Skip to main content

Noble Metal Nanoparticles

  • Chapter
  • First Online:
Noble Metal Nanoparticles

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

To synthesize noble metal nanomaterials in controlled sizes and dimensions, various approaches and mechanisms have been developed. The successful utilization of noble metal nanoparticles (NMNPs) relies on the availability of synthetic methods generating nanoparticles with the desired characteristics, namely high solubility in water, adequate morphology, and surface functionalities. Control over the shape and size of the nanoparticles is usually achieved through the careful selection of the experimental conditions, namely reducing agents, type and concentration of precursors, reaction time, temperature, UV light, (co)solvent, and capping agents. Depending on the reduction potentials of the metal precursor and the reducing-agent systems, reduction can occur at room temperature or at elevated temperatures. In general, citrate plays a role as a stabilizing agent with preparations of gold nanoparticles requiring relatively high temperatures due to its weak reducing strength. The use of amine–borane complexes is essential for the syntheses of monodisperse metallic nanoparticles. Upon the addition of strong reductants, such as NaBH4, metal cations are reduced rapidly, resulting in an immediate color change of the reaction mixture. Rationally designed molecular building blocks allow for the precise control of particle size and morphology of the supramolecular aggregate, and various defined structures, including spherical micelles, rodlike micelles, or vesicles. Molecules which control the overall crystal growth are known as “capping agents,” the term frequently used for specific adsorption of surface-active molecules on selective crystal planes of a particular geometry. Additives such as surfactants, polymers, foreign ions, ligands, and impurities present in the reaction medium have been observed to play important roles in controlling the morphology of particles produced. Surfactants, ligands, or polymers were commonly added as stabilizers to impart stability to nanoparticles against aggregation, since colloidal particles tend to aggregate to decrease the overall surface area and energy. In a typical liquid-phase synthesis, the nanoparticle formation process undergoes three distinct stages as follows: (1) reduction and generation of active nuclei; (2) formation of seed particles upon collision of active nuclei; and (3) formation of larger nanoparticles via a growth process, which may be Ostwald ripening or aggregation. The nanoparticle growth is generally categorized by two processes: diffusion-controlled Ostwald-ripening and aggregation/coalescence. Nowadays, a molecule which can act both as a reducing and capping agent is preferred so that the reaction takes place in one step and there is no need for an external reducing agent. Multifunctional amines and nitrogen-containing polymers have also been tested for the synthesis of nanoparticles. Poly(ethylene oxide)-poly(propylene oxide)-based block copolymers are well known as dispersion stabilizers and templates for the synthesis of mesoporous materials and nanoparticles. Coordination chemistry offers simplicity, stable bonding, and ligand-metal specificity, enabling ligand-bearing components to be assembled into supramolecular structures using appropriate metal ions. This approach is particularly compatible with surface chemistry, as binding of metal ions activates the surface toward ligand binding, and vice versa. Some stabilizing agents can also be used as a reducing agent. Ionic liquids (ILs) are a viable option as stabilizing agents because of their ionic character and can be easily made task-specific as phase-transfer catalysts due to their tunable nature. Ligand exchange reactions have proven a particularly powerful approach to incorporate functionality in the ligand shell of thiol-stabilized nanoparticles and are widely used to produce organic- and water-soluble nanoparticles with various core sizes and functional groups. NMNPs can be intercalated into the gallery regions of montmorillonite and formed hybrid framework. Models of particle (crystal) development consider two basic steps: nucleation and growth. The creation of a new phase from a metastable state is nucleation. Seed-mediated growth method has been demonstrated to be a powerful synthetic route to generate a range of different types of metal nanoparticles. This method separates the nucleation and growth stage of nanoparticle syntheses by introducing presynthesized small seed particles into a growth solution typically containing a metal precursor, reducing agent, surfactants, and some additives. Dissolution of silver nanoparticles, for example, occurs through oxidation of metallic Ag and release of Ag+ into solution (or dissolution rate is accelerated). Release of Ag+ is determined by intrinsic physicochemical properties of silver nanoparticles and by those of the solution. Parameters that either enhance or suppress silver nanoparticle dissolution are ionic strength, pH, dissolved oxygen concentration, temperature, dissolved complexing ligands (organic matter, sulfur, chlorine), silver surface coating, shape, and size. The surfactants find their way to various environmental segments and thus pose serious health hazards. Several different polymer-based anticancer agents have been approved for clinical use, for passive tumor targeting. Prominent examples of macromolecular drug carrier systems evaluated in patients are poly(ethylene glycol), poly(l-glutamic acid), poly[N-(2-hydroxypropyl)methacrylamide], and their copolymers. Copolymers based on N-(2-hydroxypropyl)methacrylamide (i.e., HPMA) were used to improve the tumor-directed delivery of doxorubicin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three-dimensional

AA:

Ascorbic acid

AFM:

Atomic force microscopy

AgNPs:

Silver nanoparticles

AuNPs:

Gold nanoparticles

AuNRs:

Gold nanorods

BDAC:

Benzyldimethylhexadecylammonium chloride

[BMIM][BF4]:

1-butyl-3-methylimidazolium tetrafluoroborate

BSA:

Bovine serum albumin

CHIT:

Chitosan

CMC:

Critical micellar concentration

CMT:

Critical micellar temperature

CTAB:

Cetyltrimethylammonium bromide

CTAC:

Cetyltrimethylammonium chloride

DMEM:

Dulbecco’s minimum media

DMF:

N,N-dimethylformamide

DNA:

Deoxyribonucleic acid

DSC:

Differential scanning calorimetry

fcc:

Face-centered cubic

FDTD:

Finite-difference time domain

F-faces:

Flat faces

FTIR:

Fourier transform infrared spectroscopy

GCE:

Glassy carbon electrode

GFLG:

Glycylphenylalanylleucylglycine

GO:

Graphene oxide

GSH:

Glutathione

HAADF:

High-angle annular dark field

HCPA:

Hexachloroplatinic acid

HPMA:

N-(2-hydroxypropyl)methacrylamide

HRTEM:

High-resolution TEM

HSA:

Human serum albumin

HTAB:

Hexadecyltrimethylammonium bromide

ILs:

Ionic liquids

K-faces:

Kinked faces

LB:

Langmuir–Blodgett

LbL:

Layer-by-layer

LCST:

Lower critical solution temperature

LED:

Light-emitting diode

LMWT:

Low molecular weight thiol

LSPR:

Localized surface plasmon resonance

MC@AgNPs:

Silver nanoparticle-decorated microcapsules

MC@AuNPs:

Gold nanoparticle-decorated microcapsules

MC@PtNPs:

Platinum nanoparticle-decorated microcapsules

MCs:

Microcapsules

MES:

2-(N-morpholino)ethanesulfonic acid

MIES:

Metastable impact electron spectroscopy techniques

MMT:

Montmorillonite

MNPs:

Metal nanoparticles

NaBH4 :

Sodium borohydride

NaPA:

Sodium polyacrylate

NaOC2H5 :

Sodium ethoxide

NMNPs:

Noble metal nanoparticles

NMs:

Nanomaterials

NPs:

Nanoparticles

NRs:

Nanorods

o/w:

Oil-in-water

PA:

Polyacrylate

PAM:

Polyacrylamide

PAN:

Polyacrylonitrile

PBS:

Phosphate buffer saline

PCS:

Photon correlation spectroscopy

PDPAEMA:

Poly2-(diisopropylamino) ethyl methacrylate

PEG-SH:

Thiol-PEG

PEO:

Poly(ethylene oxide)

PEO-b-PDHPMA-b-PDPAEMA:

(poly(ethyleneoxide)-b-poly(2,3-dihydroxypropyl methacrylate)-b-poly[2-(diisopropylamino) ethyl methacrylate]

PIC:

Polyion complex

Pl:

Pullulan

pNIPAM:

Poly(N-isopropylacrylamide)

POSS:

Polyhedral oligomeric silsesquioxane

PPDO:

(poly(p-dioxanone)

PPO:

Poly(propylene oxide)

PtNPs:

Platinum nanoparticles

PTPS:

Amphiphilic polyhedral oligomeric silsesquioxane-containing thiol groups

PVA:

Poly(vinyl alcohol)

PVP:

Polyvinylpiridine

PVPo:

Polyvinylpyrrolidone, poly(N-vinyl-2-pyrrolidone)

SERS:

Surface-enhanced Raman scattering

S-faces:

Stepped faces

sMNPs:

Spherical metal nanoparticles

SPB:

Surface plasmon band

SPEEK:

Sulfonated poly(ether–ether) keton

SPL:

Scanning probe lithography

SPR:

Surface plasmon resonance

STM:

Scanning tunneling microscopy

TEM:

Transmission electron microscope

TGA:

Thermal gravimetric analysis

TMPTA:

Trimethylolpropane triacrylate

tTEM:

Real-time TEM

UPD:

Underpotential deposition

UPS:

Ultraviolet photoelectron spectroscopy

UV:

Ultraviolet

VOCs:

Volatile organic chemicals

XANES:

X-ray absorption near-edge spectroscopy

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

γ:

Surface energy

References

  1. Nguyen DT, Kim DJ, Kim KS (2011) Controlled synthesis and biomolecular probe application of gold nanoparticles. Micron 42:207–227

    Article  CAS  Google Scholar 

  2. Parab H, Jung C, Woo MA, Park HG (2011) An anisotropic snowflake-like structural assemblyof polymer-capped gold nanoparticles. J Nanopart Res 13:2173–2180

    Article  CAS  Google Scholar 

  3. Siegel RW, Ramasamy S, Hahn H, Li Z, Lu T, Gronsky R (1988) Synthesis, characterization, and properties of nanophase TiO2. J Mat Res 3.1367–1372

    Google Scholar 

  4. Fegley BJ, White P, Bowen HK (1985) Processing and characterization of ZrO2 and Y-doped ZrO2 powders. Am Ceram Soc Bull 64:1115–1120

    CAS  Google Scholar 

  5. Fayet P, Wöste L (1986) Experiments on size-selected metal cluster ions in a triple quadrupole arrangement. Zeitschrift für Physik D, Atoms, Mol Clusters 3:177–182

    Article  CAS  Google Scholar 

  6. Tang ZX, Sorensen CM, Klabunde KJ, Hadjipanayis GC (1991) Preparation of manganese ferrite fine particles from aqueous solution. J Colloid Interface Sci 146:38–52

    Article  CAS  Google Scholar 

  7. Ma Z, Brown S, Howe JY, Overbury SH, Dai S (2008) Surface modification of Au/TiO2 catalysts by SiO2 via atomic layer deposition. J Phys Chem C 112:9448–9457

    Article  CAS  Google Scholar 

  8. Anandan S, Grieser F, Ashokkumar M (2008) Sonochemical synthesis of Au–Ag core-shell bimetallic nanoparticles. J Phys Chem C 112:15102–15105

    Article  CAS  Google Scholar 

  9. Hashimoto S, Uwada T, Masuhara H, Asahi T (2008) Fabrication of gold nanoparticle-doped zeolite L crystals and characterization by optical microscopy: laser ablation-and crystallization inclusion-based approach. J Phys Chem C 112:15089–15093

    Article  CAS  Google Scholar 

  10. Zeng H, Li J, Wang ZL, Liu JP, Sun S (2004) Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett 4:187–190

    Article  CAS  Google Scholar 

  11. Bendikov TA, Rabinkov A, Karakouz T, Vaskevich A, Rubinstein I (2008) Biological sensing and interface design in gold island film based localized plasmon transducers. Anal Chem 80:7487–7498

