jr (2007) Improved biocompatibility of surface functionalized dendrimer entrapped gold nanoparticles. Soft Matter 3:71–74

    Article  CAS  Google Scholar 

  243. Scott RWJ, Datye AK, Crooks RM (2003) Bimetallic palladium-platinum dendrimer-encapsulated catalysts. J Am Chem Soc 125:3708–3709

    Article  CAS  Google Scholar 

  244. Chung YM, Rhee HK (2003) Partial hydrogenation of 1,3-cyclooctadiene using dendrimer-encapsulated Pd-Rh bimetallic nanoparticles. J Mol Catal A 206:291–298

    Article  CAS  Google Scholar 

  245. Scott RWJ, Wilson OM, Oh SK, Kenik EA, Crooks RM (2004) Bimetallic palladium-gold dendrimer-encapsulated catalysts. J Am Chem Soc 126:15583–15591

    Article  CAS  Google Scholar 

  246. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratioElectronic supplementary information (ESI) available: UV-VIS spectra of silver nanorods. Chem Commun 7:617–618

    Article  Google Scholar 

  247. Balogh L, Tomalia DA (1998) Poly(amidoamine) dendrimer-templated nanocomposites 1 synthesis of zerovalent copper nanoclusters. J Am Chem Soc 120:7355–7356

    Article  CAS  Google Scholar 

  248. Zhao M, Sun L, Crooks RM (1998) Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc 120:4877–4878

    Article  CAS  Google Scholar 

  249. Auten BJ, Hahn BP, Vijayaraghavan G, Stevenson KJ, Chandler BD (2008) Preparation and characterization of 3 nm magnetic NiAu nanoparticles. J Phys Chem C 112:5365–5372

    Article  CAS  Google Scholar 

  250. Guo R, Wang H, Peng C, Shen M, Pan M, Cao X, Zhang G, Shi X (2010) X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J Phys Chem C 114:50–56

    Article  CAS  Google Scholar 

  251. Pathak S, Singh AK, McElhanon JR, Dentiger PM (2004) Dendrimer-activated surfaces for high density and high activity protein chip applications. Langmuir 20:6075–6079

    Article  CAS  Google Scholar 

  252. Hong MY, Lee D, Kim HS (2005) Kinetic and equilibrium binding analysis of protein-ligand interactions at poly(amidoamine) dendrimer monolayers. Anal Chem 77:7326–7334

    Article  CAS  Google Scholar 

  253. Bolduc OR, Masson JF (2008) Monolayers of 3-mercaptopropyl-amino acid to reduce the nonspecific adsorption of serum proteins on the surface of biosensors. Langmuir 24:12085–12091

    Article  CAS  Google Scholar 

  254. Bolduc OR, Clouthier CM, Pelletier JN, Masson JF (2009) Peptide self-assembled monolayers for label-free and unamplified surface plasmon resonance biosensing in crude cell lysate. Anal Chem 81:6779–6788

    Article  CAS  Google Scholar 

  255. Uchida K, Otsuka H, Kaneko M, Kataoka K, Nagasaki Y (2005) A reactive poly(ethylene glycol) layer to achieve specific surface plasmon resonance sensing with a high S/N ratio: the substantial role of a short underbrushed PEG layer in minimizing nonspecific adsorption. Anal Chem 77:1075–1080

    Article  CAS  Google Scholar 

  256. Yam CM, Deluge M, Tang D, Kumar A, Cai C (2006) Preparation, characterization, resistance to protein adsorption, and specific avidin-biotin binding of poly (amidoamine) dendrimers functionalized with oligo (ethylene glycol) on gold. J Colloid Interface Sci 296:118–130

    Article  CAS  Google Scholar 

  257. Medina SH, El-Sayed MEH (2009) Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 109:3141–3157

    Article  CAS  Google Scholar 

  258. Landmark KJ, DiMaggio S, Ward J, Kelly C, Vogt S, Hong S, Kotlyar A, Myc A, Thomas TP, Penner-Hahn JE, Baker JR Jr, Banaszak Holl MM, Orr BG (2008) Synthesis, characterization, and in vitro testing of superparamagnetic iron oxide nanoparticles targeted using folic acid-conjugated dendrimers. ACS Nano 2:773–783

