Skip to main content

Nanofield

  • Chapter
  • First Online:
Noble Metal Nanoparticles

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Gold and silver that are beautiful and resistant to water and air were always fascinating for people. Metals and noble metals remain important even in the present ages of wood, polymer, carbon, and silicon. Different pathways have been proposed for the preparation of noble metal nanoparticles with tailor-made size and shape in the present decades. The nanometer regime covers the transition from condensed matter behavior to atomic and molecular properties and thus is a very rich but also very demanding area in materials science. Decreasing the dimension of nanoparticles has pronounced effect on the physical properties that significantly differ from the bulk material. They represent the missing link between metal atoms and microparticles. The role of interfaces is rapidly increasing in science and nanotechnology and they are the key to new functions. Separation and purification techniques play important role in separation of the nanomaterials (NMs) and their conjugates from the original reactants and by-products. Characterization includes assessment of composition, morphology, dimensionality, and physical and chemical properties. Size, volume, aspect ratio, perimeter, projected area, surface roughness, etc., are typical morphology parameters that are assessed. A variety of well-developed techniques which already have been successfully applied to the characterization of bare NMs are now being extended to examining NM-conjugates. These include separation-based, scattering, microscopy, spectroscopy, mass spectroscopy, and thermal techniques. Dialysis, filtration, extraction, and differential precipitation represent the most common methods applied to nanoparticle-(bio)conjugate purification. Chemical extraction and differential precipitation are other potentially efficient but largely underused purification techniques. Top-down approaches, such as photolithography, e-beam lithography (EBL), and Focused ion beam (FIB), offer high fidelity and high controllability in terms of design and prediction. Some bottom-up approaches based on self-assembly can produce high-resolution (sub)nanostructures over a large area with a low cost. The utilization of spectroscopic techniques for the detection of cancerous and precancerous lesions is based on the analysis of specific light-tissue interactions to assess the state of biological tissue. As light illuminates the targeted tissue, these biomolecules, termed fluorophores, absorb the energy in the illuminating light and respond by emitting fluorescent light of lower energy (and longer wavelength). Advances in bioengineering and the continued refinement of optical detection techniques have led to the development of multimodal optical detection systems. The ultimate goal of the optical detection systems centers on the achievement of an “optical biopsy.” Nanotechnology is increasingly gaining a foothold in clinical medicine, especially in oncology. The fabrication of nanodevices as probes is complex, most likely the assembly of building blocks including nanoparticles, nanowires, nanotubes, and substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1D:

One-dimensional

1H-NMR:

Proton nuclear magnetic resonance

2D:

Two-dimensional

3D:

Three-dimensional

9-BBN:

9-borabicyclo [3.3.1] nonane

AAO:

Anodized aluminum oxide

AFM:

Atomic force microscopy

AgNPs:

Silver nanoparticles

Ag–PfFt:

Ferritin protein

AOT:

Sodium di(2-ethylhexyl) sulphosuccinate

APS:

Aminopropyltrimethoxysilane

APTES:

(Aminopropyl)triethoxysilane

APTMS:

Aldehyde propyltrimethoxysilane

AU:

Analytical ultracentrifugation

AuDENP:

Dendrimer-entrapped gold nanoparticles

AuDSNPs:

Dendrimer-stabilized gold nanoparticles

AuNDs:

Gold nanodots

AuNPs:

Gold nanoparticles

BAC:

Benzyldimethyltetradecylammonium chloride

BDAC:

Benzyldimethylhexadecylammonium chloride

BHDAC:

Benzylhexadecylammonium chloride

C AuNP :

AuNP concentrations

CD:

Cyclodextrin

CE:

Capillary electrophoresis

CEA:

Carcinoembryonic antigen

CMC:

Critical micellar concentration

CMT:

Critical micellar temperature

CNT:

Carbon nanotube

CSPI:

Cross-sectional perimeter integration

CT:

Computed tomography

CTAB:

Cetyltrimethylammonium bromide

CTAC:

Cetyltrimethylammonium chloride

Cys:

Cysteine

DanArg:

Dansylated arginine

DDA:

Discrete dipole approximation

DDT:

1-dodecanethiol

DENPs:

Dendrimer-entrapped nanoparticles

DFM:

Dark-field microscopy

DLS:

Dynamic light scattering

DNA:

Deoxyribonucleic acid

DOS:

Density of states

DOTAP:

1,2-dioleoyl-3-trimethylammonium propane

DSC:

Differential scanning calorimetry

DSNPs:

Dendrimer-stabilized nanoparticles

DVLO:

Derjaguin-Verway-Landau-Overbeek theory

E :

Efficiency

EBL:

E-beam lithography

EDAX:

Energy-dispersive X-ray analysis

EDS:

Energy-dispersive X-ray spectroscopy

EDX:

Energy-dispersive X-ray spectroscopy

EDXRF:

Energy-dispersive X-ray fluorescence

EELS:

Electron energy loss spectroscopy

EET:

Electronic energy transfer

EG:

Ethylene glycol

EIS:

Electrochemical impedance spectroscopy

ELISA:

Enzyme-linked immunosorbent assay

EM:

Electromagnetic

EPR:

Enhanced permeability and retention

ES-DMA:

Electrospray-differential mobility analysis

ESEM:

Environmental SEM

Et3P:

Three ethyl phosphine

FA:

Folic acid

FAR:

Folic acid receptor

FCS:

Fluorescence correlation spectroscopy

FE:

Field emission

FESEM:

Field emission scanning electron microscopy

FFF:

Field flow fractionation

FI:

Fluorescein isothiocyanate

FIB:

Focused ion beam

FRET:

Förster (fluorescence) resonance energy transfer

FTIR:

Fourier transform infrared

FWHM:

Half the maximum intensity

GE:

Gel electrophoresis

Glu:

Glutamic acid

Gly:

Glycine

GO:

Graphene oxide

Gp:

Graphene peak

GSH:

Glutathione

HAuCl4 × 3H2O:

Gold(III)-chloride-trihydrate

HDT:

1-hexadecanethiol

HEIS:

High-energy ion scattering

His:

Histidine

HLB:

Hydrophilic-lipophilic balance

HMTS:

Heptamethyltrisiloxane

HOPG:

Highly ordered (oriented) pyrolytic graphite

HPLC:

High-performance liquid chromatography

HRTEM:

High-resolution transmission electron microscopy

HSA:

Human serum albumin

HTAB:

N-hexadecyltrimethylammonium bromide

IBBC:

Integrated blood barcode chip

ICP-AES:

Inductively coupled plasma-atomic emission spectrometry

ICP-OES:

Inductively coupled plasma-optical emission spectroscopy

ICPs:

Infinite coordination polymer particles

IL:

Ionic liquid

IR:

Infrared

ITC:

Isothermal titration calorimetry

Lac:

P-aminophenyl-β-D-lactopyranoside

LBL:

Layer-by-layer

LDOS:

Local density of states

L-PEI:

Linear polyethylenimine

LSP:

Localized surface plasmon

LSPR:

Localized surface plasmon resonance

mAbs:

Monoclonal antibodies

MBA:

P-mercaptobenzoic acid

MBI:

2-mercaptobenzimidazole

MC@MNPs:

Metal nanoparticles decorated microcapsule

MDR:

Multidrug resistance

MEF:

Metal-enhanced fluorescence

Met:

Methionine

NIR:

Near-infrared

MMT:

Montmorillonite

MOFs:

Metal-organic frameworks

MPA:

3-mercaptopropionic acid

mPEG-SH:

Monofunctional methoxy PEG

MPTMS:

Mercaptopropyltrimethoxysilane

MRI:

Magnetic resonance imaging

MS:

Mass spectrometry

MW:

Microwave

MWCNTs:

Multi-walled carbon nanotubes

MwCO:

Molecular weight cutoff

Na2H(C3H5O(COO)3):

Sodium citrate

NaAuCl4 :

Gold salt

NaBH4 :

Sodium borohydride

N ap :

Average number of particles

NBI:

Narrowband imaging

NICISS:

Neutral impact collision ion scattering spectroscopy

NIL:

Nanoimprint lithography

NMHs:

Noble metal-based hybrids

NMNPs:

Noble metal nanoparticles

NMR:

Nuclear magnetic resonance

NMs:

Nanomaterials

NPs:

Nanoparticles

NSOM:

Near-field scanning optical microscopy

NSOM (SNOM):

Near-field scanning optical microscopy

NT:

1-nonanethiol

o/w:

Oil-in-water

o/w/o:

Oil-in-water-in-oil

OA:

Oriented attachment

OCT:

Optical coherence tomography

OR:

Ostwald ripening

PA:

Amino polymers

PAA:

Poly(allylamine)

PAM:

Polyacrylamide

PAH:

Poly(allylamine hydrochloride)

PAMAM:

Poly(amidoamine)

PAN:

Poly(amidoamine), polyacrylate, polyacrylonitrile

PAT:

Process analytical technology

PCS:

Photon correlation spectroscopy

PBS:

Phosphate buffer saline

PDHPMA:

Poly(2,3-dihydroxypropyl methacrylate)

PDMS:

Polydimethylsiloxane

PDPAEMA:

Poly[2-(diisopropylamino) ethyl methacrylate]

PDT:

Photodynamic therapy

PEG:

Poly(ethylene glycole)

PEI:

Polyethyleneimine

PEO:

Poly(ethylene oxide)

PEs:

Polyelectrolytes

PET:

Positron emission tomography

PES:

Polyethersulfone

PEU:

Poly(ether)urethane

PfFt:

Ferritin protein

PG:

Polyguanidino oxanorbornene

PLGA:

Poly(L-glutamic acid)

PLL:

Poly(L-lysine)

PNIPAM:

Poly(N-isopropylacrylamide)

PPO:

Poly(propylene oxide)

PSA:

Prostate-specific antigen

PSD:

Particle size distribution

PSt:

Polystyrene

PTA:

Photothermal ablation therapy

PVA:

Poly(vinyl alcohol)

PVPo:

Polyvinylpyrrolidone

QD:

Quantum dot

RBS:

Rutherford backscattering spectrometry

RCA120 :

Recinus communis agglutinin

RET:

Resonance energy transfer

RF:

Relative frequency

RGD:

Arginine-glycine-aspartic acid

ROMP:

Ring-opening metathesis polymerization

r p :

Particle radius

S :

Sedimentation coefficient

S/V :

Surface-to-volume

SAED:

Selected-area electron diffraction

SAMs:

Self-assembled monolayers

SANS:

Small-angle neutron scattering

S area :

Surface area

SAXS:

Small-angle X-ray scattering

SEC:

Size exclusion

SEM:

Scanning electron microscopy

SERRS:

Surface-enhanced resonance Raman scattering

SERS:

Surface-enhanced Raman scattering

SET:

Surface energy transfer

SiNWs:

Silicon nanowires

SLS:

Static light scattering

SNOM:

Scanning near-field optical microscopy

(sp)FRET:

Single-pair or particle

SPM:

Scanning probe microscopy

SPR:

Surface plasmon resonance

STM:

Scanning tunneling microscopy

SWCNTs:

Single-walled carbon nanotubes

TAPP:

Tetra(4-aminophenyl) porphyrin

TDT:

1-tetradecanethiol

TED:

Transmission electron diffraction

TEM:

Transmission electron microscopy

TEOS:

Tetraethylorthosilicate, tetraethoxysilane

T g :

Glass transition temperature

TGA:

Thermal gravimetric analysis

TG-DTA:

Thermal gravimetric and differential thermal analysis

TLC:

Thin-layer chromatography

TOA:

Trioctylamine

TOAB:

Tetraoctylammonium bromide

Trp:

Tryptophan

Tween 20:

Polyoxyethylene sorbitan monolaurate

UPD:

Underpotential deposition

v f :

Volume fractions

VFT:

Vogel-Fulcher-Tammann

w/o:

Water-in-oil

w/o/w:

Water-in-oil-in-water

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

ν a :

Volume of action

References

  1. Faraday M (1857) The bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc 147:145–181

    Article  Google Scholar 

  2. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  3. Schmid G (ed) (2004) Nanoparticles. Wiley-VCH, Weinheim

    Google Scholar 

  4. Haruta M (2002) Catalysis of gold nanoparticles deposited on metal oxides. Cattech 6:102–115

    Article  CAS  Google Scholar 

  5. Zayats M, Kharitonov AB, Pogorelova SP, Lioubashevski O, Katz E, Willner I (2003) Probing photoelectrochemical processes in Au–CdS nanoparticle arrays by surface plasmon resonance: Application for the detection of acetylcholine esterase inhibitors. J Am Chem Soc 125:16006–16014

    Article  CAS  Google Scholar 

  6. Jahn W (1999) Review: chemical aspects of the use of gold clusters in structural biology. J Struct Biol 127:106–112

    Article  CAS  Google Scholar 

  7. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics—a route to nanoscale optical devices. Adv Mater 13:1501–1505

    Article  CAS  Google Scholar 

  8. Wang SH, Sato S, Kimura K (2003) Preparation of hexagonal-close-packed colloidal crystals of hydrophilic monodisperse gold nanoparticles in bulk aqueous solution. Chem Mater 15:2445–2448

    Article  CAS  Google Scholar 

  9. Kiely CJ, Fink J, Brust M, Bethell D, Schiffrin DJ (1998) Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396:444–446