    Article  CAS  Google Scholar 

  12. Delgado JM, Rodes A, Orts JM (2007) B3LYP and in Situ ATR-SEIRAS study of the infrared behavior and bonding mode of adsorbed acetate anions on silver thin-film electrodes. J Phys Chem C 111:14476–14483

    Article  CAS  Google Scholar 

  13. Liu YC, Lin LH, Chiu WH (2004) Size-controlled synthesis of gold nanoparticles from bulk gold substrates by sonoelectrochemical methods. J Phys Chem B 108:19237–19240

    Article  CAS  Google Scholar 

  14. Dumestre F, Chaudret B, Amiens C, Fromen MC, Casanove MJ, Renaud P, Zurcher P (2002) Shape control of thermodynamically stable cobalt nanorods through organometallic chemistry. Angew Chem 114:4462–4465

    Article  Google Scholar 

  15. Pileni MP (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2:145–150

    Article  CAS  Google Scholar 

  16. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  17. M Green (2005) Organometallic based strategies for metal nanocrystal synthesis. Chem Commun 3002–3011

    Google Scholar 

  18. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J Chem Soc, Chem Commun 801–802

    Google Scholar 

  19. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  20. Hamad-Schifferli K, Schwartz JJ, Santos AT, Zhang S, Jacobson JM (2002) Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415:152–155

    Article  Google Scholar 

  21. Mallin MP, Murphy CJ (2002) Solution-phase synthesis of sub-10 nm Au–Ag alloy nanoparticles. Nano Lett 2:1235–1237

    Article  CAS  Google Scholar 

  22. Liz-Marzán LM, Kamat PV (eds) (2003) Nanoscale materials. Kluwer Academic, Boston

    Google Scholar 

  23. Henglein A, Meisel D (1998) Radiolytic control of the size of colloidal gold nanoparticles. Langmuir 14:7392–7396

    Article  CAS  Google Scholar 

  24. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun 7:617–618

    Article  Google Scholar 

  25. Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    Article  CAS  Google Scholar 

  26. Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR, Van Duyne RP (1999) Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays. J Phys Chem B 103:3854–3863

    Article  CAS  Google Scholar 

  27. Sun YG, Mayers B, Herricks T, Xia YN (2003) Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3:955–960

    Article  CAS  Google Scholar 

  28. Chen SH, Wang ZL, Ballato J, Foulger SH, Carroll DL (2003) Monopod, bipod, tripod, and tetrapod gold nanocrystals. J Am Chem Soc 125:16186–16187

    Article  CAS  Google Scholar 

  29. Liz-Marzan LM, Mulvaney P (2003) The assembly of coated nanocrystals. J Phys Chem B 107:7312–7326

    Article  CAS  Google Scholar 

  30. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  31. Peyser LA, Vinson AE, Bartko AP, Dickson RM (2001) Photoactivated fluorescence from individual silver nanoclusters. Science 291:103–106

    Article  CAS  Google Scholar 

  32. Haes AJ, Zou SL, Schatz GC, Van Duyne RP (2004) A nanoscale optical biosensor: the short range distance dependence of the localized surface plasmon resonance of silver and gold nanoparticles. J Phys Chem B 108:6961–6968

    Article  CAS  Google Scholar 

  33. Yeung LK, Crooks RM (2001) Heck heterocoupling within a dendritic nanoreactor. Nano Lett 1:14–17

    Article  CAS  Google Scholar 

  34. Maillard M, Giorgio S, Pileni MP (2001) Silver nanodisks. Adv Mater 14:1084–1086

    Article  Google Scholar 

  35. Zhang J, Liu Z, Han B, Jiang T, Wu W, Chen J, Li Z, Liu D (2004) Preparation of polystyrene-encapsulated silver nanorods and nanofibers by combination of reverse micelles, gas antisolvent, and ultrasound techniques. J Phys Chem B 108:2200–2204

    Article  CAS  Google Scholar 

  36. Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  37. Metraux GS, Cao YC, Jin R, Mirkin CA (2003) Triangular nanoframes made of gold and silver. Nano Lett 3:519–522

    Article  CAS  Google Scholar 

  38. Cassagneau T, Caruso F (2002) Contiguous silver nanoparticle coatings on dielectric spheres. Adv Mater 14:732–736

    Article  CAS  Google Scholar 

  39. El-Sayed MA (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37:326–333

    Article  CAS  Google Scholar 

  40. Andres RP, Bein T, Dorogi M, Feng S, Henderson JJ, Kubiak CP, Mahoney W, Osifchin RG, Reifenberger R (1996) “Coulomb staircase” at root temperature in a self-assembled molecular nanostruc- ture. Science 272:1323–1325

    Article  CAS  Google Scholar 

  41. Galletto P, Brevet PF, Girault HH, Antoine R, Broyer M (1999) Enhancement of the second harmonic response by adsorbates on gold colloids: the effect of aggregation. J Phys Chem B 103:8706–8710

    Article  CAS  Google Scholar 

  42. Baschong W, Wrigley NG (1990) Small colloidal gold conjugated to Fab fragments or to immunoglobulin G as high-resolution labels for electron microscopy: a technical overview. J Electron Microsc Tech 14:313–323

    Article  CAS  Google Scholar 

  43. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics-A route to nanoscale optical devices. Adv Mater 13:1501–1505

    Article  CAS  Google Scholar 

  44. Tripathi GNR (2003) p-Benzosemiquinone radical anion on silver nanoparticles in water. J Am Chem Soc 125:1178–1179

    Article  CAS  Google Scholar 

  45. Xiong Y, Chen J, Wiley B, Xia Y, Aloni S, Yin Y (2005) Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J Am Chem Soc 127:7332–7333

    Article  CAS  Google Scholar 

  46. Hussain I, Graham S, Wang Z, Tan B, Sherrington DC, Rannard SP, Cooper AI, Brust M (2005) Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1–4 nm range using polymeric stabilizers. J Am Chem Soc 127:16398–16399

    Article  CAS  Google Scholar 

  47. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Article  CAS  Google Scholar 

  48. Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL (1998) Isolation and selected properties of a 104 kDa gold: glutathione cluster compound. J Phys Chem B 102:10643–10646

    Article  CAS  Google Scholar 

  49. Prasad BLV, Stoeva SI, Sorensen CM, Klabunde KJ (2002) Digestive ripening of thiolated gold nanoparticles: the effect of alkyl chain length. Langmuir 18:7515–7520

    Article  CAS  Google Scholar 

  50. Stoeva S, Klabunde KJ, Sorensen CM, Dragieva I (2002) Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J Am Chem Soc 124:2305–2311

    Article  CAS  Google Scholar 

  51. Shah PS, Holmes JD, Johnston KP, Korgel BA (2002) Size-selective dispersion of dodecanethiol-coated nanocrystals in liquid and supercritical ethane by density tuning. J Phys Chem B 106:2545–2551

    Article  CAS  Google Scholar 

  52. McLeod MC, Anand M, Kitchens CL, Roberts CB (2005) Precise and rapid size selection and targeted deposition of nanoparticle populations using CO2 gas expanded liquids. Nano Lett 5:461–465

    Article  CAS  Google Scholar 

  53. Jimenez VL, Leopold MC, Mazzitelli C, Jorgenson JW, Murray RW (2003) HPLC of monolayer-protected gold nanoclusters. Anal Chem 75:199–206

    Article  CAS  Google Scholar 

  54. Al-Somali AM, Krueger KM, Falkner JC, Colvin VL (2004) Recycling size exclusion chromatography for the analysis and separation of nanocrystalline gold. Anal Chem 76:5903–5910

    Article  CAS  Google Scholar 

  55. Sweeney SF, Woehrle GH, Hutchison JE (2006) Rapid purification and size separation of gold nanoparticles via diafiltration. J Am Chem Soc 128:3190–3197

    Article  CAS  Google Scholar 

  56. Novak JP, Nickerson C, Franzen S, Feldheim DL (2001) Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography. Anal Chem 73:5758–5761

    Article  CAS  Google Scholar 

  57. Templeton AC, Cliffel DE, Murray RW (1999) Redox and fluorophore functionalization of water-soluble, tiopronin-protected gold clusters. J Am Chem Soc 121:7081–7089

    Article  CAS  Google Scholar 

  58. Dillenback LM, Goodrich GP, Keating CD (2006) Temperature-programmed assembly of DNA: Au nanoparticle bioconjugates. Nano Lett 6:16–23

    Article  CAS  Google Scholar 

  59. Niemeyer CM, Simon U (2005) DNA-based assembly of metal nanoparticles. Eur J Inorg Chem 3641–3655

    Google Scholar 

  60. Gole A, Murphy CJ (2005) Biotin-streptavidin-induced aggregation of gold nanorods: tuning rod-rod orientation. Langmuir 21:10756–10762

    Article  CAS  Google Scholar 

  61. Fendler JH, Meldum FC (1995) Colloid chemistry approach to nanostructured materials. Adv Mater 7:607–632

    Article  CAS  Google Scholar 

  62. Bourgoing JF, Kergueris C, Lefevre E, Palacin S (1998) Blodgett films of thiol-capped gold nanoclusters: fabrication and electrical properties. s 515:327–329

    Google Scholar 

  63. Sastry M, Patil V, Mayya KS, Paranjape DV, Singh P, Sainkar SR (1998) Organization of polymer-capped platinum colloidal particles at the air-water interface. Thin Solid Films 324:239–244

    Article  CAS  Google Scholar 

  64. Ganguly P, Paranjape DV, Patil KR, Chaudhari SK, Kshirsagar ST (1992) Spreading of C60 at air water interface. Ind J Chem A 31:F42–F45

    Google Scholar 

  65. Heath JR, Knobler CM, Leff DV (1997) Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant. J Phys Chem B 101:189–197

    Article  CAS  Google Scholar 

  66. Gmucová K, Weis M, Nádaždy V, Capek I, Šatka A, Chitu L, Cirák J, Majková E (2008) Effect of charged deep states in hydrogenated amorphous silicon on the behavior of iron oxides nanoparticles deposited on its surface. Appl Surface Sci 254:7008–7013

    Article  CAS  Google Scholar 

  67. Sastry M, Kumar A, Mukherjee P (2001) Phase transfer of aqueous colloidal gold particles into organic solutions containing fatty amine molecules. Colloids Surf A 181:255–259

    Article  CAS  Google Scholar 

  68. Zhao WA, Brook MA, Li Y (2008) Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 9:2363–2371

    Article  CAS  Google Scholar 

  69. Wang C, Chen Y, Wang T, Ma Z, Su Z (2007) Biorecognition-driven self-assembly of gold nanorods: a rapid and sensitive approach toward antibody sensing. Chem Mater 19:5809–5811

    Article  CAS  Google Scholar 

  70. He W, Huang ZC, Li YF, Xie JP, Yang RG, Zhou PF, Wang J (2008) One-step label-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods. Anal Chem 80:8424–8430

    Article  CAS  Google Scholar 

  71. Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131:17042–17043

    Article  CAS  Google Scholar 

  72. Bastus NG, Comenge J, Puntes V (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27:11098–11105

    Article  CAS  Google Scholar 

  73. Brown KR, Natan MJ (1998) Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir 14:726–728

    Article  CAS  Google Scholar 

  74. Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13:1389–1393

    Article  CAS  Google Scholar 

  75. Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15:414–416

    Article  CAS  Google Scholar 

  76. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  77. Brown KR, Walter DG, Natan MJ (2000) Seeding of colloidal Au nanoparticle solutions 2 improved control of particle size and shape. Chem Mater 12:306–313