    Article  CAS  Google Scholar 

  259. Shi X, Wang SH, Swanson SD, Ge S, Cao Z, Van Antwerp ME, Landmark KJ, Baker JR Jr (2008) Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in vivo magnetic resonance imaging of tumors. Adv Mater 20:1671–1678

    Article  CAS  Google Scholar 

  260. Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, Gao F, Xi P, Ren Q, Cui D (2010) RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharmaceutics 7:94–104

    Article  CAS  Google Scholar 

  261. Abu-Reziq R, Alper H, Wang D, Post ML (2006) Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts. J Am Chem Soc 128:5279–5282

    Article  CAS  Google Scholar 

  262. Pan B, Cui D, Sheng Y, Ozkan C, Gao F, He R, Li Q, Xu P, Huang T (2007) Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res 67:8156–8163

    Article  CAS  Google Scholar 

  263. Frasconi M, Tortolini C, Botré F, Mazzei F (2010) Multifunctional Au nanoparticle dendrimer-based surface plasmon resonance biosensor and its application for improved insulin detection. Anal Chem 82:7335–7342

    Article  CAS  Google Scholar 

  264. Zhou XC, O’Shea SJ, Li S (2000) Amplified microgravimetric gene sensor using Au nanoparticle modified oligonucleotides. Chem Commun (11):953–954

    Google Scholar 

  265. Tompkins HG, McGahan WA (1999) spectroscopic ellipsometry and reflectometry: a user’s guide. Wiley, New York

    Google Scholar 

  266. Tokuhisa H, Zhao M, Baker LA, Phan VT, Dermody DL, Garcia ME, Peez RF, Crooks RM, Mayer TM (1998) Preparation and characterization of dendrimer monolayers and dendrimer-alkanethiol mixed monolayers adsorbed to gold. J Am Chem Soc 120:4492–4501

    Article  CAS  Google Scholar 

  267. Shi X, Lee I, Baker JR Jr (2008) Acetylation of dendrimer-entrapped gold and silver nanoparticles. J Mater Chem 18:586–593

    Article  CAS  Google Scholar 

  268. Laibinis PE, Whitesides GM, Allara DL, Tao YT, Parikh AN, Nuzzo RG (1991) Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. J Am Chem Soc 113:7152–7167

    Article  CAS  Google Scholar 

  269. Shi X, Ganser TR, Sun K, Balogh LP, Baker JR Jr (2006) Characterization of crystalline dendrimer-stabilized gold nanoparticles. Nanotechnology 17:1072–1078

    Article  CAS  Google Scholar 

  270. Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101:3706–3712

    Article  CAS  Google Scholar 

  271. Zheng J, Petty JT, Dickson RM (2003) High quantum yield blue emission from water-soluble Au8 nanodots. J Am Chem Soc 125:7780–7781

    Article  CAS  Google Scholar 

  272. Wang D, Imae T (2004) Fluorescence emission from dendrimers and its pH dependence. J Am Chem Soc 126:13204–13205

    Article  CAS  Google Scholar 

  273. Esumi K, Suzuki A, Yamahira A, Torigoe K (2000) Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver. Langmuir 16:2604–2608

    Article  CAS  Google Scholar 

  274. Esumi K, Suzuki A, Aihara N, Usui K, Torigoe K (1998) Preparation of gold colloids with UV irradiation using dendrimers as stabilizer. Langmuir 14:3157–3159

    Article  CAS  Google Scholar 

  275. Hayakawa K, Yoshimura T, Esumi K (2003) Preparation of gold-dendrimer nanocomposites by laser irradiation and their catalytic reduction of 4-nitrophenol. Langmuir 19:5517–5521

    Article  CAS  Google Scholar 

  276. Lesniak W, Bielinska AU, Sun K, Janczak KW, Shi X, Baker JR Jr, Balogh LP (2005) Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett 5:2123–2130

    Article  CAS  Google Scholar 

  277. Shi X, Sun K, Baker JR Jr (2008) Spontaneous formation of functionalized dendrimer-stabilized gold nanoparticles. J Phys Chem C 112:8251–8258

    Article  CAS  Google Scholar 

  278. Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR Jr, Banaszak Holl MM (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 14:107–115

    Article  CAS  Google Scholar 

  279. Thomas TP, Majoros IJ, Kotlyar A, Kukowska-Latallo JF, Bielinska A, Myc A, Baker JR Jr (2005) Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J Med Chem 48:3729–3735