    Article  CAS  Google Scholar 

  10. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306

    Article  CAS  Google Scholar 

  11. Qin D, Xia YN, Rogers JA, Jackman RJ, Zhao XM, Whitesides GM (1998) Microfabrication, microstructure and microsystems. Top Curr Chem 194:1–20

    Article  CAS  Google Scholar 

  12. Tennant DM, Feder K, Dreyer KF, Gnall RP, Koch TL, Koren U, Miller BI, Young MG (1995) Phase grating masks for photonic integrated circuits fabricated by e-beam writing and dry etching: Challenges to commercial applications. Microelectron Eng 27:427–434

    Article  CAS  Google Scholar 

  13. Feldheim DL, Foss CA Jr (2002) Metal nanoparticles; synthesis, characterization, and applications. Marcel Dekker Incorporated, New York

    Google Scholar 

  14. Badia A, Singh S, Demers L, Cuccia L, Brown GR, Lennox RB (1996) Self-assembled monolayers on gold nanoparticles. Chem Eur J 2:359–363

    Article  CAS  Google Scholar 

  15. Yao H, Momozawa O, Hamatani T, Kimura K (2001) Stepwise size-selective extraction of carboxylate-modified gold nanoparticles from an aqueous suspension into toluene with tetraoctylammonium cations. Chem Mater 13:4692–4697

    Article  CAS  Google Scholar 

  16. Hussain N, Singh B, Sakthivel T, Florence AT (2003) Formulation and stability of surface-tethered DNA-gold-dendron nanoparticles. Int J Pharm 254:27–31

    Article  CAS  Google Scholar 

  17. Miyazaki A, Nakano Y (2000) Morphology of platinum nanoparticles protected by poly(N-isopropylacrylamide). Langmuir 16:7109–7111

    Article  CAS  Google Scholar 

  18. Taniguchi N (1974) On the basic concept of nanotechnology. In Proceedings of the international conference on production engineering. Tokyo (Part II) Japan Society of Precision Engineering, pp 18–23

    Google Scholar 

  19. Bhattacharya D, Rajinder G (2005) Nanothechnology and potential of microorganisms. Crit Rev Biotechnol 25:199–204

    Article  CAS  Google Scholar 

  20. Sanpui P, Chattopadhyay A, Ghosh SS (2011) Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Interfaces 3:218–228

    Article  CAS  Google Scholar 

  21. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649

    Article  CAS  Google Scholar 

  22. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  23. Liu S, Weaver JVM, Save M, Armes SP (2002) Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles. Langmuir 18:8350–8357

    Article  CAS  Google Scholar 

  24. Tatarchuk VV, Sergievskaya AP, Druzhinina IA, Zaikovsky VI (2011) Kinetics and mechanism of the growth of gold nanoparticles by reduction of tetrachloroauric acid by hydrazine in Triton N-42 reverse micelles. J Nanopart Res 13:4997–5007

    Article  CAS  Google Scholar 

  25. Aubin-Tam ME, Hamad-Schifferli K (2008) Structure and function of nanoparticle-protein conjugates. Biomed Mater 3:034001

    Article  CAS  Google Scholar 

  26. Wong Ch, West PE, Olson KS, Mecartney ML, Starostina N (2007) Tip Dilation and AFM Capabilities in the Nanoparticle Characterization. J Mater 59:12–16

    Google Scholar 

  27. Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL (2011) Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem 83:4453–4488

    Article  CAS  Google Scholar 

  28. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  Google Scholar 

  29. Amendola V, Meneghetti M (2009) Size evaluation of gold nanoparticles by UV-vis spectroscopy. J Phys Chem C 113:4277–4285

    Article  CAS  Google Scholar 

  30. Trapiella-Alfonso L, Montoro Bustos AR, Encinar JR, Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2011) New integrated elemental and molecular strategies as a diagnostic tool for the quality of water soluble quantum dots and their bioconjugates. Nanoscale 3:954–957

    Article  CAS  Google Scholar 

  31. Wu C, Schneider T, Zeigler M, Yu J, Schiro PG, Burnham DR, McNeill JD, Chiu DT (2010) Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. J Am Chem Soc 132:15410–15417

    Article  CAS  Google Scholar 

  32. Williams SKR, Runyon JR, Ashames AA (2011) Field-Flow fractionation: addressing the nano challenge. Anal Chem 83:634–642

    Article  CAS  Google Scholar 

  33. Jans H, Liu X, Austin L, Maes G, Huo Q (2009) Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal Chem 81:9425–9432

    Article  CAS  Google Scholar 

  34. Swift J, Butts CA, Cheung-Lau J, Yerubandi V, Dmochowski IJ (2009) Efficient self-assembly of Archaeoglobus fulgidus ferritin around metallic cores. Langmuir 25:5219–5225

    Article  CAS  Google Scholar 

  35. Patterson A (1939) The scherrer formula for X-Ray particle size determination. Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  36. Müller CB, Loman A, Richtering W, Enderlein J (2008) Dual-focus fluorescence correlation spectroscopy of colloidal solutions: influence of particle size. J Phys Chem B 112:8236–8240

    Article  CAS  Google Scholar 

  37. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626

    Article  CAS  Google Scholar 

  38. Andrews DL, Bradshaw DS (2004) Virtual photons, dipole fields and energy transfer: A quantum electrodynamical approach. Eur J Phys 25:845–858

    Article  Google Scholar 

  39. Brunner TJ, Bohner M, Dora C, Gerber C, Stark WJ (2007) Comparison of amorphous TCP nanoparticles to micron-sized alpha-TCP as starting materials for calcium phosphate cements. J Biomed Mater Res, Part B 83B:400–407

    Article  CAS  Google Scholar 

  40. Shon YS, Choi D, Dare J, Dinh T (2008) Synthesis of nanoparticle-cored dendrimers by convergent dendritic functionalization of monolayer-protected nanoparticles. Langmuir 24:6924–6931

    Article  CAS  Google Scholar 

  41. Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7:941–945

    Article  CAS  Google Scholar 

  42. Imura K, Okamoto H (2008) Development of novel near-field microspectroscopy and imaging of local excitations and wavefunctions of nanomaterials. Bull Chem Soc Jpn 81:659–675

    Article  CAS  Google Scholar 

  43. N’Gom M, Ringnalda J, Mansfield JF, Agarwal A, Kotov N, Zaluzec NJ, Norris TB (2008) Single particle plasmon spectroscopy of silver nanowires and gold nanorods. Nano Lett 8:3200–3204

    Article  CAS  Google Scholar 

  44. Yurkin MA, Hoekstra AG (2007) The discrete dipole approximation: an overview and recent developments. J Quant Spectrosc Radiat Transfer 106:558–589

    Article  CAS  Google Scholar 

  45. Millstone JE, Wei W, Jones MR, Yoo H, Mirkin CA (2008) Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett 8:2526–2529

    Article  CAS  Google Scholar 

  46. Yu JS, Kim JY, Lee S, Mbindyo JKN, Martin BR, Mallouk TE (2000) Template synthesis of polymer-insulated colloidal gold nanowires with reactive ends. J Chem Soc, Chem Comm 24:2445–2446

    Article  Google Scholar 

  47. Mossmer S, Spatz JP, Möller M, Aberle T, Schmidt J, Burchard W (2000) Solution behavior of poly(styrene)-block-poly(2-vinylpyridine micelles containing gold nanoparticles. Macromolecules 33:4791–4798

    Article  CAS  Google Scholar 

  48. Yang T, Fu X, Zhang Q, Cui Y, Yuan C, Zhang W, Ge H, Chen Y (2014) Fabrication of Ag nanodot array over large area for surface-enhanced Raman scattering using hybrid nanoimprint mold made from AAO template. Appl Phys A 117:909–915

    Article  CAS  Google Scholar 

  49. Li J, Zhu Z, Liu F, Zhu B, Ma Y, Yan J, Lin B, Ke G, Liu R, Zhou L, Tu S, Yang C (2016) DNA-mediated morphological control of silver nanoparticles. Small 12:5449–5487

    Article  CAS  Google Scholar 

  50. Figuerola A, Di Corato R, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62:126–143

    Article  CAS  Google Scholar 

  51. Schnorr JM, Swager TM (2011) Emerging applications of carbon nanotubes. Chem Mater 23:646–657

    Article  CAS  Google Scholar 

  52. Sau TK, Murphy CJ (2005) Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 21:2923–2929

    Article  CAS  Google Scholar 

  53. Yang SM, Kim SH, Lim JM, Yi GR (2008) Synthesis and assembly of structured colloidal particles. J Mater Chem 18:2177–2190

    Article  CAS  Google Scholar 

  54. Chen Y, Preece JA, Palmer RE (2008) Processing and characterization of gold nanoparticles for use in plasmon probe spectroscopy and microscopy of biosystems. Ann NY Acad Sci 1130:201–206

    Article  CAS  Google Scholar 

  55. Zhou M, Wang B, Rozynek Z, Xie Z, Fossum JO, Yu X, Raaen S (2009) Minute synthesis of extremely stable gold nanoparticles. Nanotechnology 20:505606

    Article  CAS  Google Scholar 

  56. Kim YG, Yang SY (2010) Nanoparticle syntheses using non-porous and porous polyelectrolyte multilayers for biological applications. J Nanosci Nanotechnol 10:6892–6895

    Article  CAS  Google Scholar 

  57. Matijevic E (1981) Monodispersed metal (hydrous) oxides—a fascinating field of colloid science. Acc Chem Res 14:22–29

    Article  CAS  Google Scholar 

  58. Zijlstra P, Chon JWM, Gu M (2009) Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459:410–413

    Article  CAS  Google Scholar 

  59. Chen PC, Mwakwari SC, Oyelere AK (2008) Gold nanoparticles: From nanomedicine to nanosensing. Nanotechnol Sci Appl 1:45–66

    Article  CAS  Google Scholar 

  60. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  61. Burgin J, Liu M, Guyot-Sionnest P (2008) Dielectric sensing with deposited gold bipyramids. J Phys Chem C 112:19279–19282

    Article  CAS  Google Scholar 

  62. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44:7852–7872

    Article  CAS  Google Scholar 

  63. Crespo-Biel O, Ravoo BJ, Huskens J, Reinhoudt DN (2006) Writing with molecules on molecular printboards. Dalton Trans 23:2737–2741

    Article  CAS  Google Scholar 

  64. Skrabalak SE, Chen J, Au L, Lu X, Li X, Xia Y (2007) Gold nanocages for biomedical applications. Adv Mater 19:3177–3184

    Article  CAS  Google Scholar 

  65. Xia Y, Xiong Y, Lim B, Skrabalak SE (2008) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103

    Article  CAS  Google Scholar 

  66. Nehl CL, Hafner JH (2008) Shape-dependent plasmon resonances of gold nanoparticles. J Mater Chem 18:2415–2419

    Article  CAS  Google Scholar 

  67. Zhou J, Ralston J, Sedev R, Beattie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331:251–262

    Article  CAS  Google Scholar 

  68. Boyer C, Whittaker MR, Luzon M, Davis TP (2009) Design and synthesis of dual thermoresponsive and antifouling hybrid polymer/gold nanoparticles. Macromolecules 42:6917–6926

    Article  CAS  Google Scholar 

  69. Huang L, Wang H, Wang Z, Mitra A, Bozhilov KN, Yan Y (2002) Nanowire arrays electrodeposited from liquid crystalline phases. Adv Mater 14:61–64

    Article  CAS  Google Scholar 

  70. Redl FX, Black CT, Papaefthymiou GC, Sandstrom RL, Yin M, Zeng H, Murray CB, O’Brien SP (2004) Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J Am Chem Soc 126:14583–14599

    Article  CAS  Google Scholar 

  71. Zhu M, Lanni E, Garg N, Bier ME, Lin R (2008) Kinetically controlled, high-yield synthesis of Au25 clusters. J Am Chem Soc 130:1138–1139

    Article  CAS  Google Scholar 

  72. Qian X, Zhou X, Nie S (2008) Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. J Am Chem Soc 130:14934–14935

    Article  Google Scholar 

  73. Akola J, Walter M, Whetten RL, Häkkinen H, Grönbeck H (2008) On the structure of thiolate-protected Au25. J Am Chem Soc 130:3756–3757

    Article  CAS  Google Scholar 

  74. Yang KH, Liu YC, Yu CC (2009) Temperature effect of electrochemically roughened gold substrates on polymerization electrocatalysis of polypyrrole. Anal Chim Acta 631:40–46

    Article  CAS  Google Scholar 

  75. Zhang H, Wang G, Chen D, Lv X, Li J (2008) Tuning photoelectrochemical performances of Ag–TiO2 nanocomposites via reduction/oxidation of Ag. Chem Mater 20:6543–6549

    Article  CAS  Google Scholar 

  76. Yamauchi Y, Takai A, Nagaura T, Inoue S, Kuroda K (2008) Pt fibers with stacked donut-like mesospace by assembling Pt nanoparticles: Guided deposition in physically confined self-assembly of surfactants. J Am Chem Soc 130:5426–5427

    Article  CAS  Google Scholar 

  77. Virel A, Saa L, Pavlov V (2009) Modulated growth of nanoparticles. Application for sensing nerve gases. Anal Chem 81:268–272

    Article  CAS  Google Scholar 

  78. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc, Chem Commun 801–802

    Google Scholar 

  79. Shon YS, Mazzitelli C, Murray RW (2001) Unsymmetrical disulfides and thiol mixtures produce different mixed monolayer-protected gold clusters. Langmuir 17:7735–7741