    Article  CAS  Google Scholar 

  78. Brown KR, Lyon LA, Fox AP, Reiss BD, Natan MJ (1999) Hydroxylamine seeding of colloidal au nanoparticles 3 controlled formation of conductive Au films. Chem Mater 12:314–323

    Article  CAS  Google Scholar 

  79. Rodriguez-Fernandez J, Perez-Juste J, Garcia FJ, Liz-Marzan LM (2006) Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir 22:7007–7010

    Article  CAS  Google Scholar 

  80. Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17:6782–6786

    Article  CAS  Google Scholar 

  81. Volkert AA, Subramaninam V, Haes AJ (2011) Implications of citrate concentration during the seeded growth synthesis of gold nanoparticles. Chem Commun 47:478–480

    Article  CAS  Google Scholar 

  82. Kwon K, Lee KY, Lee YW, Kim M, Heo J, Ahn SJ, Han SW (2007) Controlled synthesis of icosahedral gold nanoparticles and their surface-enhanced Raman scattering property. J Phys Chem C 111:1161–1165

    Article  CAS  Google Scholar 

  83. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665

    Article  CAS  Google Scholar 

  84. Ziegler C, Eychmüller A (2011) Seeded growth synthesis of uniform gold nanoparticles with diameters of 15–300 nm. J Phys Chem C 115:4502–4506

    Article  CAS  Google Scholar 

  85. Gachard E, Remita H, Khatouri J, Keita B, Nadjo L, Belloni J (1998) Radiation-induced and chemical formation of gold clusters. New J Chem 22:1257–1265

    Article  CAS  Google Scholar 

  86. Regev O, Backov R, Faure C (2004) Gold nanoparticles spontaneously generated in onion-type multilamellar vesicles Bilayers-particle coupling imaged by cryo-TEM. Chem Mater 16:5280–5285

    Article  CAS  Google Scholar 

  87. de la Presa P, Rueda T, del Puerto Morales M, Chichón FJ, Arranz R, Valpuesta JM, Hernando A (2009) Gold nanoparticles generated in ethosome bilayers, as revealed by cryo-electron-tomography. J Phys Chem B 113:3051–3057

    Article  CAS  Google Scholar 

  88. Kamat PV, Flumiani M, Hartland GV (1998) Picosecond dynamics of silver nanoclusters Photoejection of electrons and fragmentation. J Phys Chem B 102:3123–3128

    Article  CAS  Google Scholar 

  89. Taleb A, Petit C, Pileni MP (1997) Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization. Chem Mater 9:950–959

    Article  CAS  Google Scholar 

  90. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1:169–172

    Article  CAS  Google Scholar 

  91. Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361

    Article  CAS  Google Scholar 

  92. Rodríguez-Sánchez ML, Blanco MC, López-Quintela MA (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104:9683–9688

    Article  CAS  Google Scholar 

  93. Henglein A (1998) Colloidal silver nanoparticles: photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem Mater 10:444–450

    Article  CAS  Google Scholar 

  94. Dimitrijevic NM, Bartels DM, Jonah CD, Takahashi K, Rajh T (2001) Radiolytically induced formation and optical absorption spectra of colloidal silver nanoparticles in supercritical ethane. J Phys Chem B 105:954–959

    Article  CAS  Google Scholar 

  95. Mafuné F, Kohno J, Takeda Y, Kondow T (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337

    Article  CAS  Google Scholar 

  96. Rodríguez-Gattorno G, Díaz D, Rendón L, Hernández-Segura GO (2002) Metallic nanoparticles from spontaneous reduction of silver(I) in DMSO interaction between nitric oxide and silver nanoparticles. J Phys Chem B 106:2482–2487

    Article  CAS  Google Scholar 

  97. Pol VG, Srivastava DN, Palchik O, Palchik V, Slifkin MA, Weiss AM, Gedanken A (2002) Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir 18:3352–3357

    Article  CAS  Google Scholar 

  98. Sarathy KV, Kulkarni GU, Rao CNR (1997) A novel method of preparing thiol-derivatised nanoparticles of gold, platinum and silver forming superstructures. Chem Commun 537–538

    Google Scholar 

  99. Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. Chem Phys Chem 6:1221–1231

    Article  CAS  Google Scholar 

  100. Evanoff DD, Chumanov G (2004) Size-controlled synthesis of nanoparticles 2 measurement of extinction, scattering, and absorption cross sections. J Phys Chem B 108:13957–13962

    Article  CAS  Google Scholar 

  101. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  102. Jeong SH, Hwang YH, Yi SC (2005) Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver colloids. J Mater Sci 40:5413–5418

    Article  CAS  Google Scholar 

  103. Hiramatsu H, Osterloh FE (2004) A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Mater 16:2509–2511

    Article  CAS  Google Scholar 

  104. Evanoff DD, Chumanov G (2004) Size-controlled synthesis of nanoparticles 1 “Silver-only” aqueous suspensions via hydrogen reduction. J Phys Chem B 108:13948–13956

    Article  CAS  Google Scholar 

  105. Germain V, Brioude A, Ingert D, Pileni MP (2005) Silver nanodisks: size selection via centrifugation and optical properties. J Chem Phys 122(12):124707

    Article  CAS  Google Scholar 

  106. Sarkar A, Kapoor S, Mukherjee T (2005) Synthesis of silver nanoprisms in formamide. J Colloid Interface Sci 287:496–500

    Article  CAS  Google Scholar 

  107. Jiang LP, Xu S, Zhu JM, Zhang JR, Zhu JJ, Chen HY (2004) Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings. Inorg Chem 43:5877–5883

    Article  CAS  Google Scholar 

  108. Im SH, Lee YT, Wiley B, Xia Y (2005) Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew Chem, Int Ed 44:2154–2157

    Article  CAS  Google Scholar 

  109. Shon YS, Cutler E (2004) Aqueous synthesis of alkanethiolate-protected Ag nanoparticles using Bunte salts. Langmuir 20:6626–6630

    Article  CAS  Google Scholar 

  110. Jana NR, Peng XG (2003) Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J Am Chem Soc 125:14280–14281

    Article  CAS  Google Scholar 

  111. Yang Q, Wang F, Tang K, Wang C, Chen Z, Qian Y (2002) The formation of fractal Ag nanocrystallites via γ-irradiation route in isopropyl alcohol. Mater Chem Phys 78:495–500

    Article  Google Scholar 

  112. Callegari A, Tonti D, Chergui M (2003) Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett 3:1565–1568

    Article  CAS  Google Scholar 

  113. Gao F, Lu QY, Komarneni S (2005) Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions. Chem Mater 17:856–860

    Article  CAS  Google Scholar 

  114. Malandrino G, Finocchiaro ST, Fragala IL (2004) Silver nanowires by a sonoself-reduction template process. J Mater Chem 14:2726–2728

    Article  CAS  Google Scholar 

  115. Zhang ZP, Han MY (2003) Deposition of CdSe thin films using a novel single-source precursor, [MeCd{(SePiPr2)2N}]2. J Mater Chem 13:641–643

    Article  CAS  Google Scholar 

  116. Yu D, Yam VW (2004) Controlled synthesis of monodisperse silver nanocubes in water. J Am Chem Soc 126:13200–13201

    Article  CAS  Google Scholar 

  117. Sun Y, Mayers B, Xia Y (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 3:675–679

    Article  CAS  Google Scholar 

  118. Giersig M, Pastoriza-Santos I, Liz-Marzán LM (2004) Evidence of an aggregative mechanism during the formation of silver nanowires in N,N-dimethylformamide. J Mater Chem 14:607–610

    Article  CAS  Google Scholar 

  119. Tan YW, Dai XH, Li YF, Zhu DB (2003) Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant-potassium bitartrate. J Mater Chem 13:1069–1075

    Article  CAS  Google Scholar 

  120. Lee GJ, Shin SI, Kim YC, Oh SG (2004) Preparation of silver nanorods through the control of temperature and pH of reaction medium. Mater Chem Phys 84:197–204

    Article  CAS  Google Scholar 

  121. Sun YG, Xia YN (2002) Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater 14:833–837

    Article  CAS  Google Scholar 

  122. Sun YG, Yin YD, Mayers BT, Herricks T, Xia YN (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736–4745

    Article  CAS  Google Scholar 

  123. Tan YW, Li YF, Zhu DB (2003) Preparation of silver nanocrystals in the presence of aniline. J Colloid Interface Sci 258:244–251

    Article  CAS  Google Scholar 

  124. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941

    Article  CAS  Google Scholar 

  125. Manna A, Imae T, Aoi K, Okada M, Yogo T (2001) Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles. Chem Mater 13:1674–1681

    Article  CAS  Google Scholar 

  126. Zhang Z, Patel RC, Kothari R, Johnson CP, Friberg SE, Aikens PA (2000) Stable silver clusters and nanoparticles prepared in polyacrylate and inverse micellar solutions. J Phys Chem B 104:1176–1182

    Article  CAS  Google Scholar 

  127. Zheng J, Dickson RM (2002) Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124:13982–13983

    Article  CAS  Google Scholar 

  128. Korchev AS, Bozack MJ, Slaten BL, Mills G (2004) Polymer-initiated photogeneration of silver nanoparticles in SPEEK/PVA films: direct metal photopatterning. J Am Chem Soc 126:10–11

    Article  CAS  Google Scholar 

  129. Shameli K, Ahmad MB, Yunus W, Ibrahim NA, Gharayebi Y, Sedaghat S (2010) Synthesis of silver/montmorillonite nanocomposites using g-irradiation. Int J Nanomed 5:1067–1077

    Article  CAS  Google Scholar 

  130. Pillai SK, Sinha Ray S, Scriba M, Bandyopadhyay J, Roux-van der Merwe MP, Badenhorst J (2013) Microwave assisted green synthesis and characterization of silver/montmorillonite heterostructures with improved antimicrobial properties. Appl Clay Sci 83–84:315–321

    Article  CAS  Google Scholar 

  131. Tamer U, Onay A, Ciftci H, Bozkurt AG, Cetin D, Suludere Z, Boyaci IH, Daniel P, Lagarde F, Yaacoub N, Greneche JM (2014) High-yield aqueous synthesis of multi-branched iron oxide core-gold shell nanoparticles: SERS substrate for immobilization and magnetic separation of bacteria. J Nanopart Res 16(2624):1–11

    CAS  Google Scholar 

  132. Murawala P, Phadnis SM, Bhonde RR, Prasad BLV (2009) In situ synthesis of water dispersible bovine serum albumin capped gold and silver nanoparticles and their cytocompatibility studies. Coll Surf B 73:224–228

    Article  CAS  Google Scholar 

  133. De-Llanos R, Sánchez-Cortes S, Domingo C, García-Ramos JV, Sevilla P (2011) Surface plasmon effects on the binding of antitumoral drug emodin to bovine serum albumin. J Phys Chem C 115:12419–12429

    Article  CAS  Google Scholar 

  134. Peters T Jr (ed) (1996) All about albumin: biochemistry. Genetics and Medical Applications Academic Press, San Diego and London

    Google Scholar 

  135. Gebauer JS, Malissek M, Simon S, Knauer SK, Maskos M, Stauber RH, Peukert W, Treuel L (2012) Impact of the nanoparticle-protein corona on colloidal stability and protein structure. Langmuir 28:9673–9679