    Article  CAS  Google Scholar 

  280. Shi X, Wang SH, Van Antwerp ME, Chen X, Baker JR Jr (2009) Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles. Analyst 134:1373–1379

    Article  CAS  Google Scholar 

  281. Wilson OM, Scott RWJ, Garcia-Martinez JC, Crooks RM (2005) Synthesis, characterization, and structure-selective extraction of 1-3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles. J Am Chem Soc 127:1015–1024

    Article  CAS  Google Scholar 

  282. Garcia-Martinez JC, Crooks RM (2004) Extraction of Au nanoparticles having narrow size distributions from within dendrimer templates. J Am Chem Soc 126:16170–16178

    Article  CAS  Google Scholar 

  283. Garcia-Martinez JC, Scott RWJ, Crooks RM (2003) Extraction of monodisperse palladium nanoparticles from dendrimer templates. J Am Chem Soc 125:11190–11191

    Article  CAS  Google Scholar 

  284. Hodak JH, Henglein A, Giersig M, Hartland GV (2000) Laser-induced inter-diffusion in AuAg core-shell nanoparticles. J Phys Chem B 104:11708–11718

    Article  CAS  Google Scholar 

  285. Mallin MP, Murphy CJ (2002) Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles. Nano Lett 2:1235–1237

    Article  CAS  Google Scholar 

  286. Gonzalez-Rodriguez B, Iglesias-Sanchez A, Giersig M, Liz-Marzan LM (2004) AuAg bimetallic nanoparticles: formation, silica-coating and selective etching. Faraday Discuss 125:133–144

    Article  Google Scholar 

  287. Mandal S, Selvakannan PR, Pasricha R, Sastry M (2003) Keggin ions as UV-switchable reducing agents in the synthesis of Au core-Ag shell nanoparticles. J Am Chem Soc 125:8440–8441

    Article  CAS  Google Scholar 

  288. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  289. Henglein A, Mulvaney P, Linnert T (1991) Chemistry of Agn aggregates in aqueous solution: non-metallic oligomeric clusters and metallic particles. Faraday Discuss 92:31–44

    Article  CAS  Google Scholar 

  290. Papavassiliou GC (1976) Surface plasmons in small Au-Ag particles. J Phys F 6:L103–L105

    Article  CAS  Google Scholar 

  291. Scott RW, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692–704

    Article  CAS  Google Scholar 

  292. Xia C, Fan X, Locklin J, Advincula RC, Gies A, Nonidez W (2004) Characterization, supramolecular assembly, and nanostructures of thiophene dendrimers. J Am Chem Soc 126:8735–8743

    Article  CAS  Google Scholar 

  293. Deng S, Locklin J, Patton D, Baba A, Advincula RC (2005) Thiophene dendron jacketed poly(amidoamine) dendrimers: nanoparticle synthesis and adsorption on graphite. J Am Chem Soc 127:1744–1751

    Article  CAS  Google Scholar 

  294. Shi X, Thomas TP, Myc LA, Kotlyar A, Baker JR Jr (2007) Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys Chem Chem Phys 9:5712–5720

    Article  CAS  Google Scholar 

  295. Li Z, Huang P, Lin J, He R, Liu B, Zhang X, Yang S, Xi P, Zhang X, Ren Q, Cui D (2010) Arginine-glycine-aspartic acid-conjugated dendrimer-modified quantum dots for targeting and imaging melanoma. J Nanosci Nanotechnol 10:1–9

    Article  CAS  Google Scholar 

  296. Kobayashi M, Maskawa T (1973) CP-Violation in the renormalizable theory of weak interaction. Progress Theoret Phys 49:652–657

    Article  CAS  Google Scholar 

  297. Melde BJ, Johnson BJ (2010) Mesoporous materials in sensing: morphology and functionality at the meso-interface. Anal Bioanal Chem 398:1565–1573

    Article  CAS  Google Scholar 

  298. De Jong MR, Huskens J, Reinhoudt DN (2001) Influencing the binding selectivity of self-assembled cyclodextrin monolayers on gold through their architecture. Chem Eur J 7:4164–4170

    Article  Google Scholar 

  299. Nijhuis CA, Huskens J, Reinhoudt DN (2004) Binding control and stoichiometry of ferrocenyl dendrimers at a molecular printboard. J Am Chem Soc 126:12266–12267