    Article  CAS  Google Scholar 

  80. Li XM, de Jong MR, Inoue K, Shinkai S, Huskens J, Reinhoudt DN (2001) Formation of gold colloids using thioether derivatives as stabilizing ligands. J Mater Chem 11:1919–1923

    Article  CAS  Google Scholar 

  81. Boal AK, Ilhan F, DeRouchey JE, Thurn-Albrecht T, Russell TP, Rotello VM (2000) Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404:746–748

    Article  CAS  Google Scholar 

  82. Brousseau LC, Novak JP, Marinakos SM, Feldheim DL (1999) Assembly of phenylacetylene-bridged gold nanocluster dimers and trimers. Adv Mater 11:447–449

    Article  CAS  Google Scholar 

  83. Maye MM, Chun SC, Han L, Rabinovich D, Zhong CJ (2002) Novel spherical assembly of nanoparticles mediated by a thioether. J Am Chem Soc 124:4958–4959

    Article  CAS  Google Scholar 

  84. Mohan YM, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, Raju KM (2010) Controlling of silver nanoparticles structure by hydrogel networks. J Colloid Interface Sci 342:73–82

    Article  CAS  Google Scholar 

  85. da Costa LP, Formiga ALB, Mazali IO, Sigoli FA (2011) Spontaneous formation of highly dispersed spheroidal metallic silver nanoparticles in surfactant-free N, N-dimethylacetamide. Synth Met 161:1517–1521

    Article  CAS  Google Scholar 

  86. Pastoriza-Santos I, Liz-Marzán LM (2009) N, N-dimethylformamide as a reaction medium for metal nanoparticle synthesis. Adv Func Mater 19:679–688

    Article  CAS  Google Scholar 

  87. Nath S, Jana S, Pradhan M, Pal T (2010) Ligand-stabilized metal nanoparticles in organic solvent. J Colloid Interface Sci 341:333–352

    Article  CAS  Google Scholar 

  88. Huang NM, Radiman S, Lim HN, Khiew PS, Chiu WS, Lee KH, Syahida A, Hashim R, Chia CH (2009) γ-ray assisted synthesis of silver nanoparticles in chitosan solution and the antibacterial properties. Chem Eng J 155:499–507

    Article  CAS  Google Scholar 

  89. Darmanin T, Nativo P, Gilliland D, Ceccone G, Pascual C, De Berardis B, Guittard F, Rossi F (2012) Microwave-assisted synthesis of silver nanoprisms/nanoplates using a modified polyol process. Colloids Surf A 395:145–151

    Article  CAS  Google Scholar 

  90. Hsu YC, Chen YM, Lin WL, Lan YF, Chan YN, Lin JJ (2010) Hierarchical synthesis of silver nanoparticles and wires by copolymer templates and visible light. J Colloid Interface Sci 352:81–86

    Article  CAS  Google Scholar 

  91. Capek I (2006) Nanocomposite structures and dispersions. In: Mobius D, Muller R (eds). Elsevier, London

    Google Scholar 

  92. Misra RDK, Gubbala S, Kale A, Egelhoff WF (2004) A comparison of the magnetic characteristics of nanocrystalline nickel, zinc, and manganese ferrites synthesized by reverse micelle technique. J Mater Sci Eng B 111:164–174

    Article  CAS  Google Scholar 

  93. Dominguez MS, Pemartin K, Boutonnet M (2012) Preparation of inorganic nanoparticles in oil-in-water microemulsions: a soft and versatile approach. Curr Opin Colloid Interface Sci 17:297–305

    Article  CAS  Google Scholar 

  94. Trickett K, Brice H, Myakonkaya O, Eastoe J, Rogers SE, Heenan RK, Grillo I (2010) Microemulsion-based organogels containing inorganic nanoparticles. Soft Matter 6:1291–1296

    Article  CAS  Google Scholar 

  95. Boutonnet M, Lögdberg S, Svensson E (2008) Recent developments in the application of nanoparticles prepared from w/o microemulsions in heterogeneous catalysis. Curr Opin Colloid Interface Sci 13:270–286

    Article  CAS  Google Scholar 

  96. Cui YN, Threlfall M, Van Duijneveldt JS (2011) Optimizing organoclay stabilized Pickering emulsions. J Colloid Interface Sci 356:665–671

    Article  CAS  Google Scholar 

  97. Pickering SU (1907) Emulsions. J Chem Soc Trans 91:2001–2021

    Article  Google Scholar 

  98. Ma C, Bi X, Ngai T, Zhang GZ (2013) Polyurethane-based nanoparticles as stabilizers for oil-in-water or water-in-oil Pickering emulsions. J Mater Chem A 1:5353–5360

    Article  CAS  Google Scholar 

  99. Melle S, Lask M, Fuller GG (2005) Pickering emulsions with controllable stability. Langmuir 21:2158–2162

    Article  CAS  Google Scholar 

  100. Leal-Calderon F, Schmitt V (2008) Solid-stablized emulsions. Curr Opin Colloid Interface Sci 13:217–227

    Article  CAS  Google Scholar 

  101. Zhao ZH, Liu WX, Liu ZY, Ding PX, Li HD (2013) Phase inversion of TiO2 nanoparticle stabilized emulsions of alkenyl succinic anhydride. Chem Eng Sci 87:246–257

    Article  CAS  Google Scholar 

  102. Chazalviel JN, Allongue P (2011) On the origin of the efficient nanoparticle mediated electron transfer across a self-assembled monolayer. J Am Chem Soc 133:762–764

    Article  CAS  Google Scholar 

  103. He Y, Su S, Xu TT, Zhong YL, Zapien JA, Li J, Fan CH, Lee ST (2011) Silicon-based highly efficient SERS-active platform for sensitive and sequence-specific dna detection. Nano Today 6:122–130

    Google Scholar 

  104. Canevari TC, Raymundo-Pereira PA, Landers R, Machado SAS (2013) Direct synthesis of Ag nanoparticles incorporated on a mesoporous hybrid material as a sensitive sensor for the simultaneous determination of dihydroxybenzenes isomers. Eur J Inorg Chem 33:5746–5754

    Google Scholar 

  105. Huo Z, Tsung CK, Huang W, Zhang X, Yang P (2008) Sub-two nanometer single crystal Au nanowires. Nano Lett 8:2041–2044

    Google Scholar 

  106. Wei G, Zhou H, Liu Z, Song Y, Wang L, Sun L, Li Z (2005) One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network. J Phys Chem B 109:8738–8743

    Article  CAS  Google Scholar 

  107. Zhang J, Liu H, Wang Z, Ming N (2007) Shape-selective synthesis of gold nanoparticles with controlled sizes, shapes, and plasmon resonances. Adv Func Mater 17:3295–3303

    Article  CAS  Google Scholar 

  108. Gong J (2012) Structure and surface chemistry of gold-based model catalysts. Chem Rev 112:2987–3054

    Article  CAS  Google Scholar 

  109. Önal Y, Schimpf S, Claus P (2004) Structure sensitivity and kinetics of D-glucose oxidation to D-gluconic acid over carbon-supported gold catalysts. J Catal 223:122–133

    Article  CAS  Google Scholar 

  110. Bond GC (2002) Gold: a relatively new catalyst. Catal Today 72:5–9

    Article  CAS  Google Scholar 

  111. Bond GC, Louis C, Thompson DT (2006) Catalysis by gold. Catalytic science series 6. Imperial College Press, London

    Google Scholar 

  112. Zhang Q, Lee I, Joo JB, Zaera F, Yin Y (2012) Core-shell nanostructured catalysts. Acc Chem Res 46:1816–1824

    Article  CAS  Google Scholar 

  113. Zeng HC (2013) Integrated nanocatalysts. Acc Chem Res 46:226–235

    Article  CAS  Google Scholar 

  114. Huang HY, Chen WF, Kuo PL (2005) Self-assembly of gold nanoparticles induced by poly (oxypropylene) diamines. J Phys Chem B 109:24288–24294

    Article  CAS  Google Scholar 

  115. Scott RWJ, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692–704

    Article  CAS  Google Scholar 

  116. Esumi K (2003) Dendrimers for Nanoparticle Synthesis and Dispersion Stabilization. Top Curr Chem 227:31–52

    Article  CAS  Google Scholar 

  117. Sanghavi BJ, Srivastava AK (2011) Adsorptive stripping differential pulse voltammetric determination of venlafaxine and desvenlafaxine employing Nafion-carbon nanotube composite glassy carbon electrode. Electrochim Acta 56:4188–4196

    Article  CAS  Google Scholar 

  118. Szroeder P (2011) Electron transfer kinetics at single-walled carbon nanotube paper: the role of band structure. Physica E 44:470–475

    Article  CAS  Google Scholar 

  119. Szroeder P, Górska A, Tsierkezos N, Ritter U, Strupiński W (2013) The role of band structure in electron transfer kinetics in lowdimensional carbon. Mat wiss u Werkstofftech 44:226–230

    Article  CAS  Google Scholar 

  120. Sanghavi BJ, Sitaula S, Griep MH, Karna SP, Ali MF, Swami NS (2013) Real-time electrochemical monitoring of adenosine triphosphate in the picomolar to micromolar range using graphene-modified electrodes. Anal Chem 85:8158–8165

    Article  CAS  Google Scholar 

  121. Lin JJ, Lin WC, Li SD, Lin CY, Hsu SH (2013) Evaluation of the antibacterial activity and biocompatibility for silver nanoparticles immobilized on nano silicate platelets. ACS Appl Mater Interfaces 5:433–443

    Article  CAS  Google Scholar 

  122. Santos KO, Elias WC, Signori AM, Giacomelli FC, Yang H, Domingos JB (2012) Synthesis and catalytic properties of silver nanoparticle-linear polyethylene imine colloidal systems. J Phys Chem C 116:4594–4604

    Article  CAS  Google Scholar 

  123. Lin S, Cheng Y, Liu J, Wiesner MR (2012) Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces. Langmuir 28:4178–4186

    Article  CAS  Google Scholar 

  124. Chen D, Feng HB, Li JH (2012) Graphene Oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053

    Article  CAS  Google Scholar 

  125. Tang LH, Wang Y, Li YM, Feng HB, Lu J, Li JH (2009) Preparation, structure and electrochemical properties of reduced graphene sheet films. Adv Func Mater 19:2782–2789

    Article  CAS  Google Scholar 

  126. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  127. Sreejith S, Ma X, Zhao YL (2012) Graphene oxide wrapping on squaraine-loaded mesoporous silica nanoparticles for bioimaging. J Am Chem Soc 134:17346–17349

    Article  CAS  Google Scholar 

  128. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26:4637–4648

    Article  CAS  Google Scholar 

  129. Bardhan R, Chen WX, Bartels M, Perez-Torres C, Botero MF, McAninch RW, Contreras A, Schiff R, Pautler RG, Halas NJ, Joshi A (2010) Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo. Nano Lett 10:4920–4928

    Article  CAS  Google Scholar 

  130. Xiao YH, Li CM (2008) Nanocomposites: from fabrications to electrochemical bioapplications. Electroanalysis 20:648–662

    Article  CAS  Google Scholar 

  131. Yuan WY, Li CM (2009) Direct modulation of localized surface plasmon coupling of Au nanoparticles on solid substrates via weak polyelectrolyte-mediated layer-by-layer self assembly. Langmuir 25:7578–7585

    Article  CAS  Google Scholar 

  132. Lu Y, Shi C, Hu MJ, Xu YJ, Yu L, Wen LP, Zhao Y, Xu WP, Yu SH (2010) Magnetic alloy nanorings loaded with gold nanoparticles: synthesis and applications as multimodal imaging contrast agents. Adv Func Mater 20:3701–3706

    Article  CAS  Google Scholar 

  133. Xu ZC, Hou YL, Sun SH (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699

    Article  CAS  Google Scholar 

  134. Choi SH, Na HB, Park YI, An K, Kwon SG, Jang Y, Park MH, Moon J, Son JS, Song IC, Moon WK, Hyeon T (2008) Simple and generalized synthesis of oxide-metal heterostructured nanoparticles and their applications in multimodal biomedical probes. J Am Chem Soc 130:15573–15580

    Article  CAS  Google Scholar 

  135. Jiang J, Gu HW, Shao HL, Devlin E, Papaefthymiou GC, Ying JY (2008) Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv Mater 20:4403–4407

    Article  CAS  Google Scholar 

  136. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    Article  CAS  Google Scholar 

  137. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317

    Article  CAS  Google Scholar 

  138. Lu X, Tuan HY, Chen J, Li ZY, Korgel BA, Xia Y (2007) Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium. J Am Chem Soc 129:1733–1742

    Article  CAS  Google Scholar 

  139. Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia YN (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41:1587–1595

    Article  CAS  Google Scholar 

  140. Shylesh S, Schunemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49:3428–3459

    Article  CAS  Google Scholar 

  141. Xu CJ, Wang BD, Sun SH (2009) Dumbbell-like Au–Fe3O4 nanoparticles for target-specific platin delivery. J Am Chem Soc 131:4216–4217

    Article  CAS  Google Scholar 

  142. Chen W, Xu NF, Xu LG, Wang LB, Li ZK, MaW ZhuYY, Xu CL, Kotov NA (2010) Multifunctional magnetoplasmonic nanoparticle assemblies for cancer therapy and diagnostics (theranostics). Macromol Rapid Commun 31:228–236

    CAS  Google Scholar 

  143. Liu J, Qiao SZ, Chen JS, Lou XW, Xing X, Lu GQ (2011) Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem Commun 47:12578–12591