    Article  CAS  Google Scholar 

  136. Nayak NC, Shin K (2008) Human serum albumin mediated selfassembly of gold nanoparticles into hollow spheres. Nanotechnology 46:265603

    Article  CAS  Google Scholar 

  137. Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358

    Article  CAS  Google Scholar 

  138. Felder Hoff M, Bogdanovi¢ B (2009) High temperature metal hydrides as heat storage materials for solar and related applications. Int J Mol Sci 10:325–344

    Google Scholar 

  139. Oumellal Y, Rougier A, Nazri GA, Tarascon JM, Aymard L (2008) Metal hydrides for lithium-ion batteries. Nature Mater 7:916–921

    Article  CAS  Google Scholar 

  140. Wadell C, Syrenova S, Langhammer C (2014) Plasmonic hydrogen sensing with nanostructured metal hydrides. ACS Nano 8:11925–11940

    Article  CAS  Google Scholar 

  141. Yoshimura K, Langhammer C, Dam B (2013) Metal hydrides for smart window and sensor applications. MRS Bull 38:495–503

    Article  CAS  Google Scholar 

  142. Huiberts JN, Griessen R, Rector JH, Koeman NJ (1996) Yttrium and lanthanum hydride films with switchable optical properties. Nature 380:231–234

    Article  CAS  Google Scholar 

  143. Boeris PS, Liffourrena AS, Salvano MA, Lucchesi GI (2009) Physiological role of phosphatidylcholine in the Pseudomonas putida A ATCC 12633 Response to tetradecyltrimethylammonium bromide and aluminium. Letters Appl Microbiol 49:491–496

    Article  CAS  Google Scholar 

  144. Danquah MK, Zhang XA, Mahato RI (2010) Extravasation of polymeric nanomedicines across tumor vasculature. Adv Drug Deliv Rev 63:623–639

    Article  CAS  Google Scholar 

  145. Bérubé V, Radtke G, Dresselhaus M, Chen G (2007) Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int J Energ Res 31:637–663

    Article  CAS  Google Scholar 

  146. Díez I, Jiang H, Ras RHA (2010) Enhanced emission of silver nanoclusters through quantitative phase transfer. ChemPhysChem 11:3100–3104

    Article  CAS  Google Scholar 

  147. Udaya Bhaskara Rao T, Pradeep T (2010) Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew Chem Int Ed 49:3925–3929

    Article  CAS  Google Scholar 

  148. Yu J, Choi S, Richards CI, Antoku Y, Dickson RM (2008) Live cell surface labeling with fluorescent Ag nanocluster conjugates. Photochem Photobiol 84:1435–1439

    Article  CAS  Google Scholar 

  149. Díez I, Ras RHA (2011) Fluorescent silver nanoclusters. Nanoscale 3:1963–1970

    Google Scholar 

  150. Ershov BG, Henglein A (1998) Time-resolved investigation of early processes in the reduction of Ag+ on polyacrylate in aqueous solution. J Phys Chem B 102:10667–10671

    Article  CAS  Google Scholar 

  151. Sharma J, Yeh HC, Yoo H, Werner JH, Martinez JS (2010) A complementary palette of fluorescent silver nanoclusters. Chem Commun 46:3280–3282

    Article  CAS  Google Scholar 

  152. Díez I, Pusa M, Kulmala S, Jiang H, Walther A, Goldmann AS, Müller AHE, Ikkala O, Ras RHA (2009) Color tunability and electrochemiluminescence of silver nanoclusters. Angew Chem, Int Ed 48:2122–2125

    Article  CAS  Google Scholar 

  153. Wu Z, Jin R (2010) On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett 10:2568–2573

    Article  CAS  Google Scholar 

  154. Pastoriza-Santos I, Liz-Marzán LM (2002) Formation of PVP-protected metal nanoparticles in DMF. Langmuir 18:2888–2894

    Article  CAS  Google Scholar 

  155. Pastoriza-Santos I, Liz-Marzán LM (2002) Synthesis of silver nanoprisms in DMF. Nano Lett 2:903–905

    Article  CAS  Google Scholar 

  156. Yu YT, Xu BQ (2006) Shape-controlled synthesis of Pt nanocrystals: an evolution of the tetrahedral shape. Appl Organomet Chem 20:638–647

    Article  CAS  Google Scholar 

  157. Fu X, Wang Y, Wu N, Gui L, Tang Y (2002) Shape selective preparation and properties of oxalate- stabilized Pt colloid. Langmui 18:4619–4624

    Article  CAS  Google Scholar 

  158. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272:1924–1926

    Article  CAS  Google Scholar 

  159. Shan J, Pickup PG (2000) Characterization of polymer supported catalysts by cyclic voltammetry and rotating disk voltammetry. Electrochim Acta 46:119–125

    Article  CAS  Google Scholar 

  160. Antolini E, Cardelline F, Giacometti E, Squadrito G (2002) Study on the formation of Pt/C catalysts by non-oxidized active carbon support and a sulfur-based reducing agent. J Mater Sci 37:133–139

    Article  CAS  Google Scholar 

  161. Andreas HA, Birss VI (2005) Synthesis and characterization of alkoxide-derived Pt nanoparticles. J Phys Chem B 109:3743–3750

    Article  CAS  Google Scholar 

  162. Lee H, Habas SE, Somorjai GA, Yang P (2008) Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. J Am Chem Soc 130:5406–5407

    Article  CAS  Google Scholar 

  163. Sajanlal PR, Pradeep T (2008) Electric-field-assisted growth of highly uniform and oriented gold nanotriangles on conducting glass substrates. Adv Mater 20:980–983

    Article  CAS  Google Scholar 

  164. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles-novel materials for chemical and physical applications. New J Chem 22:1179–1201

    Article  CAS  Google Scholar 

  165. Ducamp-Sanguesa C, Herrera-Urbina R, Figlarz M (1992) Synthesis and characterization of fine and monodisperse silver particles of uniform shape. J Solid State Chem 100:272–280

    Article  CAS  Google Scholar 

  166. Xia Y, Xiong Y, Lim B, Skrabalak SE (2008) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103

    Article  CAS  Google Scholar 

  167. Sau TK, Murphy CJ (2007) Role of ions in the colloidal synthesis of gold nanowires. Philos Mag 87:2143–2158

    Article  CAS  Google Scholar 

  168. Mpourmpakis G, Vlachos DG (2008) Insights into the early stages of metal nanoparticle formation via first-principle calculations: the roles of citrate and water. Langmuir 24:7465–7473

    Article  CAS  Google Scholar 

  169. Slot JW, Geuze HJ (1985) A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol 38:87–93

    CAS  Google Scholar 

  170. Brown KR, Fox AP, Natan MJ (1996) Morphology-dependent electrochemistry of cytochrome-c at au colloid-modified SnO2 electrodes. J Am Chem Soc 118:1154–1157

    Article  CAS  Google Scholar 

  171. Sivaraman SK, Kumar S, Santhanam V (2011) Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method—the role of chloroauric acid. J Colloid Interface Sci 361:543–547

    Article  CAS  Google Scholar 

  172. Song W, Zhang X, Yin H, Sa P, Liu Z (2009) Preparation and storage of silver nanoparticles in aqueons polymers. Chin J Chem 27:717–721

    Article  CAS  Google Scholar 

  173. Jiang XC, Chen CY, Chen WM, Yu AB (2009) Role of citric acid in the formation of silver nanoplates through a synergistic reduction approach. Langmuir 26:4400–4408

    Article  CAS  Google Scholar 

  174. Ramteke C, Chakrabarti T, Sarangi BK, Pandey RA (2013) Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity. J Chem Article ID 278925, 7 pages

    Google Scholar 

  175. Darmanin T, Nativo P, Gilliland D, Ceccone G, Pascual C, De Berardis B, Guittard F, Rossi F (2012) Microwave-assisted synthesis of silver nanoprisms/nanoplates using a modified polyol process. Colloids Surf A 395:145–151

    Article  CAS  Google Scholar 

  176. da Costa LP, Formiga ALB, Mazali IO, Sigoli FA (2011) Spontaneous formation of highly dispersed spheroidal metallic silver nanoparticles in surfactant-free N,N-dimethylacetamide. Synth Met 161:1517–1521

    Article  CAS  Google Scholar 

  177. Solanki JN, Murthy ZVP (2011) Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: a topical review. Ind Eng Chem Res 50:12311–12323

    Article  CAS  Google Scholar 

  178. Papa M, Pradell T, Crespo D, Calderon-Moreno JM (2007) Stable silver colloidal dispersions using short chain polyethylene glycol. Colloids Surf A 303:184–190

    Article  CAS  Google Scholar 

  179. Kheiralla ZMH, Rushdy AA, Betiha MA, Yakob NAN (2014) High-performance antibacterial of montmorillonite decorated with silver nanoparticles using microwave-assisted method. J Nanopart Res 16:1–14

    Article  CAS  Google Scholar 

  180. Ojha AK, Srivastava SK, Koster J, Shukla MK, Leszczynski J, Asthana BP, Kiefer W (2004) Investigation of hydrogen bonding and self-association in neat HCONH2 and the binary mixture (HCONH2 + CH3OH) by concentration dependent Raman study and ab initio calculations. J Mol Struct 689:127–135

    Article  CAS  Google Scholar 

  181. Sarkar A, Kapoor S, Mukherjee T (2005) Preparation, characterization, and surface modification of silver nanoparticles in formamide. J Phys Chem B 109:7698–7704

    Article  CAS  Google Scholar 

  182. Zheng N, Fan J, Stucky GD (2006) One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J Am Chem Soc 128:6550–6551

    Article  CAS  Google Scholar 

  183. Newman JDS, Blanchard GJ (2006) Formation of gold nanoparticles using amine reducing agents. Langmuir 22:5882–5887

    Article  CAS  Google Scholar 

  184. Subramaniam C, Tom RT, Pradeep T (2005) On the formation of protected gold nanoparticles from AuCl4− by the reduction using aromatic amines. J Nanopart Res 7:209–217

    Article  CAS  Google Scholar 

  185. Goy-López S, Taboada P, Cambón A, Juárez J, Alvarez-Lorenzo C, Concheiro A, Mosquera V (2009) Modulation of size and shape of Au nanoparticles using amino-X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers. J Phys Chem B 114:66–76

    Article  CAS  Google Scholar 

  186. Barros Scaravelli RC, Dazzi R, Giacomelli FC, Machado G, Giacomelli C, Schmidt V (2013) Direct synthesis of coated gold nanoparticles mediated by polymers with amino groups. J Colloid Interface Sci 397:114–121

    Article  CAS  Google Scholar 

  187. Dahmane S, Lasia A, Zhao Y (2008) Electrochemically active block copolymer micelles containing coumarin moieties. Macromol Chem Phys 209:1065–1072

    Article  CAS  Google Scholar 

  188. Xiao ZP, Cai ZH, Liang H, Lu J (2010) Amphiphilic block copolymers with aldehyde and ferrocene-functionalized hydrophobic block and their redox-responsive micelles. J Mater Chem 20:8375–8381

    Article  CAS  Google Scholar 

  189. Liu SY, Armes SP (2003) Synthesis and aqueous solution behavior of a pH-responsive schizophrenic diblock copolymer. Langmuir 19:4432–4438