    Article  CAS  Google Scholar 

  300. Crespo-Biel O, Dordi B, Reinhoudt DN, Huskens J (2005) Supramolecular layer-by-layer assembly: alternating adsorptions of guest- and host-functionalized molecules and particles using multivalent supramolecular interactions. J Am Chem Soc 127:7594–7600

    Article  CAS  Google Scholar 

  301. Archut A, Azzellini GC, Balzani V, DeCola L, Vogtie F (1998) Toward photoswitchable dendritic hosts interaction between azobenzene-functionalized dendrimers and eosin. J Am Chem Soc 720:12187–12191

    Article  Google Scholar 

  302. Okano T, Yamada N, Sakai H, Sakurai Y (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 27:1243–1251

    Article  CAS  Google Scholar 

  303. Sun TL, Wang GJ, Feng L, Liu BQ, Ma YM, Jiang L, Zhu DB (2004) Reversible switching between superhydrophilicity and superhydrophobicity. Angew Chem Int Ed 43:357–360

    Article  CAS  Google Scholar 

  304. You YZ, Hong CY, Pan CY, Wang PH (2004) Synthesis of a dendritic core-shell nanostructure with a temperature-sensitive shell. Adv Mater 16:1953–1957

    Article  CAS  Google Scholar 

  305. Raveendran P, Goyal A, Blatchford MA, Wallen SL (2006) Stabilization and growth of silver nanocrystals in dendritic polyol dispersions. Mater Lett 60:897–900

    Article  CAS  Google Scholar 

  306. Wang R, Yang J, Zheng Z, Carducci MD, Jiao J, Seraphin S (2001) Dendron-controlled nucleation and growth of gold nanoparticles. Angew Chem Int Ed 40:549–552

    Article  CAS  Google Scholar 

  307. Wei Y, Jana NR, Tan SJ, Ying JY (2009) Surface coating directed cellular delivery of TAT-functionalized quantum dots. Bioconjug Chem 20:1752–1758

    Article  CAS  Google Scholar 

  308. Wartlick H, Spankuch-Schmitt B, Strebhardt K, Kreuter J, Langer K (2004) Tumour cell delivery of antisense oligonucleotides by human serum albumin nanoparticles. J Controlled Release 96:483–495

    Article  CAS  Google Scholar 

  309. Selvan ST, Patra PK, Ang CY, Ying JY (2007) Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem Int Ed Engl 46:2448–2452

    Article  CAS  Google Scholar 

  310. Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U (2005) Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett 5:113–117

    Article  CAS  Google Scholar 

  311. Saha A, Basiruddin SK, Sarkar R, Pradhan N, Jana NR (2009) Functionalized plasmonic–fluorescent nanoparticles for imaging and detection. J Phys Chem C 113:18492–18498

    Article  CAS  Google Scholar 

  312. Earhart C, Jana NR, Erathodiyil N, Ying JY (2008) Synthesis of carbohydrate-conjugated nanoparticles and quantum dots. Langmuir 24:6215–6219

    Article  CAS  Google Scholar 

  313. Baker JR Jr (2009) Dendrimer-based nanoparticles for cancer therapy. Hematology Am Soc Hematol Educ Program 2009(1):708–719

    Google Scholar 

  314. Roberts JC, Bhalgat MK, Zera RT (1996) Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst (TM) dendrimers. J Biomed Mater Res A 30:53–65

    Article  CAS  Google Scholar 

  315. Heiden TCK, Dengler E, Kao WJ, Heideman W, Peterson RE (2007) Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol Appl Pharmacol 225:70–79

    Article  CAS  Google Scholar 

  316. Malik N, Evagorou EG, Duncan R (1999) Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 10:767–776

    Article  CAS  Google Scholar 

  317. Choi SK, Thomas T, Li M, Kotlyar A, Desai A, Baker JR Jr (2010) Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAM dendrimer nanoconjugate. Chem Commun 46:2632–2634

    Article  CAS  Google Scholar 

  318. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R (2000) Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of I-125-labelled polyamidoamine dendrimers in vivo. J Control Release 65:133–148

    Article  CAS  Google Scholar 

  319. Agashe HB, Dutta T, Garg M, Jain NK (2006) Investigations on the toxicological profile of functionalized fifth-generation poly(propylene imine) dendrimer. J Pharm Pharmacol 58:1491–1498

