Skip to main content
Log in

High-performance antibacterial of montmorillonite decorated with silver nanoparticles using microwave-assisted method

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Syntheses of silver nanocomposites (AgNPs@MMT) were fabricated with different silver nanoparticles to montmorillonite clay (MMT) ratios using microwave-assisted synthesis method, and silver nitrate was used as the precursor of silver nanoparticles. The antibacterial activities of the nanocomposite were evaluated against Staphylococcus aureus and Pseudomonas aeruginosa bacteria by the disk diffusion and macrodilution broth techniques. The prepared nanocomposites were characterized by N2 adsorption–desorption isotherms, X-ray diffraction (XRD), field emission scanning electron microscope, high-resolution transmission electron microscope (HRTEM), X-ray fluorescence spectroscopy and Fourier transform infrared spectroscopy. The wide-angle XRD patterns and HRTEM images demonstrate that silver nanoparticles were fabricated on surface and within MMT channels. The diameters of the AgNPs were below 15 nm, as indicated by UV–Vis absorption, which effectively controlled by the pores of the MMT host. Data revealed that 5 % AgNP@MMT nanocomposite is much more effective than silver nitrate and shows strong antibacterial activities. The efficiency of antibiotics increased when combined with 5 % AgNP@MMT nanocomposite against both the tested strains. The increase in fold area was higher in case of P. aeruginosa than S. aureus. The highest percentage of fold increases was found for Sulfamethaxole/Trimethoprim and Oxacillin followed by Levofloxaci and Nalidixic acid against P.aeruginosa. On the other hand, Imipenem increases activity in presence of AgNP@MMT nanocomposite against S. aureus. Overall, the synergistic effect of antibiotics and nanoparticles clearly revealed that nanoparticles can be effectively used in combination with antibiotics in order to improve their efficiency against various pathogenic microbes. The suspensions of the synthesized nanocomposites were found to be stable over a long time without any sign of detachment of AgNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad MB, Shameli K, Yunus WMZW, Ibrahim NA, Darroudi M (2010) Synthesis and characterization of silver/clay/starch bionanocomposites by green method. Aust J Basic Appl Sci 4:2158–2165

    Google Scholar 

  • Aihara N, Torigoe K, Esumi K (1998) Preparation and characterization of gold and silver nanoparticles in layered laponite suspensions. Langmuir 14:4945–4949

    Article  Google Scholar 

  • Akelah A, Rehab A, Agag T, Betiha M (2007) Polystyrene nanocomposite materials by in situ polymerization into montmorillonite–vinyl monomer interlayers. J Appl Polym Sci 103(6):3739–3750

    Article  Google Scholar 

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    Article  Google Scholar 

  • Amro NA, Kotra LP, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu G (2000) High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16:2789–2796

    Article  Google Scholar 

  • Aravamuthan N, Kumar G, Karthik L, Bhaskara Rao KV (2010) In vitro antagonistic activity of soil actinobacteria against multi drug resistant bacteria. Pharmacologyonline 2:507–516

    Google Scholar 

  • Arnaout CL, Gunsch CK (2012) Impacts of silver nanoparticles Coating on the nitrification potential of Nitrosomonas europaea. Environ Sci Technol 46(10):5387–5395

    Article  Google Scholar 

  • Batarseh KI (2004) Anomaly and correlation of killing in the therapeutic properties of silver (I) chelation with glutamic and tartaric acids. J Antimicrob Chemother 54(2):546–548

    Article  Google Scholar 

  • Betiha MA, Mahmoud SA, Menoufy MF, Al-Sabagh AM (2011) One-pot template synthesis of Ti–Al-containing mesoporous silicas and their application as potential photocatalytic degradation of chlorophenols. Appl Catal B Environ 107(3–4):316–326

    Article  Google Scholar 

  • Betiha MA, Hassan HMA, Al-Sabagh AM, Khder AS, Ahmed EA (2012) Direct synthesis and the morphological control of highly ordered mesoporous AlSBA-15 using urea-tetrachloroaluminate as a novel aluminum source. J Mater Chem 22:17551–17559

    Google Scholar 

  • Chamakura K, Perez-Ballestero R, Luo Z, Bashir S, Liu J (2011) Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants. Colloids Surf B Biointerfaces 84(1):88–96

    Article  Google Scholar 

  • Cho KH, Park JE, Osaka T, Park SG (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960

    Article  Google Scholar 

  • Choi H, Lee JP, Ko SJ, Jung JW, Park H, Yoo S, Park O, Jeong JR, Park S, Kim JY (2013) Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells. Nano Lett 13(5):2204–2208

    Article  Google Scholar 

  • Clinical and Laboratory Standards Institute (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. CLSI, Document M7-A7. CLSI, Wayne, Pa. USA

  • Clinical and Laboratory Standards Institute. 2005. Performance standards for antimicrobial susceptibility testing. Fifteenth informational supplement. CLSI, Document M100-S15. CLSI, Wayne, Pa. USA