    Article  CAS  Google Scholar 

  190. Cabral H, Kataoka K (2010) Multifunctional nanoassemblies of block copolymers for future cancer therapy. Sci Technol Adv Mater 11:014109

    Article  CAS  Google Scholar 

  191. Wen F, Zhang W, Wei G, Wang Y, Zhang J, Zhang M, Shi L (2008) Synthesis of noble metal nanoparticles embedded in the shell layer of core-shell poly(styrene-co-4-vinylpyridine) micospheres and their application in catalysis. Chem Mater 20:2144–2150

    Article  CAS  Google Scholar 

  192. Zhang M, Kataoka K (2009) Nano-structured composites based on calcium phosphate for cellular delivery of therapeutic and diagnostic agents. Nano Today 4:508–517

    Article  CAS  Google Scholar 

  193. Hu Y, Jiang Z, Chen R, Wu W, Jiang X (2010) Degradation and degradation-induced re-assembly of PVP-PCL micelles. Biomacromolecules 11:481–488

    Article  CAS  Google Scholar 

  194. Yu Y, Wu G, Liu K, Zhang X (2010) Force required to disassemble block copolymer micelles in water. Langmuir 26:9183–9186

    Article  CAS  Google Scholar 

  195. Bae KH, Lee Y, Park TG (2007) Oil-encapsulating PEO-PPO-PEO/PEG shell cross-linked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules 8:650–656

    Article  CAS  Google Scholar 

  196. Bae KH, Choi SH, Park SY, Lee Y, Park TG (2006) Thermosensitive pluronic micelles stabilized by shell cross-linking with gold nanoparticles. Langmuir 22:6380–6384

    Article  CAS  Google Scholar 

  197. Wang L, Chen X, Zhan J, Sui Z, Zhao J, Sun Z (2004) Controllable morphology formation of gold nano- and micro-plates in amphiphilic block copolymer-based liquid crystalline phase. Chem Lett 33:720–721

    Article  CAS  Google Scholar 

  198. Sakai T, Alexandridis P (2004) Single-step synthesis and stabilization of metal nanoparticles in aqueous pluronic block copolymer solutions at ambient temperature. Langmuir 20:8426–8430

    Article  CAS  Google Scholar 

  199. Longenberger L, Mills G (1995) Formation of metal particles in aqueous solutions by reactions of metal complexes with polymers. J Phys Chem 99:475–478

    Article  CAS  Google Scholar 

  200. Sakai T, Alexandridis P (2005) Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions. J Phys Chem B 109:7766–7777

    Article  CAS  Google Scholar 

  201. Read ES, Armes SP (2007) Recent advances in shell cross-linked micelles. Chem Commun 3021–3035

    Google Scholar 

  202. Xu JP, Yang X, Lv LP, Wei Y, Xu FM, Ji J (2010) Gold-nanoparticle-stabilized pluronic micelles exhibiting glutathione triggered morphology evolution properties. Langmuir 26:16841–16847

    Article  CAS  Google Scholar 

  203. Falletta E, Ridi F, Fratini E, Vannucci C, Canton P, Bianchi S, Castelvetro V, Baglioni P (2011) A tri-block copolymer templated synthesis of gold nanostructures. J Colloid Interface Sci 357:88–94

    Article  CAS  Google Scholar 

  204. Wang Y, Han P, Xu H, Wang Z, Zhang XV, Kabanov A (2010) Photocontrolled self-assembly and disassembly of block ionomer complex vesicles: a facile approach toward supramolecular polymer nanocontainers. Langmuir 26:709–715

    Article  CAS  Google Scholar 

  205. Schild HG, Muthukumar M, Tirrell DA (1991) Cononsolvency in mixed aqueous solutions of Poly(N-isopropylacrylamide). Macromolecules 24:948–952

    Article  CAS  Google Scholar 

  206. Kaholek M, Lee WK, Ahn SJ, Ma H, Caster KC, LaMattina B, Zauscher S (2004) Stimulus-responsive poly(N-isopropylacrylamide) brushes and nanopatterns prepared by surface-initiated polymerization. Chem Mater 16:3688–3696

    Article  CAS  Google Scholar 

  207. Xiong Y, Washio I, Chen J, Sadilek M, Xia Y (2007) Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver. Angew Chem Int Ed 46:4917–4921

    Article  CAS  Google Scholar 

  208. Goia DV, Matijevic E (1998) Preparation of nanodispersed metal particles. New J Chem 22:1203–1215

    Article  CAS  Google Scholar 

  209. Dong WF, Kishimura A, Anraku Y, Chuanoi S, Kataoka K (2009) Monodispersed polymeric nanocapsules: spontaneous evolution and morphology transition from reducible hetero-PEG PIC micelles by controlled degradation. J Am Chem Soc 131:3804–3805

    Article  CAS  Google Scholar 

  210. Sardar R, Tyler B, Shumaker-Parry JS (2007) Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach. J Am Chem Soc 129:5356–5357

    Article  CAS  Google Scholar 

  211. Xu Y, Guo L, Huang L, Palanisamy K, Kim D, Chen G (2013) Facile preparation of partially functionalized gold nanoparticles via a surfactant-assisted solid phase approach. J Colloid Interface Sci 409:32–37

    Article  CAS  Google Scholar 

  212. Templeton AC, Zamborini FP, Wuelfing WP, Murray RW (2000) Controlled and reversible formation of nanoparticle aggregates and films using Cu2+-carboxylate chemistry. Langmuir 16:6682–6688

    Article  CAS  Google Scholar 

  213. Zamborini FP, Smart LE, Leopold MC, Murray RW (2003) Distance-dependent electron hopping conductivity and nanoscale lithography of chemically-linked gold monolayer protected cluster films. Anal Chim Acta 496:3–16

    Article  CAS  Google Scholar 

  214. Chen SW, Pei RJ, Zhao TF, Dyer DJ (2002) Gold nanoparticle assemblies by metal ion—pyridine complexation and their rectified quantized charging in aqueous solutions. J Phys Chem B 106:1903–1908

    Article  CAS  Google Scholar 

  215. Rashid MH, Bhattacharjee RR, Kotal A, Mandal TK (2006) Synthesis of spongy gold nanocrystals with pronounced catalytic activities. Langmuir 22:7141–7143

    Article  CAS  Google Scholar 

  216. Guo R, Zhang L, Zhu Z, Jiang X (2008) Direct facile approach to the fabrication of chitosan-gold hybrid nanospheres. Langmuir 24:3459–3464

    Article  CAS  Google Scholar 

  217. Hong R, Han G, Fernandez JM, Kim BJ, Forbes NS, Rotello VM (2006) Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc 128:1078–1079

    Article  CAS  Google Scholar 

  218. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    Article  CAS  Google Scholar 

  219. Bakshi MS, Kaur H, Khullar P, Banipal TS, Kaur G, Singh N (2011) Protein films of bovine serum albumen conjugated gold nanoparticles: a synthetic route from bioconjugated nanoparticles to biodegradable protein films. J Phys Chem C 115:2982–2992

    Article  CAS  Google Scholar 

  220. Kemp MM, Kumar A, Mousa S, Park TJ, Ajayan P, Kubotera N, Mousa SA, Linhardt RJ (2009) Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycans having distinctive biological activities. Biomacromolecules 10:589–595

    Article  CAS  Google Scholar 

  221. Harmatz D, Blauer G (1975) Optical properties of bilirubin-serum albumin complexes in aqueous solution. A comparison among albumins from different species. Arch Biochem Biophys 170:375–383

    Article  CAS  Google Scholar 

  222. Alarcon EI, Bueno-Alejo CJ, Noel CW, Stamplecoskie KG, Pacioni NL, Poblete H, Scaiano JC (2013) Human serum albumin as protecting agent of silvernanoparticles: role of the protein conformation and aminegroups in the nanoparticle stabilization. J Nanopart Res 15:1374–1377

    Article  CAS  Google Scholar 

  223. Jockusch S, Landis MS, Freiermuth B, Turro NJ (2001) Photochemistry and photophysics of a-hydroxy ketones. Macromolecules 34:1619–1626

    Article  CAS  Google Scholar 

  224. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3:40–47

    Article  CAS  Google Scholar 

  225. Ganeshkumar M, Ponrasu T, Raja MD, Subamekala MK, Suguna L (2014) Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery. Spectrochimica Acta Part A: Mol Biomol Spectrosc 130:64–71

    Article  CAS  Google Scholar 

  226. Yuan H, Khoury CG, Hwang H, Wilson CM, Grant GA, Vo-Dinh T (2012) Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23:075102

    Article  CAS  Google Scholar 

  227. Mahmoud MA, El-Sayed MA (2012) Substrate effect on the plasmonic sensing ability of hollow nanoparticles of different shapes. J Phys Chem B 117:4468–4477

    Article  CAS  Google Scholar 

  228. Sun Y, Zhang L, Zhou H, Zhu Y, Sutter E, Ji Y, Rafailovich MH, Sokolov JC (2007) Seedless and templateless synthesis of rectangular palladium nanoparticles. Chem Mater 19:2065–2070

    Article  CAS  Google Scholar 

  229. Skrabalak SE, Au L, Li X, Xia Y (2007) Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc 2:2182–2190

    Article  CAS  Google Scholar 

  230. Millstone JE, Wei W, Jones MR, Yoo H, Mirkin CA (2008) Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett 8:2526–2529

    Article  CAS  Google Scholar 

  231. Choi KS (2008) Shape control of inorganic materials via electrodeposition. Dalton Trans 5432–5438

    Google Scholar 

  232. Kou X, Zhang S, Yang Z, Tsung CK, Stucky GD, Sun L, Wang J, Yan C (2007) Glutathione- and cysteine-induced transverse overgrowth on gold nanorods. J Am Chem Soc 129:6402–6404

    Article  CAS  Google Scholar 

  233. Bakshi MS, Bakshi MS, Sachar S, Kaur G, Bhandari P, Kaur G, Biesinger MC, Possmayer F, Petersen NO (2008) Dependence of s. Cryst Growth Des 8:1713–1719

    Article  CAS  Google Scholar 

  234. Gao JX, Bender CM, Murphy CJ (2003) Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19:9065–9070

    Article  CAS  Google Scholar 

  235. Qian Z, Park SJ (2014) Silver seeds and aromatic surfactants facilitate the growth of anisotropic metal nanoparticles: gold triangular nanoprisms and ultrathin nanowires. Chem Mater 26:6172–6177

    Article  CAS  Google Scholar 

  236. Feng L, Wu X, Ren L, Xiang Y, He W, Zhang K, Zhou W, Xie S (2008) Well-controlled synthesis of Au@ Pt nanostructures by gold-nanorod-seeded growth. Chem Eur J 14:9764–9771

    Article  CAS  Google Scholar 

  237. Feng X, Li X, Shi H, Huang H, Wu X, Song W (2014) Highly accessible Pt nanodots homogeneously decorated on Au nanorods surface for sensing. Analytica Chimica Acta 852:37–44

    Article  CAS  Google Scholar 

  238. Wang S, Kristian N, Jiang S, Wang X (2009) Controlled synthesis of dendritic Au@Pt core-shell nanomaterials for use as an effective fuel cell electrocatalyst. Nanotechnology 20:25605

    Article  CAS  Google Scholar 

  239. Maclennan A, Banerjee A, Scott RW (2013) Aerobic oxidation of α, β-unsaturated alcohols using sequentially-grown AuPd nanoparticles in water and tetraalkylphosphonium ionic liquids. Catal Today 207:170–179