    Article  CAS  Google Scholar 

  144. Park JC, Song H (2011) Metal@Silica yolk-shell nanostructures as versatile bifunctional nanocatalysts. Nano Res 4:33–49

    Article  CAS  Google Scholar 

  145. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714

    Article  CAS  Google Scholar 

  146. Wang H, Liu J, Wu X, Tong Z, Deng Z (2013) Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity. Nanotechnology 24:205102

    Article  CAS  Google Scholar 

  147. Li SS, Lv JJ, Hu YY, Zheng JN, Chen JR, Wang AJ, Feng JJ (2014) Facile synthesis of porous Pt-Pd nanospheres supported on reduced graphene oxide nanosheets for enhanced methanol electrooxidation. J Power Sour 247:213–218

    Article  CAS  Google Scholar 

  148. Tang M, Wang X, Wu F, Liu Y, Zhang S, Pang X, Li X, Qiu H (2014) Au nanoparticle/graphene oxide hybrids as stabilizers for pickering emulsions and Au nanoparticle/graphene microspheres. Carbon 71:238–248

    Article  CAS  Google Scholar 

  149. Efros AL, Shklovskii BI (1976) Critical behaviour of conductivity and dielectric constant near the metal-non-metal transition threshold. Phys Status Solid B 76:475–485

    Article  CAS  Google Scholar 

  150. Chen S, Sommers JM (2001) Alkanethiolate-protected copper nanoparticles: spectroscopy, electrochemistry, and solid-state morphological evolution. J Phys Chem B 105:8816–8820

    Article  CAS  Google Scholar 

  151. Klein DL, Roth R, Lim AKL, Alivisatos AP, McEuen PL (1997) A single-electron transistormade from a cadmiumselenide nanocrystal. Nature 389:699–701

    Article  CAS  Google Scholar 

  152. Bergbreiter DE, Case BL, Liu YS, Caraway JW (1998) Poly(N-isopropylacrylamide) soluble polymer supports in catalysis and synthesis. Macromolecules 31:6053–6062

    Article  CAS  Google Scholar 

  153. Kubo S, Diaz A, Tang Y, Mayer TS, Khoo IC, Mallouk TE (2007) Tunability of the refractive index of gold nanoparticle dispersions. Nano Lett 7:3418–3423

    Article  CAS  Google Scholar 

  154. Lee JH, Kim DO, Song GS, Lee Y, Jung SB, Nam JD (2007) Direct metallization of gold nanoparticles on a polystyrene bead surface using cationic gold ligands. Macromol Rapid Commun 28:634–640

    Article  CAS  Google Scholar 

  155. Sun ZZ, Zhang N, Si YM, Li S, Wen JW, Zhu XB, Wang H (2014) High-throughput colorimetric assays for mercury(II) in blood and wastewater based on the mercury-stimulated catalytic activity of small silver nanoparticles in a temperature-switchable gelatin matrix, vol 50. Chemical Communications Cambridge, UK, pp 9196-9199

    Google Scholar 

  156. Duan JL, Yin HZ, Wei RR, Wang WW (2014) Facile colorimetric detection of Hg2+ based on anti-aggregation of silver nanoparticles. Biosens Bioelectron 57:139–142

    Article  CAS  Google Scholar 

  157. Rastogi L, Sashidhar RB, Karunasagar D, Arunachalam J (2014) Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg2+ in aqueous system. Talanta 118:111–117

    Article  CAS  Google Scholar 

  158. Jain PK, Huang XH, EI-Sayed IH, EI-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118

    Google Scholar 

  159. Fasciani C, Bueno Alejo CJ, Grenier M, Netto-Ferreira JC, Scaiano JC (2011) High-temperature organic reactions at room temperature using plasmon excitation: decomposition of dicumyl peroxide. Org Lett 13:204–207

    Article  CAS  Google Scholar 

  160. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA: Cancer J Clin 61:250–281

    Google Scholar 

  161. Sperandio F, Huang Y, Hamblin M (2013) Antimicrobial photodynamic therapy to kill gram-negative bacteria. Antiinfect Drug Discov 8:108–120

    Article  CAS  Google Scholar 

  162. Alarcon E, Bueno-Alejo C, Noel C, Stamplecoskie K, Pacioni N, Poblete H, Scaiano JCJ (2013) Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization. Nanopart Res 15:1–14

    Article  CAS  Google Scholar 

  163. Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S (2010) Silver nanoparticles impede the biofilm formation by pseudomonas aeruginosa and staphylococcus epidermidis. Colloids Surf B: Biointerfaces 79:340–344

    Article  CAS  Google Scholar 

  164. Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S, Vinothkumar B, Bhadra MP, Sreedhar B, Patra CR (2014) Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 4:316–335

    Article  Google Scholar 

  165. Vignoni M, de Alwis Weerasekera H, Simpson MJ, Phopase J, Mah TF, Griffith M, Alarcon EI, Scaiano JC (2014) LL37 peptide@silver nanoparticles: combining the best of the two worlds for skin infection control. Nanoscale 6:5725–5728

    Article  CAS  Google Scholar 

  166. Tran ML, Centeno SP, Hutchison JA, Engelkamp H, Liang D, Van Tendeloo G, Sels BF, Hofkens J, Uji-i H (2008) Control of surface plasmon localization via self-assembly of silver nanoparticles along silver nanowires. J Am Chem Soc 130:17240–17241

    Article  CAS  Google Scholar 

  167. Dadosh T, Sperling J, Bryant GW, Breslow R, Shegai T, Dyshel M, Haran G, Bar-Joseph I (2009) Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer. ACS Nano 3:1988–1994

    Article  CAS  Google Scholar 

  168. Peng H, Strohsahl CM, Leach KE, Krauss TD, Miller BL (2009) Label-free DNA detection on nanostructured Ag surfaces. ACS Nano 3:2265–2273

    Article  CAS  Google Scholar 

  169. Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325

    Article  CAS  Google Scholar 

  170. Wiley BJ, Im S, Li Z, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110:15666–15675

    Article  CAS  Google Scholar 

  171. Shem PM, Sardar R, Shumaker-Parry JS (2014) Soft ligand stabilized gold nanoparticles: incorporation of bipyridyls and two-dimensional assembly. J Colloid Interface Sci 426:107–116

    Article  CAS  Google Scholar 

  172. Jin R, Cao C, Hao E, Metraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490

    Article  CAS  Google Scholar 

  173. Washio I, Xiong Y, Yin Y, Xia Y (2006) Reduction by the end groups of poly(vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Adv Mater 18:1745–1749

    Article  CAS  Google Scholar 

  174. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  175. Sun Y, Mayers B, Xia Y (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 3:675–679

    Article  CAS  Google Scholar 

  176. Zhao N, Wei Y, Sun N, Chen Q, Bai J, Zhou L, Qin Y, Li M, Qi L (2008) Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir 24:991–998

    Article  CAS  Google Scholar 

  177. Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736–4745

    Article  CAS  Google Scholar 

  178. Sun Y, Mayers B, Herricks T, Xia Y (2003) Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3:955–960

    Article  CAS  Google Scholar 

  179. Pietrobon B, McEachran M, Kitaev V (2009) Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano 3:21–26

    Article  CAS  Google Scholar 

  180. Hao E, Bailey RC, Schatz GC, Hupp JT, Li S (2004) Synthesis and optical properties of ‘three-pointed’ star-shaped gold nanoparticles. Nano Lett 4:327–330

    Article  CAS  Google Scholar 

  181. Han Y, Liu S, Han M, Bao J, Dai Z (2009) Fabrication of hierarchical nanostructure of silver via a surfactant-free mixed solvents route. Cryst Growth Des 9:3941–3947

    Article  CAS  Google Scholar 

  182. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    Article  CAS  Google Scholar 

  183. Wang L, Luo J, Shan S, Crew E, Yin J, Zhong CJ, Wallek B, Wong SSS (2011) Bacterial inactivation using silver-coated magnetic nanoparticles as functional antimicrobial agents. Anal Chem 83:8688–8695

    Article  CAS  Google Scholar 

  184. Tang S, Vongehr S, Meng X (2010) Carbon spheres with controllable silver nanoparticle doping. J Phys Chem C 114:977–982

    Article  CAS  Google Scholar 

  185. Yamamoto M, Kashiwagi Y, Nakamoto M (2006) Size-controlled synthesis of monodispersed silver nanoparticles capped by long- chain alkyl carboxylates from silver carboxylate and tertiary amine. Langmuir 22:8581–8586

    Article  CAS  Google Scholar 

  186. Kim JY, Lee JS (2010) Synthesis and thermodynamically controlled anisotropic assembly of dna-silver nanoprism conjugates for diagnostic applications. Chem Mater 22:6684–6691

    Article  CAS  Google Scholar 

  187. Zhang Q, Li W, Moran C, Zeng J, Chen J, Wen LP, Xia Y (2010) Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties. J Am Chem Soc 132:11372–11378

    Article  CAS  Google Scholar 

  188. Netzer NL, Gunawidjaja R, Hiemstra M, Zhang Q, Tsukruk VV, Jiang C (2009) Formation and optical properties of compression-induced nanoscale buckles on silver nanowires. ACS Nano 3:1795–1802

    Article  CAS  Google Scholar 

  189. Tang B, An J, Zheng X, Xu S, Li D, Zhou J, Zhao B, Xu W (2008) Silver nanodisks with tunable size by heat aging. J Phys Chem C 112:18361–18367

    Article  CAS  Google Scholar 

  190. Halvorson RA, Vikesland PJ (2010) Surface-enhanced raman spectroscopy (SERS) for environmental analyses. Environ Sci Technol 44:7749–7755

    Article  CAS  Google Scholar 

  191. Chang S, Chen K, Hua Q, Ma Y, Huang W (2011) Evidence for the growth mechanisms of silver nanocubes and nanowires. J Phys Chem C 115:7979–7986

    Article  CAS  Google Scholar 

  192. Huang L, Zhai Y, Dong S, Wang J (2009) Efficient preparation of silver nanoplates assisted by non-polar solvents. J Colloid Interface Sci 331:384–388

    Article  CAS  Google Scholar 

  193. Sarkar A, Kapoor S, Mukherjee T (2005) Synthesis of silver nanoprisms in formamide. J Colloid Interface Sci 287:496–500

    Article  CAS  Google Scholar 

  194. Schneider OD, Loher S, Brunner TJ, Uebersax L, Simonet M, Grass RN, Merkle HP, Stark WJ (2008) Cotton wool-like nanocomposite biomaterials prepared by electrospinning: In vitro bioactivity and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res, Part B 84:350–362

    Article  CAS  Google Scholar 

  195. Shon YS, Cutler E (2004) Aqueous synthesis of alkanethiolate- protected Ag nanoparticles using bunte salts. Langmuir 20:6626–6630

    Article  CAS  Google Scholar 

  196. Jana NR, Peng X (2003) Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J Am Chem Soc 125:14280–14281

    Article  CAS  Google Scholar 

  197. Tan S, Erol M, Attygalle A, Du H, Sukhishvili S (2007) Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions. Langmuir 23:9836–9843

    Article  CAS  Google Scholar 

  198. Zhu Y, Qian Y, Li X, Zhang M (1997) γ-Radiation synthesis and characterization of polyacrylamide-silver nanocomposites. Chem Commun 10:1081–1082

    Article  Google Scholar 

  199. Jiang LP, Xu S, Zhu JM, Zhang JR, Zhu JJ, Chen HY (2004) Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings. Inorg Chem 43:5877–5883

    Article  CAS  Google Scholar 

  200. Hu B, Wang SB, Wang K, Zhang M, Yu SH (2008) Microwave-assisted rapid facile “green” synthesis of uniform silver nanoparticles: self-assembly into multilayered films and their optical properties. J Phys Chem C 112:11169–11174

    Article  CAS  Google Scholar 

  201. Tan Y, Li Y, Zhu D (2003) Preparation of silver nanocrystals in the presence of Aniline. J Colloid Interface Sci 258:244–251

    Article  CAS  Google Scholar 

  202. Yu D, Yam VWW (2004) Controlled synthesis of monodisperse silver nanocubes in water. J Am Chem Soc 126:13200–13201

    Article  CAS  Google Scholar 

  203. Giersig M, Pastoriza-Santos I, Liz-Marzan LM (2004) Evidence of an aggregative mechanism during the formation of silver nanowires in N, N-dimethylformamide. J Mater Chem 14:607–610

    Article  CAS  Google Scholar 

  204. Tan Y, Dai X, Li Y, Zhu D (2003) Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant-potassium bitartrate. J Mater Chem 13:1069–1075

    Article  CAS  Google Scholar 

  205. Lee GJ, Shin SI, Kim YC, Oh SG (2004) Preparation of silver nanorods through the control of temperature and pH of reaction medium. Mater Chem Phys 84:197–204

    Article  CAS  Google Scholar 

  206. Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R (2009) Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjugate Chem 20:1497–1502

    Article  CAS  Google Scholar 

  207. Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ (2007) Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23:5296–5304

    Article  CAS  Google Scholar 

  208. Khan Z, Al-Thabaiti SA, Obaid AY, Khan ZA, Al-Youbi AO (2011) Effects of solvents on the stability and morphology of CTAB stabilized silver nanoparticles. Colloids Surf A 390:120–125

    Article  CAS  Google Scholar 

  209. Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A (2012) An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed Nanotechnol 8:916–924