  • Dastjerdi R, Montazer M (2010) Review on the application of inorganic nano-structured materials in modification of textiles: focus on anti-microbial. Colloids Surf B Biointerfaces 79:5–18

    Article  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomedicine 6(1):103–109

    Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  Google Scholar 

  • Hamouda T, Baker JR (2000) Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram-negative bacilli. J Appl Microbiol 89:397–403

    Article  Google Scholar 

  • Harley JP, Prescott LM (2002) Laboratory exercises in microbiology. McGraw-Hill Publishers, New York

    Google Scholar 

  • He S, Yao J, Jiang P, Shi D, Zhang H, Xie S, Pang S, Gao H (2001) Formation of silver nanoparticles and self-assembled two-dimensional ordered superlattice. Langmuir 17(5):1571–1575

    Article  Google Scholar 

  • Jin X, Li M, Wang J, Marambio-Jones C, Peng F, Huang X, Damoiseaux R, Hoek EMV (2010) High-throughput screening of silver nanopartice stability and bacterial inactivation in aquatic media; Influence of specific ions. Environ Sci Technol 44:7321–7328

    Article  Google Scholar 

  • Juang RS, Su JY (1992) Sorption of copper and zinc from aqueous sulfate solutions with bis (2-ethylhexyl) phosphoric acid impregnated macroporous resin. Ind Eng Chem Res 31:2774–2779

    Article  Google Scholar 

  • Kim JS, Kuk E, Yu K, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Google Scholar 

  • Kollef MH, Afessa B, Anzueta A, Veremakis C, Kerr KM, Margolis BD, Craven DE, Roberts PR, Arroliga AC, Hubmayr RD, Restrepo MI, Auger WR, Schinner R, NASCENT Investigation Group (2008) Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the NASCENT randomized trial. J Am Med Assoc 300(7):805–813

    Article  Google Scholar 

  • Kozak M, Domka L (2004) Adsorption of the quaternary ammonium salts on montmorillonite. J Phys Chem Solids 65(2–3):441–445

    Google Scholar 

  • Lara HH, Ayala-Nunez NV, Turrent LCI, Padilla CR (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26(4):615–621

    Article  Google Scholar 

  • Li LH, Yen MY, Ho CC, Wu P, Wang CC, Maurya PK, Chen PS, Chen W, Hsieh WY, Chen HW (2013) Non-cytotoxic nanomaterials enhance antimicrobial activities of cefmetazole against multidrug-resistant Neisseria gonorrhoeae. PLoS One 8(5):1–10

    Google Scholar 

  • Lkhagvajav N, Yaşa I, Çelik E, Koizhaiganova M, Sari Ö (2011) Antimicrobial activity of colloidal silver nanoparticles prepared by sol-gel method. Dig J Nanomater Biostruct 6(1):149–154

    Google Scholar 

  • Magaña SM, Quintana P, Aguilar DH, Toledo JA, Ángeles-Chávez C, Cortés MA, León L, Freile-Pelegrín Y, López T, Torres Sánchez RM (2008) Antibacterial activity of montmorillonites modified with silver. J Mol Catal A Chem 281(1–2):192–199

    Article  Google Scholar 

  • Mao H, Gao X, Yang J, Li B (2011) A novel one-step synthesis of meso-structured silica-pillared clay with highly ordered gallery organic–inorganic hybrid frame. Appl Surf Sci 257(10):4655–4662

    Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  Google Scholar 

  • Martinez M, Silley P (2010) Antimicrobial drug resistance. Handb Exp Pharmacol 199:227–264

    Article  Google Scholar 

  • Melaiye A, Youngs WJ (2005) Silver and its application as an antimicrobial agent. Expert Opin Ther Pat 15(2):125–130

    Article  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353

    Article  Google Scholar 

  • Motshekga SC, Ray SS, Onyango MS, Momba MNB (2013) Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. J Hazard Mater 262:439–446

    Article  Google Scholar 

  • Neri G, Rizzo G, Arico AS, Crisafulli C, de Luca L, Donato A, Musolino MG, Pietropaolo R (2007) One-pot synthesis of naturanol from a-pinene oxide on bifunctional Pt–Sn/SiO2 heterogeneous catalysts (I) the catalytic system. Appl Catal A 325:15–24

    Article  Google Scholar 

  • Papa M, Pradell T, Crespo D, Calderon-Moreno JM (2007) Stable silver colloidal dispersions using short chain polyethylene glycol. Colloids Surf A 303(3):184–190

    Article  Google Scholar 

  • Pillai SK, Ray SS, Scriba M, Bandyopadhyay J, van der merwe MPR, Badenhorst J (2013) Microwave assisted green synthesis and characterization of silver/montmorillonite heterostructures with improved antimicrobial properties. Appl Clay Sci 83–84:315–321

    Article  Google Scholar 

  • Polverejan M, Liu Y, Pinnavaia TJ (2002) Aluminated derivatives of porous clay heterostructures (PCH) assembled from synthetic saponite clay: properties as supermicroporous to small mesoporous acid catalysts. Chem Mater 14(5):2283–2288