    Article  CAS  Google Scholar 

  240. Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR (2002) Transition-metal nanoparticles in imidazolium ionic liquids: recycable catalysts for biphasic hydrogenation reactions. J Am Chem Soc 124:4228–4229

    Article  CAS  Google Scholar 

  241. Itoh H, Naka K, Chujo Y (2004) Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc 126:3026–3027

    Article  CAS  Google Scholar 

  242. Tatumi R, Fujihara H (2005) Remarkably stable gold nanoparticles functionalized with a zwitterionic liquid based on imidazolium sulfonate in a high concentration of aqueous electrolyte and ionic liquid. Chem Commun (Camb) 83–85

    Google Scholar 

  243. Scheeren CW, Machado G, Dupont J, Fichtner PFP, Texeira SR (2003) Nanoscale Pt (0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions. Inorg Chem 42:4738–4742

    Article  CAS  Google Scholar 

  244. Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192

    Article  CAS  Google Scholar 

  245. Li Z, Liu Z, Zhang J, Han B, Du J, Gao Y, Jiang T (2005) Synthesis of single-crystal gold nanosheets of large size in ionic liquids. J Phys Chem B 109:14445–14448

    Article  CAS  Google Scholar 

  246. Zhu J, Shen Y, Xie A, Qiu L, Zhang Q, Zhang S (2007) Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid. J Phys Chem B 111:7629–7633

    CAS  Google Scholar 

  247. Tsuda T, Seino S, Kuwabata S (2009) Gold nanoparticles prepared with a room-temperature ionic liquid-radiation irradiation method. Chem Commun 6792–6794

    Google Scholar 

  248. Yang G, Zhao F, Zeng B (2013) Electrochemical determination of cefotaxime based on a three-dimensional molecularly imprinted film sensor. Biosens Bioelectron C 53:447–452

    Article  CAS  Google Scholar 

  249. Okitsu K, Mizukoshi Y, Yamamoto TA, Maeda Y, Nagata Y (2007) Sonochemical synthesis of gold nanoparticles on chitosan. Mater Lett 61:3429–3431

    Article  CAS  Google Scholar 

  250. Jin Y, Li Z, Hu L, Shi X, Guan W, Du Y (2013) Synthesis of chitosan-stabilized gold nanoparticles by atmospheric plasma. Carbohydr Polym 91:152–156

    Article  CAS  Google Scholar 

  251. Spano F, Massaro A, Blasi L, Malerba M, Cingolani R, Athanassiou A (2012) In situ formation and size control of gold nanoparticles into chitosan for nanocomposite surfaces with tailored wettability. Langmuir 28:3911–3917

    Article  CAS  Google Scholar 

  252. Di Carlo G, Curulli A, Toro RG, Bianchini C, de Caro T, Padeletti G, Zane D, Ingo GM (2012) Green synthesis of gold-chitosan nanocomposites for caffeic acid sensing. Langmuir 28:5471–5479

    Article  CAS  Google Scholar 

  253. Yang G, Zhao F, Zeng B (2014) Facile fabrication of a novel anisotropic gold nanoparticle-chitosan-ionic liquid/graphene modified electrode for the determination of theophylline and caffeine. Talanta 127:116–122

    Article  CAS  Google Scholar 

  254. Wang L, Wen W, Xiong H, Zhang X, Gu H, Wang S (2013) A novel amperometric biosensor for superoxide anion based on superoxide dismutase immobilized on gold nanoparticle-chitosan-ionic liquid biocomposite film. Anal Chim Acta 758:66–71

    Article  CAS  Google Scholar 

  255. Aherne D, Ledwith DM, Gara M, Kelly JM (2008) Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv Funct Mater 18:2005–2016

    Article  CAS  Google Scholar 

  256. Miranda OR, Dollahon NR, Ahmadi TS (2006) Critical concentrations and role of ascorbic acid (vitamin C) in the crystallization of gold nanorods within hexadecyltrimethyl ammonium bromide (CTAB)/tetraoctyl ammonium bromide (TOAB) micelles. Cryst Growth Des 6:2747–2753

    Article  CAS  Google Scholar 

  257. Smith DK, Korgel BA (2008) The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 24:644–649

    Article  CAS  Google Scholar 

  258. Park HJ, Ah CS, Kim WJ, Choi IS, Lee KP, Yun WS (2006) Temperature-induced control of aspect ratio of gold nanorods. J Vac Sci Technol A 24:1323–1326

    Article  CAS  Google Scholar 

  259. Miyazaki A, Nakano Y (2000) Morphology of platinum nanoparticles protected by poly(N-isopropylacrylamide). Langmuir 16:7109–7111

    Article  CAS  Google Scholar 

  260. Gao Y, Jiang P, Song L, Wang JX, Liu LF, Liu DF, Xiang YJ, Zhang ZX, Zhao XW, Dou XY, Luo SD, Zhou WY, Xie SS (2006) Studies on silver nanodecahedrons synthesized by PVP-assisted N, N-dimethylformamide (DMF) reduction. J Cryst Growth 289:376–380

    Article  CAS  Google Scholar 

  261. Grochala W, Kudelski A, Bukowska J (1998) Anion-induced charge-transfer enhancement in SERS and SERRS spectra of Rhodamine 6G on a silver electrode: how important is it? J Raman Spectrosc 29:681–685

    Article  CAS  Google Scholar 

  262. Fang Y (1999) Acid with visible and near-infrared excitations. J Raman Spectrosc 30:85–89

    Article  CAS  Google Scholar 

  263. Pergolese B, Muniz-Miranda M, Bigotto A (2004) Study of the adsorption of 1,2,3-triazole on silver and gold colloidal nanoparticles by means of surface enhanced raman scattering. J Phys Chem B 108:5698–5702

    Article  CAS  Google Scholar 

  264. Pergolese B, Muniz-Miranda M, Bigotto A (2005) Surface enhanced raman scattering investigation of the halide anion effect on the adsorption of 1,2,3-triazole on silver and gold colloidal nanoparticles. J Phys Chem B 109:9665–9671

    Article  CAS  Google Scholar 

  265. Sardar R, Shumaker-Parry JS (2009) 9-BBN induced synthesis of nearly monodisperse ω-functionalized alkylthiols stabilized gold nanoparticles. Chem Mater 21:1167–1169

    Article  CAS  Google Scholar 

  266. Sardar R, Shumaker-Parry JS (2011) Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size. J Am Chem Soc 133:8179–8190

    Article  CAS  Google Scholar 

  267. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269

    Article  CAS  Google Scholar 

  268. Roth PJ, Theato P (2008) Versatile synthesis of functional gold nanoparticles: grafting polymers from and onto. Chem Mater 20:1614–1621

    Article  CAS  Google Scholar 

  269. Sarathy KV, Raina G, Yadav RT, Kulkarni GU, Rao CNR (1997) Thiol-derivatized nanocrystalline arrays of gold, silver, and platinum. J Phys Chem B 101:9876–9880

    Article  CAS  Google Scholar 

  270. Woehrle GH, Brown LO, Hutchison JE (2005) Thiol-functionalized, 15-nm gold nanoparticles through ligand exchange reactions: scope and mechanism of ligand exchang. J Am Chem Soc 127:2172–2183

    Article  CAS  Google Scholar 

  271. Zheng M, Huang X (2004) Nanoparticles comprising a mixed monolayer for specific bindings with biomolecules. J Am Chem Soc 126:12047–12054

    Article  CAS  Google Scholar 

  272. Park S, Ruoff RS (2009) Chemical methods for the production of graphened. Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  273. Muhammad S, Chandra V, Kemp KC, Kim KS (2013) Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption. Nanotechnology 24(25):255702

    Article  CAS  Google Scholar 

  274. Liu Y, Ma J, Wu T, Wang X, Huang G, Liu Y, Qiu H, Li Y, Wang W, Gao J (2013) Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent. ACS Appl Mat Interfaces 5:10018–10026

    Article  CAS  Google Scholar 

  275. Tan R, Li CY, Luo JQ, Kong Y, Zheng WG, Yin DH (2013) An effective heterogeneous l-proline catalyst for the direct asymmetric aldol reaction using graphene oxide as support. J Catal 298:138–147

    Article  CAS  Google Scholar 

  276. Mayavan S, Jang HS, Lee MJ, Choi SH, Choi SM (2013) Enhancing the catalytic activity of Pt nanoparticles using poly sodium styrene sulfonate stabilized graphene supports for methanol oxidation. J Mater Chem A 1:3489–3494

    Article  CAS  Google Scholar 

  277. Kim JY, Cote LJ, Kim F, Yuan W, Shull KR, Huang JX (2010) Graphene oxide sheets at interfaces. J Am Chem Soc 132:8180–8186

    Article  CAS  Google Scholar 

  278. Gudarzi MM, Sharif F (2011) Self assembly of graphene oxide at the liquid–liquid interface: a new route to the fabrication of graphene based composites. Soft Matter 7:3432–3440

    Article  CAS  Google Scholar 

  279. Zhang LY, Shi TJ, Wu SL, Zhou HO (2013) Sulfonated graphene oxide: the new and effective material for synthesis of polystyrene-based nanocomposites. Colloid Polym Sci 291:2061–2068

    Article  CAS  Google Scholar 

  280. Tang M, Wang X, Wu F, Liu Y, Zhang S, Pang X, Li X, Qiu H (2014) Au nanoparticle/graphene oxide hybrids as stabilizers for Pickering emulsions and Au nanoparticle/graphene oxide@polystyrene microspheres. Carbon 71:238–248

    Article  CAS  Google Scholar 

  281. Liu D, Jiang X, Yin J (2014) One-step interfacial thiol-ene photopolymerization for metal nanoparticle-decorated microcapsules (MNP@MCs). Langmuir 30:7213–7220

    Article  CAS  Google Scholar 

  282. McGilvray KL, Decan MR, Wang D, Scaiano JC (2006) Facile photochemical synthesis of unprotected aqueous gold nanoparticles. J Am Chem Soc 128:15980–15981

    Article  CAS  Google Scholar 

  283. Liu DD, Yu B, Jiang XS, Yin J (2013) Responsive hybrid microcapsules by the one-step interfacial thiol—ene photopolymerization. Langmuir 29:5307–5314

    Article  CAS  Google Scholar 

  284. Rehab A, Akelah A, Agag T, Betiha MJ (2007) Polymer-organoclay hybrids by polymerization into montmorillonitevinyl monomer interlayers. J Appl Polym Sci 106:3502–3514

    Article  CAS  Google Scholar 

  285. Senthil Kumar P, Ray S, Sunandana CS (2001) Sb-assisted AgI nanoparticle growth in thin films. Mater Phys Mech 4:39–41

    Google Scholar 

  286. Neri G, Rizzo G, Arico AS, Crisafulli C, de Luca L, Donato A, Musolino MG, Pietropaolo R (2007) One-pot synthesis of naturanol from a-pinene oxide on bifunctional Pt-Sn/SiO2 heterogeneous catalysts (I) the catalytic system. Appl Catal A 325:15–24

    Article  CAS  Google Scholar 

  287. Xie YW, Ye RQ, Liu HL (2006) Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloid Surf A 279:175–178

    Article  CAS  Google Scholar 

  288. He S, Yao J, Jiang P, Shi D, Zhang H, Xie S, Pang S, Gao H (2001) Formation of silver nanoparticles and self-assembled twodimensional ordered superlattice. Langmuir 17:1571–1575