    Article  CAS  Google Scholar 

  210. Subbiah R, Veerapandian M, Yun KS (2010) Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem 17:4559–4577

    Article  CAS  Google Scholar 

  211. Rohrer H (2010) Nanomaterials science. Sci Technol Adv Mater 11(3):050301

    Article  Google Scholar 

  212. Ramanaviciusa A, Kausaite A, Kausaite A, Ramanaviciene A (2005) Biofuel cell based on direct bioelectrocatalysis. Biosens Bioelect 20:1962–1967

    Article  CAS  Google Scholar 

  213. Feynman R (1959) There’s plenty of room at the bottom. Caltech Institute Archives, Pasadena, California

    Google Scholar 

  214. Feynman R (1999) The pleasure of finding things out: the best short works of Richard P. Feynman (Helix Books). Robbins J (ed). Perseus Books

    Google Scholar 

  215. Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108

    Article  CAS  Google Scholar 

  216. Hunt W (2004) Nanomaterials: nomenclature, novelty, and necessity. J Miner Met Mater Soc 56:13–18

    Article  Google Scholar 

  217. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  218. Mangematin V, Walsh S (2012) The future of nanotechnologies. Technovation 32:157–160

    Article  Google Scholar 

  219. Chaturvedi S, Dave PN (2013) Design process for nanomaterials. J Mater Sci 48:3605–3622

    Article  CAS  Google Scholar 

  220. Xu HX, Suslick KS (2010) Water-soluble fluorescent silver nanoclusters. Adv Mater 22:1078–1082

    Article  CAS  Google Scholar 

  221. Jin RC (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2:343–362

    Article  CAS  Google Scholar 

  222. Díez I, Ras RHA (2011) Fluorescent silver nanoclusters. Nanoscale 3:1963–1970

    Google Scholar 

  223. Díez I, Ras RHA (2010) Advanced fluorescence reporters in chemistry and biology II. Demchenko AP (ed). Springer, Heidelberg, pp 307–332

    Google Scholar 

  224. Gunalan S, Sivaraj R, Venckatesh R (2012) Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta A Mol Biomol Spectrosc 97:1140–1144

    Article  CAS  Google Scholar 

  225. Vimala K, Sundarraj S, Paulpandi M, Vengatesan S, Kannan S (2014) Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem 49:160–172

    Article  CAS  Google Scholar 

  226. Ramamurthy CH, Sampath KS, Arunkumar P, SureshKumar M, Sujatha V, Premkumar K, Thirunavukkarasu C (2013) Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng 36:1131–1139

    Article  CAS  Google Scholar 

  227. Zheng B, Kong T, Jing X, Odoom-Wubah T, Li X, Sun D, Lu F, Zheng Y, Huang J, Li Q (2013) Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism. J Colloid Interface Sci 396:138–145

    Article  CAS  Google Scholar 

  228. Bhuvanasree SR, Harini D, Rajaram A, Rajaram R (2013) Rapid synthesis of gold nanoparticles with Cissus quadrangularis extract using microwave irradiation. Spectrochim Acta A 106:190–196

    Article  CAS  Google Scholar 

  229. Aswathy Aromal S, Philip D (2012) Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta A 97:1–5

    Article  CAS  Google Scholar 

  230. Sujitha MV, Kannan S (2013) Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim Acta A 102:15–23

    Article  CAS  Google Scholar 

  231. Modi A, Koratkar N, Lass E, Wei BQ, Ajayan PM (2003) Miniaturized gas ionization sensors using carbon nanotubes. Nature 424:171–174

    Article  CAS  Google Scholar 

  232. Heath JR (1999) Nanoscale materials. Acc Chem Res 32:388

    Article  CAS  Google Scholar 

  233. Mohamed H, Hassan A (2005) Small things and big changes in the developing world. Science 309:65–66

    Article  CAS  Google Scholar 

  234. Mahmoud MA, Saira F, El-Sayed MA (2010) Experimental evidence for the nanocage effect in catalysis with hollow nanoparticles. Nano Lett 10:3764–3769

    Article  CAS  Google Scholar 

  235. Somorjai GA, Park JY (2008) Molecular factors of catalytic selectivity. Angew Chem Int Ed 47:9212–9228

    Article  CAS  Google Scholar 

  236. Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781–1804

    Article  CAS  Google Scholar 

  237. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  CAS  Google Scholar 

  238. Gu Y, Cheng J, Lin C, Lam Y, Cheng S, Wong W (2009) Nuclear penetration of surface functionalized gold nanoparticles. Toxicol Appl Pharmacol 237:196–204

    Article  CAS  Google Scholar 

  239. Hosta L, Pla-Roca M, Arbiol J, Lopez-Iglesias C, Samitier J, Cruz L, Kogan M, Albericio F (2009) Conjugation of Kahalalide F with gold nanoparticles to enhance in vitro antitumoral activity. Bioconjug Chem 20:138–146

    Article  CAS  Google Scholar 

  240. Park J, Lee S, Kim J, Park K, Kim K, Kwon I (2008) Polymeric nanomedicine for cancer therapy. Prog Polym Sci 33:113–137

    Article  CAS  Google Scholar 

  241. Peer D, Karp J, Hong S, Farokhzad O, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  CAS  Google Scholar 

  242. Fendler JH (1998) Nanoparticles and nanostructured films: Preparation, characterization and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  243. Zhang JP, Chen P, Sun CH, Hu XJ (2004) Sonochemical synthesis of colloidal silver catalysts for reduction of complexing silver in DTR system. Appl Catal A 266:49–54

    Article  CAS  Google Scholar 

  244. Lee HJ, Yeo SY, Jeong SH (2003) Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 38:2199–2204

    Article  CAS  Google Scholar 

  245. Zhang Q, Tan YN, Xie J, Lee JY (2009) Colloidal synthesis of plasmonic metallic nanoparticles. Plasmonics 4:9–22

    Article  CAS  Google Scholar 

  246. Sridhar A, van Dijk DJ, Akkerman R (2009) Inkjet printing and adhesion characterization of conductive tracks on a commercial printed circuit board material. Thin Solid Films 517:4633–4637

    Article  CAS  Google Scholar 

  247. Chen J, Luo Y, Liang Y, Jiang J, Shen G, Yu R (2009) Surface-enhanced Raman scattering for immunoassay based on the biocatalytic production of silver nanoparticles. Anal Sci 25:347–352

    Article  CAS  Google Scholar 

  248. Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25:13840–13851

    Article  CAS  Google Scholar 

  249. Chen S, Yang YJ (2002) Magnetoelectrochemistry of gold nanoparticle quantized capacitance charging. J Am Chem Soc 124:5280–5281

    Article  CAS  Google Scholar 

  250. Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540

    Article  CAS  Google Scholar 

  251. Huang H, Yang X (2005) One-step, shape control synthesis of gold nanoparticles stabilized by 3-thiopheneacetic acid. Colloids Surf A 255:11–17

    Article  CAS  Google Scholar 

  252. Ji Q, Acharya S, Hill PJ, Richards G, Ariga K (2008) Multi-dimensional control of surfactant-guided assemblies of quantum gold particles. Adv Mater 20:4027–4032

    Article  CAS  Google Scholar 

  253. Tang ZY, Kotov NA, Giersig M (2002) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297:237–240

    Article  CAS  Google Scholar 

  254. Grubbs RB (2007) Nanoparticle assembly: solvent-tuned structures. Nat Mater 6:553–555

    Article  CAS  Google Scholar 

  255. Lévy R, Thanh NTK, Doty RC, Hussain I, Nichols RJ, Schiffrin DJ, Brust M, Ferning DG (2004) Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J Am Chem Soc 126:10076–10084

    Article  CAS  Google Scholar 

  256. Murphy CJ (2002) Nanocubes and nanoboxes. Science 298:2139–2141

    Article  CAS  Google Scholar 

  257. Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117

    Article  CAS  Google Scholar 

  258. Glotzer SC, Solomon MJ (2007) Anisotropy of building blocks and their assembly into complex structures. Nat Mater 6:557–562

    Article  Google Scholar 

  259. Jiang XC, Brioude A, Pileni MP (2006) Gold nanorods: limitations on their synthesis and optical properties colloids and surfaces a: physicochemical and engineering aspects. Colloids Surf A 277:201–206

    Article  CAS  Google Scholar 

  260. de Hollander RBG, van Hulst NF, Kooyman RPH (1995) Near field plasmon and force microscopy. Ultramicroscopy 57:263–269

    Article  Google Scholar 

  261. Naitoh M, Shoji F, Oura K (1992) Direct observation of the growth process of Ag thin film on a hydrogen-terminated Si(111) surface. Jpn J Appl Phys 31:4018–4019

    Article  CAS  Google Scholar 

  262. Arai M, Mitsui M, Ozaki JL, Nishiyama Y (1994) Dispersion and optical absorption of Au and Ag particles supported on an amorphous SiO2 substrate. J Colloid Interface Sci 168:473–477

    Article  CAS  Google Scholar 

  263. Fischer UC (1986) Submicrometer aperture in a thin metal film as a probe of its microenvironment through enhanced light scattering and fluorescence. J Opt Soc Am B 3:1239–1244

    Article  CAS  Google Scholar 

  264. Rucker M, Knoll W, Rabe JP (1992) Surface-plasmoninduced contrast in scanning tunneling microscopy. J Appl Phys 72:5027–5031

    Article  Google Scholar 

  265. Dawson P, de Fornet F, Goudonnet JP (1994) Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope. Phys Rev Lett 72:2927–2930

    Article  CAS  Google Scholar 

  266. Jin SE, Bae JW, Hong S (2010) Multiscale observation of biological interactions of nanocarriers: from nano to macro. Microsc Res Tech 73:813–823

    Article  CAS  Google Scholar 

  267. Medley CD, Bamrungsap S, Tan W, Smith JE (2011) Aptamer-conjugated nanoparticles for cancer cell detection. Anal Chem 83:727–734

    Article  CAS  Google Scholar 

  268. Cornelia MK (2010) Particle size analysis of nanocrystals: improved analysis method. Int J Pharm 390:3–12

    Article  CAS  Google Scholar 

  269. Khlebtsov B, Khlebtsov N (2011) On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J 73:118–127

    Article  CAS  Google Scholar 

  270. Bienert R, Emmerling F, Thünemann A (2009) The size distribution of ‘gold standard’ nanoparticles. Anal Bioanal Chem 395:1651–1660

    Article  CAS  Google Scholar 

  271. Pyrz WD, Buttrey DJ (2008) Particle size determination using TEM: a discussion of image acquisition and analysis for the novice microscopist. Langmuir 24:11350–11360

    Article  CAS  Google Scholar 

  272. Guha S, Li M, Tarlov MJ, Zachariah MR (2012) Electrospray- differential mobility analysis of bionanoparticles. Trends Biotechnol 30:291–300

    Article  CAS  Google Scholar 

  273. Couteau O, Roebben G (2011) Measurement of the size of spherical nanoparticles by means of atomic force microscopy. Meas Sci Technol 22:065101

    Article  CAS  Google Scholar 

  274. Gadogbe M, Ansar SM, He G, Collier WE, Rodriguez J, Liu D, Chu IW, Zhang D (2013) Determination of colloidal gold nanoparticle surface areas, concentrations, and sizes through quantitative ligand adsorption. Anal Bioanal Chem 405:413–422

    Article  CAS  Google Scholar 

  275. Xu X, Caswell KK, Tucker E, Kabisatpathy S, Brodhacker KL, Scrivens WA (2007) Size and shape separation of gold nanoparticles with preparative gel electrophoresis. J Chromatogr A 1167:35–41

    Article  CAS  Google Scholar 

  276. Lo CK, Paau MC, Xiao D, Choi MMF (2008) Application of capillary zone electrophoresis for separation of water-soluble gold monolayer-protected clusters. Electrophoresis 29:2330–2339

    Article  CAS  Google Scholar 

  277. Akthakul A, Hochbaum AI, Stellacci F, Mayes AM (2005) Size fractionation of metal nanoparticles by membrane filtration. Adv Mater 17:532–535

    Article  CAS  Google Scholar 

  278. Gautier C, Taras R, Gladiali S, Bürgi T (2008) Chiral 1,1-binaphthyl-2,2-dithiol-stabilized gold clusters: size separation and optical activity in the UV-vis. Chirality 20:486–493

    Article  CAS  Google Scholar 

  279. Liu FK, Wei GT (2004) Adding sodium dodecylsulfate to the running electrolyte enhances the separation of gold nanoparticles by capillary electrophoresis. Anal Chim Acta 510:77–83

    Article  CAS  Google Scholar 

  280. Al-Somali AM, Krueger KM, Falkner JC, Colvin VL (2004) Recycling size exclusion chromatography for the analysis and separation of nanocrystalline gold. Anal Chem 76:5903–5910

    Article  CAS  Google Scholar 

  281. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  282. McLeod MC, Anand M, Kitchens CL, Roberts CB (2005) Precise and rapid size selection and targeted deposition of nanoparticle populations using CO2 gas expanded liquids. Nano Lett 5:461–465

    Article  CAS  Google Scholar 

  283. Williams DP, Satherley J (2009) Size-selective separation of polydisperse gold nanoparticles in supercritical ethane. Langmuir 25:3743–3747

    Article  CAS  Google Scholar 

  284. Lee JS, Seferos DS, Giljohann DA, Mirkin CA (2008) Thermodynamically controlled separation of polyvalent 2-nm gold nanoparticle-oligonucleotide conjugates. J Am Chem Soc 130:5430–5431