    Article  Google Scholar 

  • Radniecki TS, Stankus DP, Neigh A, Nason JA, Semprini L (2011) Influence of librated silver nanoparticler on nitrification inhibition of Nitrosomonas europaea. Chemosphere 85(1):43–49

    Article  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  Google Scholar 

  • Rai M, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112(5):841–852

    Article  Google Scholar 

  • Rehab A, Akelah A, Agag T, Betiha MJ (2007) Polymer–organoclay hybrids by polymerization into montmorillonite-vinyl monomer interlayers. J Appl Polym Sci 106(5):3502–3514

    Article  Google Scholar 

  • Roldán MV, Scaffardi LB, de Sanctis O, Pellegri N (2008) Optical properties and extinction spectroscopy to characterize the synthesis of amine capped silver nanoparticles. Mater Chem Phys 112(3):984–990

    Google Scholar 

  • Sadeghi B, Garmaroudi FS, Hashemi M, Nezhad HR, Nasrollahi A, Ardalan S, Ardalan S (2012) Comparison of the anti-bacterial activity on the nanosilver shapes: nanoparticles, nanorods and nanoplates. Adv Powder Technol 23:22–26

    Article  Google Scholar 

  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767–2781

    Google Scholar 

  • Sekhon BP (2010) Metalloantibiotics and antibiotic mimics—an overview. J Pharm Educ Res 1(1):1–20

    Google Scholar 

  • Senthil Kumar P, Ray S, Sunandana CS (2001) Sb-assisted AgI nanoparticle growth in thin films. Mater Phys Mech 4:39–41

    Google Scholar 

  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3(2):168–171

    Google Scholar 

  • Shameli K, Bin Ahmad M, Yunus WMZW, Ibrahim NA, Gharayebi Y, Sedaghat S (2010) Synthesis of silver/montmorillonite nanocomposites using g-irradiation. Int J Nanomed 5:1067–1077

    Google Scholar 

  • Shameli K, Bin Ahmad M, Zargar M, Yunus WMZW, Rustaiyan A, Ibrahim NA (2011) Synthesis of silver nanoparticles in montmorillonite and their antibacterial behaviour. Int J Nanomed 6:581–590

    Article  Google Scholar 

  • Silver S, le Phung T, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634

    Article  Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  Google Scholar 

  • Solanki JN, Murthy ZVP (2011) Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: a topical review. Ind Eng Chem Res 50(22):1231112323

    Article  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Article  Google Scholar 

  • Spadaro JA, Berger TJ, Barranco SD, Chapin SE, Becker RO (1974) Antibacterial effects of silver electrodes with weak direct current. Antimicrob Agents Chemother 6(5):637–642

    Article  Google Scholar 

  • Speranza G, Gottardi G, Pederzolli C, Lunelli L, Canteri R, Pasquardini L, Carli E, Lui A, Maniglio D, Brugnara M, Anderle M (2004) Role of chemical interactions in bacterial adhesion to polymer surfaces. Biomaterials 25(11):2029–2037

    Article  Google Scholar 

  • Stein A, Melde BJ, Schroden RC (2000) Hybrid inorganic–organic mesoporous silicates—nanoscopic reactors coming of age. Adv Mater 12(19):1403–1419

    Article  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  Google Scholar 

  • Taglietti A, Arciola CR, D` Agostino A, Dacarro G, Montanaro L, Campoccia D, Cucca L, Vercellino M, Poggi A, Pallavicini P, Visai L (2014) Antibiofilm activity of monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials 35:1779–1788

    Article  Google Scholar 

  • Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, Xu H, Liu Z, Peng R (2013) Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species–specific mechanisms. ACS Appl Mater Interfaces 5(9):3867–3874

    Article  Google Scholar 

  • Vadakkekara R, Chakraborty M, Parikh PA (2012) Catalytic performance of silica-supported silver nanoparticles for liquid-phase oxidation of ethylbenzene. Ind Eng Chem Res 51:5691–5698

    Article  Google Scholar 

  • World Health Organization (2011) Guidelines for drinking-water quality, 4th ed pp 415. http://whqlidboc.who.int/publications/2011/9789241548151.eng.pdf (Accessed July 2013)

  • Wright JB, Lam K, Hansen D, Burrell RE (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 27:344–350

    Article  Google Scholar 

  • Xie YW, Ye RQ, Liu HL (2006) Synthesis of silver nanoparticles in re-verse micelles stabilized by natural biosurfactant. Colloid Surf A 279:175–178

    Article  Google Scholar 

  • Xiu ZM, Zhang QB, Puppala HI, Colvin VL, Alvarez PJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275

    Article  Google Scholar 

  • Zhao D, Zhou J, Liu N (2006) Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior. Appl Clay Sci 33:161–170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abeer Ahmed Rushdy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheiralla, Z.M.H., Rushdy, A.A., Betiha, M.A. et al. High-performance antibacterial of montmorillonite decorated with silver nanoparticles using microwave-assisted method. J Nanopart Res 16, 2560 (2014). https://doi.org/10.1007/s11051-014-2560-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2560-6

Keywords

Navigation