    Article  CAS  Google Scholar 

  289. Choi H, Lee JP, Ko SJ, Jung JW, Park H, Yoo S, Park O, Jeong JR, Park S, Kim JY (2013) Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells. Nano Lett 13:2204–2208

    Article  CAS  Google Scholar 

  290. Aihara N, Torigoe K, Esumi K (1998) Preparation and characterization of gold and silver nanoparticles in layered laponite suspensions. Langmuir 14:4945–4949

    Article  CAS  Google Scholar 

  291. Vadakkekara R, Chakraborty M, Parikh PA (2012) Catalytic performance of silica-supported silver nanoparticles for liquid-phase oxidation of ethylbenzene. Ind Eng Chem Res 51:5691–5698

    Article  CAS  Google Scholar 

  292. Narehood DG, Kishore S, Goto H, Adair JH, Nelson JA, Gutierrez HR, Eklund PC (2009) X-ray diffraction and H-storage in ultra-small palladium particles. Int J Hydrogen Energ 34:952–960

    Article  CAS  Google Scholar 

  293. Yamauchi M, Ikeda R, Kitagawa H, Takata M (2008) Nanosize effects on hydrogen storage in palladium. J Phys Chem C 112:3294–3299

    Article  CAS  Google Scholar 

  294. Langhammer C, Zhdanov VP, Zori¢ I, Kasemo B (2010) Size-dependent hysteresis in the formation and decomposition of hydride in metal nanoparticles. Chem Phys Lett 488:62–66

    Google Scholar 

  295. Wadell C, Pingel T, Olsson E, Zoric I, Zhdanov VP, Langhammer C (2014) Thermodynamics of hydride formation and decomposition in supported sub-10 nm Pd nanoparticles of different sizes. Chem Phys Lett 603:75–81

    Article  CAS  Google Scholar 

  296. Salomons E, Griessen R, De Groot DG, Magerl A (1988) Surface-tension and subsurface sites of metallic nanocrystals determined from H-absorption. Europhys Lett 5:449–454

    Article  CAS  Google Scholar 

  297. Suleiman M, Faupel J, Borchers C, Krebs HU, Kirchheim R, Pundt A (2005) Hydrogen absorption behaviour in nanometer sized palladium samples stabilised in soft and hard matrix. J Alloys Compd 404–406:523–528

    Article  CAS  Google Scholar 

  298. Baldi A, Narayan TC, Koh AL, Dionne JA (2014) In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat Mater 13:1143–1148

    Article  CAS  Google Scholar 

  299. Bardhan R, Hedges LO, Pint CL, Javey A, Whitelam S, Urban JJ (2013) Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals. Nat Mater 12:905–912

    Article  CAS  Google Scholar 

  300. Syrenova S, Wadell C, Nugroho FAA, Gschneidtner TA, Diaz Fernandez YA, Nalin G, Switlik D, Westerlund F, Antosiewicz TJ, Zhdanov VP, Moth-Poulsen K, Langhammer C (2015) Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape. Nat Mat 14:1236–1244

    Article  CAS  Google Scholar 

  301. Gschneidtner TA, Diaz Fernandez YA, Syrenova S, Westerlund F, Langhammer C, Moth-Poulsen K (2014) A versatile self-assembly strategy for the synthesis of shape-selected colloidal noble metal nanoparticle heterodimers. Langmuir 30:3041–3050

    Article  CAS  Google Scholar 

  302. Ameen Poyli M, Silkin VM, Chernov IP, Echenique PM, Díez Muiño R, Aizpurua J (2012) Multiscale theoretical modeling of plasmonic sensing of hydrogen uptake in palladium nanodisks. J Phys Chem Lett 3:2556–2561

    Article  CAS  Google Scholar 

  303. Pundt A (2004) Hydrogen in nano-sized metals. Adv Eng Mater 6:11–21

    Article  CAS  Google Scholar 

  304. Wilcoxon JP, Provencio PP (2004) Heterogeneous growth of metal clusters from solutions of seed nanoparticles. J Am Chem Soc 126:6402–6408

    Article  CAS  Google Scholar 

  305. Watzky MA, Finke RG (1997) Nanocluster size-control and “magic mumber” investigations Experimental tests of the “living-metal polymer” concept and of mechanism-based size-control predictions leading to the syntheses of iridium(0) nanoclusters centering about four sequential magic numbers. Chem Mater 9:3083–3095

    Article  CAS  Google Scholar 

  306. De Yoreo JJ, Vekilov PG (2003) Principles of crystal nucleation and growth. Rev Mineral Geochem 54:57–93

    Article  Google Scholar 

  307. Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781–1804

    Article  CAS  Google Scholar 

  308. Liu XY (2000) Heterogeneous nucleation or homogeneous nucleation? J Chem Phys 112:9949–9955

    Article  CAS  Google Scholar 

  309. Hyeon T, Lee SS, Park J, Chung Y, Bin Na H (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123:12798–12801

    Article  CAS  Google Scholar 

  310. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  CAS  Google Scholar 

  311. Shoji M, Miyajima K, Mafuné F (2008) Ionization of gold nanoparticles in solution by pulse laser excitation as studied by mass spectrometric detection of gold cluster ions. J Phys Chem C 112:1929–1932

    Article  CAS  Google Scholar 

  312. Esumi K, Hosoya T, Suzuki A, Torigoe K (2000) Spontaneous formation of gold nanoparticles in aqueous solution of sugarpersubstituted poly(amidoamine) dendrimers. Langmuir 16:2978–2980

    Article  CAS  Google Scholar 

  313. Tsunoyama H, Ichikuni N, Tsukuda T (2008) Microfluidic synthesis and catalytic application of PVP-stabilized, approximately 1 nm gold clusters. Langmuir 24:11327–11330

    Article  CAS  Google Scholar 

  314. Zhang H, Fung KH, Hartmann J, Chan CT, Wang D (2008) Controlled chainlike agglomeration of charged gold nanoparticles via a deliberate interaction balance. J Phys Chem C 112:16830–16839

    Article  CAS  Google Scholar 

  315. Yin B, Ma H, Wang S, Chen S (2003) Electrochemical synthesis of silver nanoparticles under protection of Poly(N-vinylpyrrolidone). J Phys Chem B 107:8898–8904

    Article  CAS  Google Scholar 

  316. Liu X, Huang R, Zhu J (2008) Functional faceted silver nano-hexapods: synthesis, structure characterizations, and optical properties. Chem Mater 20:192–197

    Article  CAS  Google Scholar 

  317. Wei G, Zhou H, Liu Z, Song Y, Wang L, Sun L, Li Z (2005) One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network. J Phys Chem B 109:8738–8743

    Article  CAS  Google Scholar 

  318. Zhang J, Liu H, Wang Z, Ming N (2007) Shape-selective synthesis of gold nanoparticles with controlled sizes, shapes, and plasmon resonances. Adv Funct Mater 17:3295–3303

    Article  CAS  Google Scholar 

  319. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104:1153–1175

    Article  CAS  Google Scholar 

  320. Henry CR (2005) Morphology of supported nanoparticles. Prog Surf Sci 80:92–116

    Article  CAS  Google Scholar 

  321. Chen HM, Liu RS, Asakura K, Jang LY, Lee JF (2007) Controlling length of gold nanowires with large-scale: X-ray absorption spectroscopy approaches to the growth process. J Phys Chem C 111:18550–18557

    Article  CAS  Google Scholar 

  322. Fan FR, Liu DY, Wu YF, Duan S, Xie ZX, Jiang ZY, Tian ZQ (2008) Epitaxial growth of heterogeneous metal nanocrystals: from gold nanooctahedra to palladium and silver nanocubes. J Am Chem Soc 130:6949–6951

    Article  CAS  Google Scholar 

  323. Seifert W, Carlsson N, Miller M, Pistol ME, Samuelson L, Wallenberg LR (1996) In-situ growth of quantum dot structures by the Stranski-Krastanow growth mode. Prog Cryst Growth Charact 33:423–472

    Article  CAS  Google Scholar 

  324. Sekerka RF (2005) Equilibrium and growth shapes of crystals: how do they differ and why should we care. Cryst Res Technol 40:291–306

    Article  CAS  Google Scholar 

  325. Birdi KS (1998) Handbook of surface and colloid chemistry CRC Press, Boca Raton

    Google Scholar 

  326. Green SJ, Stokes JJ, Hostetler MJ, Pietron J, Murray RW (1997) Three-dimensional monolayers: nanometer-sized electrodes of alkanethiolate-stabilized gold cluster molecules. J Phys Chem B 101:2663–2668

    Article  CAS  Google Scholar 

  327. Mirkin CA (2000) Programming the assembly of two- and threedimensional architectures with DNA and nanoscale inorganic building blocks. Inorg Chem 39:2258–2272

    Article  CAS  Google Scholar 

  328. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247

    Article  CAS  Google Scholar 

  329. Resch R, Baur C, Bugacov A, Koel BE, Echternach PM, Madhukar A, Montoya N, Requicha AAG, Will P (1999) Linking and manipulation of gold multinanoparticle structures using dithiols and scanning force microscopy. J Phys Chem B 103:3647–3650

    Article  CAS  Google Scholar 

  330. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspension. Nat Phys Sci 241:20–22

    Article  CAS  Google Scholar 

  331. Ji X, Song X, Li J, Bai Y, Yang W, Peng X (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129:13939–13948

    Article  CAS  Google Scholar 

  332. Chow MK, Zukoski CF (1994) Gold sol formation mechanisms: role of colloidal stability. J Colloid Interface Sci 165:97–109

    Article  CAS  Google Scholar 

  333. Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25:13840–13851

    Article  CAS  Google Scholar 

  334. Polte J, Tuaev X, Wuithschick M, Fischer A, Thuenemann AF, Rademann K, Kraehnert R, Emmerling F (2012) Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles. ACS Nano 6:5791–5802

    Article  CAS  Google Scholar 

  335. Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ, Crommie MF, Lee JY, Zettl A, Alivisatos AP (2012) High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336(6077):61–64

    Article  CAS  Google Scholar 

  336. Dharmaratne AC, Krick T, Dass A (2009) Nanocluster size evolution studied by mass spectrometry in room temperature Au25(SR)18 synthesis. J Am Chem Soc 131:13604–13605

    Article  CAS  Google Scholar 

  337. Richards VN, Rath NP, Buhro WE (2010) Pathway from a molecular precursor to silver nanoparticles: the prominent role of aggregative growth. Chem Mater 22:3556–3567

    Article  CAS  Google Scholar 

  338. Novo C, Funston AM, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2007) Influence of the medium refractive index on the optical properties of single gold triangular prisms on a substrate. J Phys Chem C 112:3–7

    Article  CAS  Google Scholar 

  339. Skrdla PJ (2012) Roles of nucleation, denucleation, coarsening, and aggregation kinetics in nanoparticle preparations and neurological disease. Langmuir 28:4842–4857

    Article  CAS  Google Scholar 

  340. Prasad BLV, Stoeva SI, Sorensen CM, Klabunde KJ (2003) Digestive-ripening agents for gold nanoparticles: alternatives to thiols. Chem Mater 15:935–942

    Article  CAS  Google Scholar 

  341. Inasawa S, Sugiyama M, Yamaguchi Y (2005) Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting. J Phys Chem B 109:3104–3111

    Article  CAS  Google Scholar 

  342. Takami A, Kurita H, Koda S (1999) Laser-induced size reduction of noble metal particles. J Phys Chem B 103:1226–1232