    Article  CAS  Google Scholar 

  285. Kumar SA, Peter YA, Nadeau JL (2008) Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnol 19:495101

    Article  CAS  Google Scholar 

  286. Otto DP, Vosloo HCM, de Villiers MM (2007) Application of size exclusion chromatography in the development and characterization of nanoparticulate drug delivery systems. J Liq Chromatogr Relat Technol 30:2489–2514

    Article  CAS  Google Scholar 

  287. Claridge SA, Liang HW, Basu SR, Fréchet JMJ, Alivisatoes AP (2008) Isolation of discrete nanoparticle-DNA conjugates for plasmonic applications. Nano Lett 8:1202–1206

    Google Scholar 

  288. Wei GT, Liu FK, Wang CR (1999) Shape separation of nanometer gold particles by size-exclusion chromatography. Anal Chem 71:2085–2091

    Article  CAS  Google Scholar 

  289. Mullen DG, Desai AM, Waddell JN, Cheng X, Kelly CV, McNerny DQ, Majoros IJ, Baker JR Jr, Sander LM, Orr BG, Banaszak Holl MM (2008) The implications of stochastic synthesis for the conjugation of functional groups to nanoparticles. Bioconjugate Chem 19:1748–1752

    Article  CAS  Google Scholar 

  290. Mullen DG, Fang M, Desai AM, Baker JR, Orr BG, Banaszak Holl MM (2010) A quantitative assessment of nanoparticle-ligand distributions: implications for targeted drug and imaging delivery in dendrimer conjugates. ACS Nano 4:657–670

    Article  CAS  Google Scholar 

  291. Schimpf M, Caldwell KD, Giddings JC (eds) (2000) Field flow fractionation handbook. Wiley Interscience, New York

    Google Scholar 

  292. Cho TJ, Hackley VA (2010) Fractionation and characterization of gold nanoparticles in aqueous solution: asymmetric-flow field flow fractionation with MALS, DLS, and UV-Vis detection. Anal Bioanal Chem 398:2003–2018

    Article  CAS  Google Scholar 

  293. Calabretta M, Jamison JA, Falkner JC, Liu Y, Yuhas BD, Matthews KS, Colvin VL (2005) Analytical ultracentrifugation for characterizing nanocrystals and their bioconjugates. Nano Lett 5:963–967

    Article  CAS  Google Scholar 

  294. Baudhuin P, Van der Smissen P, Beauvois S, Courtoy PJ (1989) In colloidal gold: principles, methods and applications. In: Hayat MA (ed) Academic Press, San Diego, CA 2:2-18

    Google Scholar 

  295. Mächtle W, Börger L (2006) Analytical ultracentrifugation of polymers and nanoparticles. Springer, Berlin

    Google Scholar 

  296. Kasyutich O, Ilari A, Fiorillo A, Tatchev D, Hoell A, Ceci P (2010) Silver ion incorporation and nanoparticle formation inside the cavity of pyrococcus furiosus ferritin: structural and size-distribution analyses. J Am Chem Soc 132:3621–3627

    Article  CAS  Google Scholar 

  297. Jamison JA, Krueger KM, Yavuz CT, Mayo JT, LeCrone D, Redden JJ, Colvin VL (2008) Size-dependent sedimentation properties of nanocrystals. ACS Nano 2:311–319

    Article  CAS  Google Scholar 

  298. Goertz V, Dingenouts N, Nirschl H (2009) Comparison of nanometric particle size distributions as determined by SAXS, TEM and analytical ultracentrifuge. Part Part Syst Charact 26:17–24

    Article  CAS  Google Scholar 

  299. Stavis SM, Geist J, Gaitan M (2010) Separation and metrology of nanoparticles by nanofluidic size exclusion. Lab Chip 10:2618–2621

    Article  CAS  Google Scholar 

  300. Pyell U (2010) Characterization of nanoparticles by capillary electromigration separation techniques. Electrophoresis 31:814–831

    Article  CAS  Google Scholar 

  301. Surugau N, Urban PL (2009) Electrophoretic methods for separation of nanoparticles. J Sep Sci 32:1889–1906

    Article  CAS  Google Scholar 

  302. Liu FK, Ko FH, Huang PW, Wu CH, Chu TC (2005) Studying the size/shape separation and optical properties of silver nanoparticles by capillary electrophoresis. J Chromatogr A 1062:139–145

    Article  CAS  Google Scholar 

  303. Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3:485–491

    Article  CAS  Google Scholar 

  304. Bücking W, Massadeh S, Merkulov A, Xu S, Nann T (2010) Electrophoretic properties of BSA-coated quantum dots. Anal Bioanal Chem 396:1087–1094

    Article  CAS  Google Scholar 

  305. Pons T, Uyeda HT, Medintz IL, Mattoussi H (2006) Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots. J Phys Chem B 110:20308–20316

    Article  CAS  Google Scholar 

  306. Sperling RA, Liedl T, Duhr S, Kudera S, Zanella M, Lin CAJ, Chang WH, Braun D, Parak WJ (2007) Size determination of (bio)conjugated water-soluble colloidal nanoparticles: a comparison of different techniques. J Phys Chem C 111:11552–11559

    Article  CAS  Google Scholar 

  307. Daou TJ, Li L, Reiss P, Josserand V, Texier I (2009) Effect of poly(ethylene glycol) length on the in vivo behavior of coated quantum dots. Langmuir 25:3040–3044

    Article  CAS  Google Scholar 

  308. Ahmed M, Deng Z, Narain R (2009) Study of transfection efficiencies of cationic glyconanoparticles of different sizes in human cell line. ACS Appl Mater Interfaces 1:1980–1987

    Article  CAS  Google Scholar 

  309. Lôpez-Viota J, Mandal S, Delgado A, Toca-Herrera JL, Moller M, Zanuttin F, Balestrino M, Krol S (2009) Electrophoretic characterization of gold nanoparticles functionalized with human serum albumin (HSA) and creatine. J Colloid Interface Sci 332:215–223

    Article  CAS  Google Scholar 

  310. Hanauer M, Pierrat S, Zins I, Lotz A, Sönnichsen C (2007) Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett 7:2881–2885

    Article  CAS  Google Scholar 

  311. Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131:17042–17043

    Article  CAS  Google Scholar 

  312. Bremmel KE, Jameson GJ, Biggs S (1999) Adsorption of ionic surfactants in particulate systems: flotation, stability, and interaction forces. Colloids Surf A 146:75–87

    Article  Google Scholar 

  313. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588

    Article  Google Scholar 

  314. Stauffer D, Aharony A (1994) Introduction to percolation theory. Taylor & Francis, London

    Google Scholar 

  315. Pellegrino T, Sperling RA, Alivisatoes AP, Parak WJ (2007) Gel electrophoresis of gold-DNA nanoconjugates. J Biomed Biotechnol 26796–26804

    Google Scholar 

  316. Park S, Hamad-Schifferli K (2008) Evaluation of hydrodynamic size and zeta-potential of surface-modified Au nanoparticle-DNA conjugates via Ferguson analysis. J Phys Chem C 112:7611–7616

    Article  CAS  Google Scholar 

  317. Dair BJ, Tyner K, Sapsford KE (2009) Techniques for the characterization of nanoparticle-bioconjugates. In: Rege K, Medintz IL (ed) Methods in bioengineering: nanoscale bioengineering and nanomedicine, 1st edn. Artech House, London, pp 293–331

    Google Scholar 

  318. Bergman L, Rosenholm J, Öst AB, Duchanoy A, Kankaanpää P, Heino J, Lindén M (2008) On the importance of surface chemical engineering for controlling nanoparticle suspension stability in biotargeting and imaging applications. J Nanomater 712514:9

    Google Scholar 

  319. Gomes I, Santos NC, Oliveira MA, Quintas A, Eaton P, Pereira E, Franco R (2008) Probing surface properties of cytochrome c@Au bionanoconjugates. J Phys Chem C 112:16340–16347

    Article  CAS  Google Scholar 

  320. Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810

    Article  CAS  Google Scholar 

  321. Falabella JB, Cho TJ, Ripple DC, Hackley VA, Tarlov MJ (2010) Characterization of gold nanoparticles modified with single-stranded DNA using analytical ultracentrifugation and dynamic light scattering. Langmuir 26:12740–12747

    Article  CAS  Google Scholar 

  322. Lees EE, Gunzburg MJ, Nguyen TL, Howlett GJ, Rothacker J, Nice EC, Clayton AHA, Mulvaney P (2008) Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation. Nano Lett 8:2883–2890

    Article  CAS  Google Scholar 

  323. Xing Y, So MK, Koh AL, Sinclair R, Rao J (2008) Improved QD-BRET conjugates for detection and imaging. Biochem Biophys Res Commun 372:388–394

    Article  CAS  Google Scholar 

  324. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem 79:4215–4221

    Article  CAS  Google Scholar 

  325. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055

    Article  CAS  Google Scholar 

  326. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  CAS  Google Scholar 

  327. Ricoul F, Dubois M, Zemb T, Plusquellec D (1998) Micelles-smetic phase coexistence: origin of the maximum swelling of a mixed lamellar phase. Eur Phys J B 4:333–340

    Article  CAS  Google Scholar 

  328. Baalousha M, Lead JR (2012) Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering: Sample preparation, polydispersity, and particle structure. Environ Sci Technol 46:6134–6142

    Article  CAS  Google Scholar 

  329. Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675

    Article  CAS  Google Scholar 

  330. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B 58:3–7

    Article  CAS  Google Scholar 

  331. Murphy S, Huang L, Kamat PV (2011) Charge-transfer complexation and excited-state interactions in porphyrin-silver nanoparticle hybrid structures. J Phys Chem C 115:22761–22769

    Article  CAS  Google Scholar 

  332. Li S, Tao Q, Li D, Zhang Q (2014) Controlled anisotropic growth of Ag nanoparticles on oil-decorated TiO2 films with photocatalytic reduction method. J Mater Res 29:2497–2504

    Article  CAS  Google Scholar 

  333. Viswanatha R, Santra PK, Dasgupta C, Sarma DD (2007) Growth mechanism of nanocrystals in solution: ZnO, a case study. Phys Rev Lett 98:255501

    Article  CAS  Google Scholar 

  334. Li DW, Pan LJ, Li S, Liu K, Wu SF, Peng W (2013) Controlled preparation of uniform TiO2-catalyzed silver nanoparticle films for surface-enhanced Raman scattering. J Phys Chem C 117:6861–6871

    Article  CAS  Google Scholar 

  335. Hammouda B (2010) SANS from polymers—review of the recent literature. Polymer Rev 50:14–39

    Article  CAS  Google Scholar 

  336. McKenzie LC, Haben PM, Kevan SD, Hutchison JE (2010) Determining nanoparticle size in real time by small-angle X-ray scattering in a microscale flow system. J Phys Chem C 114:22055–22063

    Article  CAS  Google Scholar 

  337. Castelletto V, Newby GE, Zhu Z, Hamley IW (2010) Self-assembly of pegylated peptide conjugates containing a modified amyloid β-peptide fragment. Langmuir 26:9986–9996

    Article  CAS  Google Scholar 

  338. Rusu L, Gambhir A, McLaughlin S, Rädler J (2004) Fluorescence correlation spectroscopy studies of peptide and protein binding to phospholipid vesicles. Biophys J 87:1044–1053

    Article  CAS  Google Scholar 

  339. Ruan Q, Tetin SY (2008) Applications of dual-color fluorescence cross-correlation spectroscopy in antibody binding studies. Anal Biochem 374:182–195

    Article  CAS  Google Scholar 

  340. Wang X, Du Y, Luo J (2008) Biopolymer/montmorillonite nanocomposite: preparation, drug-controlled release property and cytotoxicity. Nanotechnology 19:065707–065714

    Article  CAS  Google Scholar 

  341. Tyner KM, Schiffman SR, Giannelis EP (2004) Nanobiohybrids as delivery vehicles for camptothecin. J Control Release 95:501–514

    Article  CAS  Google Scholar 

  342. Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501–502

    Article  CAS  Google Scholar 

  343. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217

    Article  CAS  Google Scholar 

  344. Haes AJ, Haynes CL, McFarland AD, Zou S, Schatz GC, Van Duyne RP (2005) Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 30:368–375

    Article  CAS  Google Scholar 

  345. Shemer G, Markovich G (2002) Enhancement of magneto-optical effects in magnetite nanocrystals near gold surfaces. J Phys Chem B 106:9195–9197

    Article  CAS  Google Scholar 

  346. Wang H, Kundu J, Halas NJ (2007) Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate. Angew Chem Int Ed 46:9040–9044

    Article  CAS  Google Scholar 

  347. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  348. Chu LQ, Förch R, Knoll W (2007) Surface-plasmon-enhanced fluorescence spectroscopy for DNA detection using fluorescently labeled PNA as “DNA indicator”. Angew Chem Int Ed 46:4944–4947

    Article  CAS  Google Scholar 

  349. Lieberman I, Shemer G, Fried T, Kosower EM, Markovich G (2008) Plasmon-resonance-enhanced absorption and circular dichroism. Angew Chem Int Ed 47:4855–4857

    Article  CAS  Google Scholar 

  350. Michaels AM, Nirmal M, Brus LE (1999) Surface enhanced raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J Am Chem Soc 121:9932–9939

    Article  CAS  Google Scholar 

  351. Le Ru EC, Etchegoin PG (2009) Principles of surface-enhanced raman spectroscopy and related plasmonic effects, vol 23. Elsevier, Amsterdam, pp 209–214