    Article  CAS  Google Scholar 

  320. Plank C, Mechtler K, Szoka FC, Wagner E (1996) Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum Gene Ther 7:1437–1446

    Article  CAS  Google Scholar 

  321. Wilbur DS, Pathare PM, Hamlin DK, Buhler KR, Vessella RL (1998) Biotin reagents for antibody pretargeting. 3. Synthesis, radioiodination, and evaluation of biotinylated starburst dendrimers. Bioconjug Chem 9:813–825

    Article  CAS  Google Scholar 

  322. De Jesus OLP, Ihre HR, Gagne L, Frechet JMJ, Szoka FC (2002) Polyester dendritic systems for drug delivery applications: In vitro and in vivo evaluation. Bioconjug Chem 13:453–461

    Article  CAS  Google Scholar 

  323. Neerman MF, Zhang W, Parrish AR, Simanek EE (2004) In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. Int J Pharm 281:129–132

    Article  CAS  Google Scholar 

  324. Chen HT, Neerman MF, Parrish AR, Simanek EE (2004) Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc 126:10044–10048

    Article  CAS  Google Scholar 

  325. Kobayashi H, Brechbiel MW (2005) Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev 57:2271–2286

    Article  CAS  Google Scholar 

  326. Sato N, Kobayashi H, Hiraga A, Saga T, Togashi K, Konishi J, Brechbiel MW (2001) Pharmacokinetics and enhancement patterns of macromolecular MR contrast agents with various sizes of polyamidoamine dendrimer cores. Magn Reson Med 46:1169–1173

    Article  CAS  Google Scholar 

  327. Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Ishimori T, Akita Y, Mamede MH, Konishi J, Togashi K, Brechbiel MW (2001) Novel liver macromolecular MR contrast agents with a polypropyleneimine diaminobutyl dendrimer core: comparison to the vascular MR contrast agent with the polyamidoamine dendrimer core. Magn Reson Med 46:795–802

    Article  CAS  Google Scholar 

  328. Al-Jamal KT, Ruenraroengsak P, Hartell N, Florence AT (2006) An intrinsically fluorescent dendrimer as a nanoprobe of cell transport. J Drug Target 14:405–412

    Article  CAS  Google Scholar 

  329. Yu J, Zhao H, Ye L, Yang H, Ku S, Yang N, Xiao N (2009) Effect of surface functionality of magnetic silica nanoparticles on the cellular uptake by glioma cells in vitro. J Mater Chem 19:1265–1270

    Article  CAS  Google Scholar 

  330. Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ, West JL (2006) Metal nanoshells. Ann Biomed Eng 34:15–22

    Article  Google Scholar 

  331. Shukla R, Hill E, Shi X, Kim J, Muniz MC, Sun K, Baker JR Jr (2008) Tumor microvasculature targeting with dendrimer-entrapped gold nanoparticles. Soft Matter 4:2160–2163

    Article  CAS  Google Scholar 

  332. Shi X, Wang SH, Meshinchi S, Van Antwerp ME, Bi X, Lee I, Baker JR Jr (2007) Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 3:1245–1252

    Article  CAS  Google Scholar 

  333. Jia L, Lv LP, Xu JP, Ji J (2011) Phosphorylcholine functionalized dendrimers for the formation of highly stable and reactive gold nanoparticles and their glucose conjugation for biosensing. J Nanopart Res 13:4075–4083

    Article  CAS  Google Scholar 

  334. Haba Y, Kojima C, Harada A, Ura T, Horinaka H, Kono K (2007) Preparation of poly(ethylene glycol)-modified poly(amido amine) dendrimers encapsulating gold nanoparticles and their heat-generating ability. Langmuir 23:5243–5246

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignác Capek .

Glossary

Boltorn polyols

and their derivatives are hyperbranched polymers which are widely used in material and medicinal chemistry to prepare polymers with improved mechanical properties, to modify the properties of membranes, and to control drug delivery. A characteristic example of such hyperbranched molecules, which can now be produced on an industrial scale, belongs to the aliphatic polyester family bearing the commercial name Boltorn®. The hyperbranched Boltorn polymers can be aliphatic polyesters constructed with ethoxylated pentaerythritol as central cores and 2,2-bis(methylol)propionic acid (bisMPA) as dendritic units. For example, Boltorn H20 should contain 16 hydroxyl end groups per molecule indicating that it contains on average two generations of MPA. Similarly Boltorn H30 and H40, respectively, are third and fourth generation containing 32 hydroxyl and 64 hydroxyl per molecule.