    Article  CAS  Google Scholar 

  343. Inasawa S, Sugiyama M, Yamaguchi Y (2005) Bimodal size distribution of gold nanoparticles under picosecond laser pulses. J Phys Chem B 109:9404–9410

    Article  CAS  Google Scholar 

  344. Bonet F, Tekaia-Elhsissen K, Sarathy KV (2000) Study of interaction of ethylene glycol/PVP phase on noble metal powders prepared by polyol process. Bull Mater Sci 23:165–168

    Article  CAS  Google Scholar 

  345. Garcia-Gutierrez DI, Gutierrez-Wing CE, Giovanetti L, Ramallo-López JM, Requejo FG, Jose-Yacaman M (2005) Temperature effect on the synthesis of Au-Pt bimetallic nanoparticles. J Phys Chem B 109:3813–3821

    Article  CAS  Google Scholar 

  346. Min BK, Wallace WT, Santra AK, Goodman DW (2004) Role of defects in the nucleation and growth of Au nanoclusters on SiO2 thin films. J Phys Chem B 108:16339–16343

    Article  CAS  Google Scholar 

  347. Zhang Q, Yin Y (2013) Beyond spheres: Murphy’s silver nanorods and nanowires. Chem Commun 49:215–217

    Article  CAS  Google Scholar 

  348. Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175

    Article  CAS  Google Scholar 

  349. Levard C, Hotze EM, Lowry GV, Brown GE Jr (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914

    Article  CAS  Google Scholar 

  350. Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913

    Article  CAS  Google Scholar 

  351. Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials, Part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32

    Article  CAS  Google Scholar 

  352. Sotiriou GA, Meyer A, Knijnenburg JT, Panke S, Pratsinis SE (2012) Quantifying the origin of released Ag+ ions from nanosilver. Langmuir 28:15929–15936

    Article  CAS  Google Scholar 

  353. Zhang W, Yao Y, Sullivan N, Chen Y (2011) Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 45:4422–4428

    Article  CAS  Google Scholar 

  354. Ma R, Levard C, Marinakos SM, Cheng Y, Liu J, Michel FM, Brown GE Jr, Lowry GV (2011) Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46:752–759

    Article  CAS  Google Scholar 

  355. Iggland M, Mazzotti M (2012) Population balance modeling with size-dependent solubility: Ostwald ripening. Cryst Growth Des 12:1489–1500

    Article  CAS  Google Scholar 

  356. Zhang Q, Yang Y, Li JR, Iurilli R, Xie S, Qin D (2013) Citratefree synthesis of silver nanoplates and the mechanistic study. ACS Appl Mater Interfaces 5:6333–6345

    Article  CAS  Google Scholar 

  357. Jang E, Lim EK, Choi J, Park J, Huh YJ, Suh JS, Huh YM, Haam S (2011) Br-assisted Ostwald ripening of Au nanoparticles under H2O2 redox. Cryst Growth Des 12:37–39

    Article  CAS  Google Scholar 

  358. He W, Zhou YT, Wamer WG, Boudreau MD, Yin JJ (2012) Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33:7547–7555

    Article  CAS  Google Scholar 

  359. Shah A, Nosheen E, Qureshi R, Yasinzai MM, Lunsford SK, Dionysiou DD, Zia–ur–Rehman, Siddiq M, Badshah A, Ali S (2011) Electrochemical characterization, detoxification and anticancer activity of didodecyldimethylammonium bromide. Int J Org Chem 1:183–190

    Google Scholar 

  360. Ren R, Liu D, Li K, Sun J, Zhang C (2011) Adsorption of quaternary ammonium compounds onto activated sludge. J Water Res Prot 3:105–113

    Article  CAS  Google Scholar 

  361. Garcia MT, Campos E, Sanchez-Leal J, Risoba I (2000) Anaerobic degradation and toxicity of commercial Ca–tionic surfactants in anaerobic screening tests. Chemosphere 41:705–710

    Article  CAS  Google Scholar 

  362. Chifotides HT, Dunbar KR (2005) Interactions of metal–metal–bonded antitumor active complexes with DNA fragments and DNA. Acc Chem Res 38:146–156

    Article  CAS  Google Scholar 

  363. Sun CZ, Lu CT, Zhao YZ, Guo P, Tian JL, Zhang L, Li XK, Lv HF, Dai DD, Li X (2011) Characterization of the doxorubicin–pluronic F68 conjugate micelles and their effect on doxorubicin resistant human erythroleukemic cancer cells. J Nanomedic Nanotechnol 2:1–6

    Google Scholar 

  364. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822

    Article  CAS  Google Scholar 

  365. Moses MA, Brem H, Langer R (2003) Advancing the field of drug delivery: taking aim at cancer. Cancer Cell 4:337–341

    Article  CAS  Google Scholar 

  366. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’Shaughnessy J (2005) Phase III trial of nanoparticle albumin–bound paclitaxel compared with polyethylated castor oil–based paclitaxel in women with breast cancer. J Clin Oncol 23:7794–7803

    Article  CAS  Google Scholar 

  367. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6688–701

    Google Scholar 

  368. Paz-Ares L, Ross H, O’Brien M, Riviere A, Gatzemeier U, Von Pawel J, Kaukel E, Freitag L, Digel W, Bischoff H, García-Campelo R, Iannotti N, Reiterer P, Bover I, Prendiville J, Eisenfeld AJ, Oldham FB, Bandstra B, Singer JW, Bonomi P (2008) Phase III trial comparing paclitaxel poliglumex vs docetaxel in the second–line treatment of non–small–cell lung cancer. Br J Cancer 98:1608–1613

    Article  CAS  Google Scholar 

  369. Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R, Thomson AH, Murray LS, Hilditch TE, Murray T, Burtles S, Fraier D, Frigerio E, Cassidy J (1999) Phase I clinical and pharmacokinetic study of PK1 [N–(2–hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents–drug–polymer conjugates. Cancer research campaign phase I/II Committee. Clin Cancer Res 5:83–94

    CAS  Google Scholar 

  370. Nishiyama A, Nori A, Malugin A, Kasuya Y, Kopečková P, Kopeček J (2003) Free and N–(2–hydroxypropyl)methacrylamide copolymer–bound geldanamycin derivative induce different stress responses in A2780 human ovarian carcinoma cells. Cancer Res 63:7876–7882

    CAS  Google Scholar 

  371. Pike DB, Ghandehari H (2010) HPMA copolymer–cyclic RGD conjugates for tumor targeting. Adv Drug Deliv Rev 62:167–183

    Article  CAS  Google Scholar 

  372. Ulbrich K, Subr V (2010) Structural and chemical aspects of HPMA copolymers as drug carriers. Adv Drug Deliv Rev 62:150–166

    Article  CAS  Google Scholar 

  373. Minko T (2010) HPMA copolymers for modulating cellular signaling and overcoming multidrug resistance. Adv Drug Deliv Rev 62:192–202

    Article  CAS  Google Scholar 

  374. Fisher KD, Seymour LW (2010) HPMA copolymers for masking and retargeting of therapeutic viruses. Adv Drug Deliv Rev 62:240–245

    Article  CAS  Google Scholar 

  375. Lu ZR (2010) Molecular imaging of HPMA copolymers: visualizing drug delivery in cell, mouse and man. Adv Drug Deliv Rev 62:246–257

    Article  CAS  Google Scholar 

  376. Talelli M, Rijcken CJ, van Nostrum CF, Storm G, Hennink WE (2010) Micelles based on HPMA copolymers. Adv Drug Deliv Rev 62:231–239

    Article  CAS  Google Scholar 

  377. Liu XM, Miller SC, Wang D (2010) Beyond oncology—application of HPMA copolymers in non–cancerous diseases. Adv Drug Deliv Rev 62:258–271

    Article  CAS  Google Scholar 

  378. Lammers T (2010) Improving the efficacy of combined modality anticancer therapy using HPMA copolymer–based nanomedicine formulations. Adv Drug Deliv Rev 62:203–230

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignác Capek .

Glossary

Chemotherapy

as a treatment of cancer often relies on the ability of cytotoxic agents to kill or damage cells which are reproducing. This cancer treatment uses one or more anticancer drugs (chemotherapeutic agents) as part of a standardized chemotherapy regimen. Chemotherapy is one of the major categories of medical oncology (the medical discipline specifically devoted to pharmacotherapy for cancer).

Chemotherapeutic agents

are also known as cytotoxic agents. These are generally used to treat cancer. It includes alkylating agents, antimetabolites, antitumor antibiotics, anthracyclines, and topoisomerase inhibitors.

Chemotherapeutics

such as doxorubicin, cisplatin, and paclitaxel are selectively destructive to malignant cells and tissues.

Cross-link

is a bond that links one polymer chain to another. They can be covalent bonds or ionic bonds. When the term “cross-linking” is used in the synthetic polymer science field, it usually refers to the use of cross-links to promote a difference in the polymers’ physical properties. When “cross-linking” is used in the biological field, it refers to the use of a probe to link proteins together to check for protein–protein interactions, as well as other creative cross-linking methodologies.

DNA replication

is the biological process of producing two identical replicas of DNA from one original DNA molecule. This process occurs in all living organisms and is the basis for biological inheritance. DNA is made up of a double helix of two complementary strands. During replication, these strands are separated. Each strand of the original DNA molecule then serves as a template for the production of its counterpart. Cellular proofreading and error-checking mechanisms ensure near perfect fidelity for DNA replication.

Hemolysis

or haemolysis, also known by several other names, is the rupturing (lysis) of red blood cells (erythrocytes) and the release of their contents (cytoplasm) into surrounding fluid (e.g., blood plasma). Hemolysis may occur in vivo or in vitro (inside or outside the body).

Metastatic cancer, or metastatic tumor,

is one which has spread from the primary site of origin (where it started) into different area(s) of the body. Metastasis is the spread of cancer cells to new areas of the body (often by way of the lymph system or bloodstream).

Photodynamic therapy (PDT)

is a clinically approved and minimally invasive therapy that uses a nontoxic light-sensitive compound (photosynthesizer) that is readily absorbed by abnormal cells. When exposed to a specific wavelength of light, the photosynthesizer is activated to produce changes in endothelial cell integrity that ultimately produces vascular disruption.

Rheumatoid arthritis (RA)

is a long-lasting autoimmune disorder that primarily affects joints. Most commonly, the wrist and hands are involved, with the same joints typically involved on both sides of the body. The disease may also affect other parts of the body. This may result in a low red blood cell count, inflammation around the lungs, and inflammation around the heart slimicide is a chemical that prevents the growth of slime in paper stock.

Spacer

the most developed peptide linker for triggered release of covalently attached drug is the glycylphenylalanylleucylglycine (GFLG) tetra-peptide spacer. This spacer is often employed in published polymer anticancer conjugates based on N-(2-hydroxypropyl)methacrylamide (HPMA).

Therapeutic index (TI)

(also referred to as therapeutic ratio) is a comparison of the amount of a therapeutic agent that causes the therapeutic effect to the amount that causes toxicity. The related terms therapeutic window and safety window refer to a range of doses which optimize between efficacy and toxicity, achieving the greatest therapeutic benefit without resulting in unacceptable side effects or toxicity.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Capek, I. (2017). Noble Metal Nanoparticles. In: Noble Metal Nanoparticles. Nanostructure Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56556-7_2

Download citation

Publish with us

Policies and ethics