    Google Scholar 

  352. Farcau C, Astilean S (2010) Mapping the SERS efficiency and hot-spots localization on gold film over nanospheres substrates. J Phys Chem C 114:11717–11722

    Article  CAS  Google Scholar 

  353. Liu Z, Li X, Tabakman SM, Jiang K, Fan S, Dai H (2008) Multiplexed multi-color raman imaging of live cells with isotopically modified single walled carbon nanotubes. J Am Chem Soc 130:13540–13541

    Article  CAS  Google Scholar 

  354. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. New York, Springer

    Book  Google Scholar 

  355. Nielson LJ, Eyley S, Thielemans W, Aylott JW (2010) Dual fluorescent labelling of cellulose nanocrystals for pH sensing. Chem Commun 46:8929–8931

    Article  CAS  Google Scholar 

  356. Sen T, Haldar KK, Patra A (2008) Au nanoparticle-based surface energy transfer probe for conformational changes of BSA protein. J Phys Chem C 112:17945–17951

    Article  CAS  Google Scholar 

  357. Förster T (1959) 10th spiers memorial lecture. Transfer mechanisms of electronic excitation, Th. Főrster, Discuss Faraday Soc 27:7–17

    Article  Google Scholar 

  358. De-Llanos R, Sanchez-Cortes S, Domingo C, Garcia-Ramos JV, Sevilla P (2011) Surface plasmon effects on the binding of antitumoral drug emodin to bovine serum albumin. J Phys Chem C 115:12419–12429

    Article  CAS  Google Scholar 

  359. Bevington PR (2002) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York

    Google Scholar 

  360. James DR, Siemiarczuk A, Ware WR (1992) Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes. Rev Sci Instrum 63:1710–1716

    Article  CAS  Google Scholar 

  361. Sevilla P, Rivas JM, Garcia-Blanco F, Garcia-Ramos JV, Sanchez-Cortes S (2007) Identification of the antitumoral drug emodin binding sites in bovine serum albumin by spectroscopic methods. BBA-Proteins Proteomics 1774:1359–1369

    Article  CAS  Google Scholar 

  362. Bothun GD (2008) Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties. J Nanobiotechnol 6:13

    Google Scholar 

  363. Piazza R, Parola A (2008) Thermophoresis in colloidal suspensions. J Phys: Condens Matter 20:153102

    Google Scholar 

  364. Dong WJ, Feng SH, Shi Z, Li LS, Xu YH (2003) A well-confined redox route to silver nanoparticles on the surface of MoO3. Chem Mater 15:1941–1943

    Article  CAS  Google Scholar 

  365. Graber KC, Brown KR, Keating CD, Stranick SJ, Tang SL, Natan MJ (1997) Nanoscale characterization of gold colloid monolayers: a comparison of four techniques. Anal Chem 69:471–477

    Article  Google Scholar 

  366. Fendler JH (2001) Chemical self-assembly for electronic applications. Chem Mater 13:3196–3210

    Article  CAS  Google Scholar 

  367. Tang Z, Wang Y, Kotov N (2002) Semiconductor nanoparticles on solid substrates: film structure, intermolecular interactions and polyelectrolyte effects. Langmuir 18:7035–7040

    Article  CAS  Google Scholar 

  368. Xe HX, Zhang H, Li QG, Zhu T, Li SFY, Liu ZF (2000) Fabrication of designed architectures of Au nanoparticles on solid substrate with printed self-assembled monolayers as templates. Langmuir 16:3846–3851

    Article  CAS  Google Scholar 

  369. Henry CR (2005) Morphology of supported nanoparticles. Prog Surf Sci 80:92–116

    Article  CAS  Google Scholar 

  370. Huey B, Sigmund W (2007) The application of scanning probe microscopy in materials science studies. J Miner Met Mater Soc 59:11

    Article  Google Scholar 

  371. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104:1153–1175

    Article  CAS  Google Scholar 

  372. Klajn R, Pinchuk A, Schatz GC, Grzybowski BA (2007) Synthesis of heterodimeric sphere-prism nanostructures via metastable gold supraspheres. Angew Chem Int Ed 46:8363–8367

    Article  CAS  Google Scholar 

  373. Yin Y, Erdonmez C, Aloni S, Alivisatos AP (2006) Faceting of nanocrystals during chemical transformation: from solid silver spheres to hollow gold octahedra. J Am Chem Soc 128:12671–12673

    Article  CAS  Google Scholar 

  374. Seo D, Yoo CI, Jung J, Song H (2008) Ag–Au–Ag heterometallic nanorods formed through directed anisotropic growth. J Am Chem Soc 130:2940–2941

    Article  CAS  Google Scholar 

  375. Cobley CM, Skrabalak SE, Campbell DJ, Xia Y (2009) Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4:171–179

    Article  CAS  Google Scholar 

  376. Wang Y, Shen Y, Xie A, Li S, Wang X, Cai Y (2010) A simple method to construct bifunctional Fe3O4/Au hybrid nanostructures and tune their optical properties in the near-infrared region. J Phys Chem C 114:4297–4301

    Article  CAS  Google Scholar 

  377. Gatti AM, Kirkpatrick J, Gambarelli A, Capitani F, Hansen T, Eloy R, Clermont G (2008) ESEM evaluations of muscle/nanoparticles interface in a rat model. J Mater Sci Mater Med 19:1515–1522

    Article  CAS  Google Scholar 

  378. Elzey S, Tsai DH, Rabb S, Yu L, Winchester M, Hackley V (2012) Quantification of ligand packing density on gold nanoparticles using ICP-OES. Anal Bioanal Chem 403:145–149

    Article  CAS  Google Scholar 

  379. Ansar SM, Haputhanthri R, Edmonds B, Liu D, Yu L, Sygula A, Zhang D (2010) Determination of the binding affinity, packing, and conformation of thiolate and thione ligands on gold nanoparticles. J Phys Chem C 115:653–660

    Article  CAS  Google Scholar 

  380. Novo C, Gomez D, Perez-Juste J, Zhang Z, Petrova H, Reismann M, Mulvaney P, Hartland GV (2006) Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Phys Chem Chem Phys 8:3540–3546

    Article  CAS  Google Scholar 

  381. Imura K, Nagahara T, Okamoto H (2004) Plasmon mode imaging of single gold nanorods. J Am Chem Soc 126:12730–12731

    Article  CAS  Google Scholar 

  382. Khan I, Cunningham D, Lazar S, Graham D, Smith WE, McComb DW (2006) A TEM and electron energy loss spectroscopy (EELS) investigation of active and inactive silver particles for surface enhanced resonance Raman spectroscopy (SERRS). Faraday Discuss 132:171–178

    Article  CAS  Google Scholar 

  383. Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2008) Introduction to spectroscopy, 4th edn. Brooks/Cole, Belmont, CA

    Google Scholar 

  384. Tiwari DK, Tanaka SI, Inouye Y, Yashizawa K, Watanabe TM, Jin T (2009) Synthesis and characterization of anti-HER2 antibody conjugated CdSe/CdZnS quantum dots for fluorescence imaging of breast cancer cells. Sensors 9:9332–9354

    Article  CAS  Google Scholar 

  385. Vannoy CH, Xu J, Leblanc RM (2010) Bioimaging and self-assembly of lysozyme fibrils utilizing CdSe/ZnS quantum dots. J Phys Chem C 114:766–773

    Article  CAS  Google Scholar 

  386. Sweeney SF, Woehrle GH, Hutchison JE (2006) Rapid purification and size separation of gold nanoparticles via diafiltration. J Am Chem Soc 128:3190–3197

    Article  CAS  Google Scholar 

  387. Rytting E, Bur M, Cartier R, Bouyssou T, Wang X, Krüger M, Lehr CM, Kissel T (2010) In vitro and in vivo performance of biocompatible negatively-charged salbutamol-loaded nanoparticles. J Control Release 141:101–107

    Article  CAS  Google Scholar 

  388. Zhang Y, Schnoes AM, Clapp AR (2010) Dithiocarbamates as capping ligands for water-soluble quantum dots. ACS Appl Mater Interfaces 2:3384–3395

    Article  CAS  Google Scholar 

  389. Kalisman YL, Jadzinsky PD, Kalisman N, Tsunoyama H, Tsukuda T, Bushnell DA, Kornberg RD (2011) Synthesis and characterization of Au102(p-MBA)44 nanoparticles. J Am Chem Soc 133:2976–2982

    Article  CAS  Google Scholar 

  390. Wu RH, Nguyen TP, Marquart GW, Miesen TJ, Mau T, Mackiewicz MR (2014) A facile route to tailoring peptide-stabilized gold nanoparticles using glutathione as a synthon. Molecules 19:6754–6775

    Article  CAS  Google Scholar 

  391. Zhang YZ, Roder H, Paterson Y (1995) Rapid amide proton exchange rates in peptides and proteins measured by solvent quenching and two-dimensional NMR. Protein Sci 4:804–814

    Article  CAS  Google Scholar 

  392. Cullity BD, Stock SR (2001) Elements of X-Ray diffraction, 3rd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  393. Henein GE, Wagner WR (1983) Stresses induced in GaAs by TiPt ohmic contacts. J Appl Phys 54:6395–6400

    Article  CAS  Google Scholar 

  394. Pannu C, Singh UB, Kumar S, Tripathi A, Kabiraj D, Avasthi DK (2014) Engineering the strain in graphene layers with Au decoration. Appl Surf Sci 308:193–198

    Article  CAS  Google Scholar 

  395. Cammarata RC, Trimble TM, Srolovitz DJ (2000) Surface stress model for intrinsic stresses in thin films. J Mater Res 15:2468–2474

    Article  CAS  Google Scholar 

  396. Friesen C, Seel SC, Thompson CV (2004) Reversible stress changes at all stages of Volmer-Weber film growth. J Appl Phys 95:1011–1020

    Article  CAS  Google Scholar 

  397. Raju GG (2003) Dielectrics in electrical fields. Marcel Dekker, Inc., New York, p 260

    Google Scholar 

  398. González-Campos JB, Prokhorov E, Luna-Bárcenas G, Fonseca-García A, Sanchez IC (2009) Dielectric relaxations of chitosan: the effect of water on the α-relaxation and the glass transition temperature. J Polym Sci, Part B: Polym Phys 47:2259–2271

    Article  CAS  Google Scholar 

  399. Hernández-Vargas J, González-Campos JB, Lara-Romero J, Prokhorov E, Luna-Bárcenas G, Aviña-Verduzco JA, González-Hernández JC (2014) Chitosan/MWCNTs-Decorated with silver nanoparticle composites: dielectric and antibacterial characterization. J Appl Polym Sci 131:40213

    Article  CAS  Google Scholar 

  400. Lee H, Habas SE, Somorjai GA, Yang P (2008) Localized Pd overgrowth on Cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. J Am Chem Soc 130:5406–5407

    Article  CAS  Google Scholar 

  401. Wu HL, Chen CH, Huang MH (2008) Seed-mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars. Chem Mater 21:110–214

    Article  CAS  Google Scholar 

  402. Sau TK, Pal A, Jana NR, Wang ZL, Pal T (2001) Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J Nanopart Res 3:257–261

    Article  CAS  Google Scholar 

  403. Kumar PS, Pastoriza-Santos I, Rodriguez-Gonzalez B, de Abajo FJG, Liz-Marzan LM (2008) High-yield synthesis and optical response of gold nanostars. Nanotechnol 19:015606 (1–5)

    Google Scholar 

  404. Sau TK, Murphy CJ (2007) Role of ions in the colloidal synthesis of gold nanowires. Philos Mag 87:2143–2158

    Article  CAS  Google Scholar 

  405. Sajanlal PR, Pradeep T (2008) Electric-field-assisted growth of highly uniform and oriented gold nanotriangles on conducting glass substrates. Adv Mater 20:980–983

    Article  CAS  Google Scholar 

  406. Duraiswamy S, Khan SA (2014) Dual-stage continuous-flow seedless microfluidic synthesis of anisotropic gold nanocrystals. Part Part Syst Charact 31:429–432

    Article  CAS  Google Scholar 

  407. Kurihara LK, Chow GM, Schoen PE (1995) Nanostruct Mater 5:607

    Article  CAS  Google Scholar 

  408. Cho SP, Bratescu MA, Saito N, Takai O (2011) Microstructural characterization of gold nanoparticles synthesized by solution plasma processing. Nanotechnology 22:455701

    Article  CAS  Google Scholar 

  409. Hu X, Cho SP, Takai O, Saito N (2012) Rapid synthesis and structural characterization of well-defined gold clusters by solution plasma sputtering. Cryst Growth Des 12:119–123

    Article  CAS  Google Scholar 

  410. Tseng KH, Chen YC, Shyue JJ (2011) Continuous synthesis of colloidal silver nanoparticles by electrochemical discharge in aqueous solutions. J Nanopart Res 131865–1872

    Google Scholar 

  411. Heo YK, Lee SY (2011) Effects of the gap distance on the characteristics of gold nanoparticles in nanofluids synthesized using solution plasma processing. Met Mater Int 17:431–434

    Article  CAS  Google Scholar 

  412. Nandagiri VK, Gentile P, Chiono V, Tonda-Turo C, Matsiko A, Ramtoola Z, Montevecchi FM, Ciardelli G (2011) Incorporation of PLGA nanoparticles into porous chitosan-gelatin scaffolds: influence on the physical properties and cell behavior. J Mech Behav Biomed 4:1318–1327