Folic acid

another form of which is known as folate, is one of the B vitamins. It is used as a supplement by women to prevent neural tube defects (NTDs) developing during pregnancy. It is also used to treat anemia caused by folic acid deficiency. Long-term supplementation is also associated with small reductions in the risk of stroke and cardiovascular disease.

Folate targeting is a method utilized in biotechnology for drug delivery purposes. Based on the natural high affinity of folate for the folate receptor protein (FAR), which is commonly expressed on the surface of many human cancers, folate–drug conjugates also bind tightly to the FR and trigger cellular uptake via endocytosis. αvβ3 is a type of integrin that is a receptor for vitronectin. It consists of two components, integrin alpha V and integrin beta 3 (CD61), and is expressed by platelets. Furthermore, it is a receptor for phagocytosis on macrophages or dendritic cells.

Hematologic toxicity

is a common treatment complication of chronic hepatitis C virus (HCV) infection, especially when interferon (IFN) and ribavirin are used. The side effects of treatment are often augmented in cancer patients due to baseline cytopenias. These adverse events often lead to dose reduction or discontinuation of antivirals.

Hepatotoxicity

(from hepatic toxicity) implies chemical-driven liver damage. Drug-induced liver injury is a cause of acute and chronic liver disease.

HOMO and LUMO

are acronyms for highest occupied molecular orbital and lowest unoccupied molecular orbital, respectively. The energy difference between the HOMO and LUMO is termed the HOMO–LUMO gap. HOMO and LUMO are sometimes referred to as frontier orbitals. The difference in energy between these two frontier orbitals can be used to predict the strength and stability of transition metal complexes, as well as the colors they produce in solution. Roughly, the HOMO level is to organic semiconductors and that the valence band maximum is to inorganic semiconductors and quantum dots. The same analogy exists between the LUMO level and the conduction band minimum. In organometallic chemistry, the size of the LUMO lobe can help predict where addition to pi ligands will occur. Each molecular orbital has a calculated energy level. Chemists sort the molecular orbitals (MOs) by energy levels. Chemists assume that the electrons will occupy the lowest energy level MOs first. The difference in the HOMO’s energy level and the LUMO’s energy level is called the band gap. The band gap can sometimes serve as a measure of the excitability of the molecule: the smaller the energy, the more easily a molecule’s electrons will be excited. For example, this can help predict whether a substance will have luminescence. As MOs for larger molecules tend to be more complicated (the electrons are spread out all over the big molecule). At this point, we generally no longer focus on a comparison between the MOs and the AOs but instead just take the MOs as a set of orbitals for the whole molecule. There are many such orbitals (an infinite number), but we will always focus simply on the electrons that are most important for the chemistry.

In immunology, the mononuclear phagocyte system or mononuclear phagocytic system (MPS) (also known as the reticuloendothelial system or macrophage system) is a part of the immune system that consists of the phagocytic cells located in reticular connective tissue. The cells are primarily monocytes and macrophages, and they accumulate in lymph nodes and the spleen. The Kupffer cells of the liver and tissue histiocytes are also part of the MPS. The mononuclear phagocyte system and the monocyte macrophage system refer to two different entities, often mistakenly understood as one.

Immunogenicity is the ability of a particular substance, such as an antigen or epitope, to provoke an immune response in the body of a human or animal. In other words, immunogenicity is the ability to induce a humoral and/or cell-mediated immune responses.

Nephrotoxicity is toxicity in the kidneys. It is a poisonous effect of some substances, both toxic chemicals and medications, on renal function. There are various forms, and some drugs may affect renal function in more than one way. Nephrotoxins are substances displaying nephrotoxicity.

Zebra fish

(Danio rerio) is a tropical freshwater fish belonging to the minnow family (Cyprinidae) of the order Cypriniformes.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Capek, I. (2017). Polymer Template-Directed Synthesis. In: Noble Metal Nanoparticles. Nanostructure Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56556-7_4

Download citation

Publish with us

Policies and ethics