    Article  CAS  Google Scholar 

  413. McKenna J, Patel J, Mitra S, Soin N, Švrček V, Maguire P, Mariotti D (2011) Silicon-based quantum dots: synthesis, surface and composition tuning with atmospheric pressure plasmas. Eur Phys J Appl Phys 56:24020

    Article  CAS  Google Scholar 

  414. Chen Q, Kaneko T, Hatakeyama R (2012) Rapid synthesis of water-soluble gold nanoparticles with control of size and assembly using gas-liquid interfacial discharge plasma. Chem Phys Lett 521:113–117

    Article  CAS  Google Scholar 

  415. Chen Q, Kaneko T, Hatakeyama R (2011) Plasma induced synthesis of water-soluble DNA conjugated gold nanoparticles. In: 30th international conference on phenomena in ionized gases, Belfast, UK

    Google Scholar 

  416. Patel J, Němcová L, Maguire P, Graham WG, Mariotti D (2013) Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry. Nanotechnology 24:245604 ( 11)

    Google Scholar 

  417. Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746

    Article  CAS  Google Scholar 

  418. Preston CK, Moskovits M (1993) Optical characterization of anodic aluminum oxide films containing electrochemically deposited metal particles. 1. Gold in phosphoric acid anodic aluminum oxide films. J Phys Chem 97:8495–8503

    Article  CAS  Google Scholar 

  419. Payne EK, Shuford KL, Park S, Schatz GC, Mirkin CA (2006) Multipole plasmon resonances in gold nanorods. J Phys Chem B 110:2150–2154

    Article  CAS  Google Scholar 

  420. Wang J (2008) Barcoded metal nanowires. J Mater Chem 18:4017–4020

    Article  CAS  Google Scholar 

  421. Xu H, Suslick KS (2010) Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 4:3209–3214

    Article  CAS  Google Scholar 

  422. Buffat PA, Flueli M, Spycher R, Stadelmann P, Borel JP (1991) Crystallographic structure of small gold particles studied by high-resolution electron microscopy. Faraday Discuss 92:173–187

    Article  CAS  Google Scholar 

  423. Raula J, Shan J, Nuopponen M, Niskanen A, Jiang H, Kauppinen EI, Tenhu H (2003) Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible-addition fragmentation chain-transfer polymerization. Langmuir 19:3499–3504

    Article  CAS  Google Scholar 

  424. Mandal TK, Fleming MS, Walt DR (2002) Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature. Nano Lett 2:3–7

    Article  Google Scholar 

  425. De la Presa P, Rueda T, del Puerto Morales M, Javier Chichón F, Arranz R, Valpuesta JM, Hernando A (2009) Gold nanoparticles generated in ethosome bilayers, as revealed by cryo-electrontomography. J Phys Chem B 12(113):3051–3057

    Article  CAS  Google Scholar 

  426. Jensen TR, Duval ML, Kelly KL, Lazarides AA, Schatz GC, Van Duyne RP (1999) Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J Phys Chem B 103:9846–9853

    Article  CAS  Google Scholar 

  427. Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104:10549–10556

    Article  CAS  Google Scholar 

  428. Zhou WM, Zhang J, Li XL, Liu YB, Min GQ, Song ZT, Zhang JP (2009) Replication of mold for UV-nanoimprint lithography using AAO membrane. Appl Surf Sci 255:8019–8022

    Article  CAS  Google Scholar 

  429. Park M, Harrison C, Chaikin PM, Register RA, Adamson DH (1997) Block copolymer lithography: periodic arrays of ~1011 holes in 1 square centimeter. Science 276:1401–1404

    Article  CAS  Google Scholar 

  430. Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268:1466–1468

    Article  CAS  Google Scholar 

  431. Chou SY, Krauss PR, Renstrom PJ (1996) Nanoimprint lithography. J Vac Sci Technol B 14:4129–4133

    Article  CAS  Google Scholar 

  432. Sotomayor Torres CM, Zankovych S, Seekamp J, Kam AP, Cedeno CC, Hoffmann T, Ahopelto J, Reuther F, Pfeiffer K, Bleidiessel G, Gruetzner G, Maximov MV, Heidari B (2003) Nanoimprint lithography: an alternative nanofabrication approach. Mater Sci Eng C 23:23–31

    Article  Google Scholar 

  433. Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mater 19:495–513

    Article  CAS  Google Scholar 

  434. López P, Pelaz L, Santos I, Marqués LA, Aboy M (2012) Molecular dynamics simulations of damage production by thermal spikes in Ge. J Appl Phys 111:033519

    Article  CAS  Google Scholar 

  435. Romano L, Impellizzeri G, Grimaldi MG (2013) Influence of microstructure on voids nucleation in nanoporous Ge. Mater Lett 96:74–77

    Article  CAS  Google Scholar 

  436. Böttger R, Bischoff L, Heinig KH, Schmidt B, Pilz W, Schmidt B (2012) From sponge to dot arrays on (100) Ge by increasing the energy of ion impacts. J Vac Sci Technol B 30:06FF12

    Google Scholar 

  437. Miyawaki A, Hayashi T, Tokunaga T, Hayashi A, Hayashi Y, Tanemura M (2012) Low-temperature fabrication of germanium nanostructures by ion irradiation: effect of supplied particle species. Jpn J Appl Phys 51:01AB05

    Google Scholar 

  438. Miles DT, Murray RW (2003) Temperature-dependent quantized double layer charging of monolayer-protected gold clusters. Anal Chem 75:1251–1257

    Article  CAS  Google Scholar 

  439. Quinn BM, Liljeroth P, Ruiz V, Laaksonen T, Kontturi K (2003) Electrochemical resolution of 15 oxidation states for monolayer protected gold nanoparticles. J Am Chem Soc 125:6644–6645

    Article  CAS  Google Scholar 

  440. Parker JF, Fields-Zinna CA, Murray RW (2010) The story of a monodisperse gold nanoparticle: Au25L18. Acc Chem Res 43:1289–1296

    Article  CAS  Google Scholar 

  441. Donkers RL, Lee D, Murray RW (2004) Synthesis and isolation of the molecule-like cluster Au38(PhCH2CH2S)24. Langmuir 20:1945–1952

    Article  CAS  Google Scholar 

  442. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665

    Article  CAS  Google Scholar 

  443. Wu J, Campuzano S, Halford C, Haake DA, Wang J (2010) Ternary surface monolayers for ultrasensitive (zeptomole) amperometric detection of nucleic acid hybridization without signal amplification. Anal Chem 82:8830–8837

    Article  CAS  Google Scholar 

  444. Bhuvana M, Dharuman V (2016) Influence of alkane chain lengths and head groups on tethering of liposome-gold nanoparticle on gold surface for electrochemical DNA sensing and gene delivery. Sensors Actuators B 223:157–165

    Article  CAS  Google Scholar 

  445. Nadagouda MN, Speth TF, Varma RS (2011) Microwave-assisted green synthesis of silver nanostructures. Acc Chem Res 44:469–478

    Article  CAS  Google Scholar 

  446. Polshettiwar V, Nadagouda MN, Varma RS (2009) Microwaveassisted chemistry: a rapid and sustainable route to synthesis of organics and nanomaterials. Aust J Chem 62:16–26

    Article  CAS  Google Scholar 

  447. Wang H, Zhang J, Zhu JJ (2001) A microwave assisted heating method for rapid synthesis of sphalrite-type mercury sulfide nanocrystals with different sizes. J Cryst Growth 233:829–836

    Article  CAS  Google Scholar 

  448. Lu QY, Gao F, Komarneni SJ (2004) Microwave-assisted synthesis of one-dimensional nanostructures. Mater Res 19:1649–1655

    Article  CAS  Google Scholar 

  449. Kim T, Lee CH, Joo SW, Lee K (2008) Kinetics of gold nanoparticle aggregation: experiments and modeling. J Colloid Interface Sci 318:238–243

    Article  CAS  Google Scholar 

  450. Lombardi A, Grzelczak M, Crut A, Mioli P, Isabel PS, Liz-Marzán LM, Del Fatti N, Vallée F (2013) Optical Response of Individual Au–Ag@SiO2 Heterodimers. ACS Nano 7:2522–2531

    Article  CAS  Google Scholar 

  451. Gschneidtner T, Diaz-Fernandez YA, Syrenova S, Westerlund F, Langhammer C, Moth-Poulsen KA (2014) Versatile self-assembly strategy for the synthesis of shape-selected colloidal noble metal nanoparticle heterodimers. Langmuir 30:3041–3050

    Article  CAS  Google Scholar 

  452. Sokolov K, Follen M, Richards-Kortum R (2002) Optical spectroscopy for detection of neoplasia. Curr Opin Chem Biol 6:651–658

    Article  CAS  Google Scholar 

  453. Crow P, Stone N, Kendall CA, Persad RA, Wright MPJ (2003) Optical diagnostics in urology: Current applications and future prospects. BJU Int 92:400–407

    Article  CAS  Google Scholar 

  454. De Veld DCG, Witjes MJH, Sterenborg HJCM, Roodenburg JLN (2005) The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. Oral Oncol 41:117–131

    Article  Google Scholar 

  455. Swinson B, Jerjes W, El-Maaytah M, Norris P, Hopper C (2006) Optical techniques in diagnosis of head and neck malignancy. Oral Oncol 42:221–228

    Article  CAS  Google Scholar 

  456. Wong KSLM, Molckovsky A, Wang KK, Dolenko B, Somorjai RL, Wilson BC (2005) Diagnostic potential of Raman spectroscopy in Barrett’s esophagus. Proc SPIE 5692:140–146

    Article  Google Scholar 

  457. Zysk AM, Nguyen FT, Oldenburg AL, Marks DL, Boppart SA (2007) Optical coherence tomography: a review of clinical development from bench to bedside. J Biomed Opt 12:051403

    Article  Google Scholar 

  458. Watanabe A, Tsujie H, Taniguchi M, Hosokawa M, Fujita M, Sasaki S (2006) Laryngoscopic detection of pharyngeal carcinoma in situ with narrowband imaging. Laryngoscope 116:650–654

    Article  Google Scholar 

  459. Hamley IW (2003) Nanotechnology with soft materials. Angew Chem Int Ed 42:1692–1712; Angew Chem 115:1730–1752

    Google Scholar 

  460. Cölfen H, Mann S (2003) Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem 115:2452–2468

    Article  Google Scholar 

  461. van Bommel KJC, Friggeri A, Shinkai S (2003) Organic templates for the generation of inorganic materials. Angew Chem 115:1010–1030; Angew Chem Int Ed 42:980–999

    Google Scholar 

  462. Niemeyer CM (2003) Functional hybrid devices of proteins and inorganic nanoparticles. Angew Chem Int Ed 42:5796–5800; Angew Chem 115:5974 –5978

    Google Scholar 

  463. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:R15–R27

    Article  CAS  Google Scholar 

  464. Csaki A, Maubach G, Born D, Reichert J, Fritzsche W (2002) DNA-based molecular nanotechnology. Single Mol 3:275–280

    Article  CAS  Google Scholar 

  465. Penn SG, Hey L, Natan MJ (2003) Nanoparticles for bioanalysis. Curr Opin Chem Biol 7:609–615

    Article  CAS  Google Scholar 

  466. West JL, Halas NJ (2003) Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Ann Rev Biomed Eng 5:285–292

    Article  CAS  Google Scholar 

  467. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    Article  CAS  Google Scholar 

  468. Thiesen B, Jordan A (2008) Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia 24:467–474

    Article  CAS  Google Scholar 

  469. Iga AM, Robertson JH, Winslet MC, Seifalian AM (2007) Clinical potential of quantum dots. J Biomed Biotechnol 10:76087

    Google Scholar 

  470. Tan A, De La Pena H, Seifalian AM (2010) The application of exosomes as a nanoscale cancer vaccine. Int J Nanomedicine 5:889–900

    CAS  Google Scholar 

  471. Roy S, Gao ZQ (2009) Nanostructure-based electrical biosensors. Nano Today 4:318–334

    Article  CAS  Google Scholar 

  472. Yan H, Choe HS, Nam SW, Hu YJ, Das S, Klemic JF, Ellenbogen JC, Lieber CM (2011) Programmable nanowire circuits for nanoprocessors. Nature 470:240–244

    Article  CAS  Google Scholar 

  473. Napoli M, Eijkel JCT, Pennathur S (2010) Nanofluidic technology for biomolecule applications: a critical review. Lab Chip 10:957–985

    Article  CAS  Google Scholar 

  474. Patolsky F, Zheng G, Lieber CM (2006) Nanowire sensors for medicine and the life sciences. Nanomedicine 1:51–65

    Article  CAS  Google Scholar 

  475. Tian BZ, Cohen-Karni T, Qing QA, Duan XJ, Xie P, Lieber CM (2010) Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329:830–834

    Article  CAS  Google Scholar 

  476. Lin SP, Pan CY, Tseng KC, Lin MC, Chen CD, Tsai CC, Yu SH, Sun YC, Lin TW, Chen YT (2009) A reversible surface functionalized nanowire transistor to study protein-protein interactions. Nano Today 4:235–243

    Article  CAS  Google Scholar 

  477. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301

    Article  CAS  Google Scholar 

  478. Stern E, Vacic A, Rajan NK, Criscione JM, Park J, Ilic BR, Mooney DJ, Reed MA, Fahmy TM (2010) Label-free biomarker detection from whole blood. Nat Nanotechnol 5:138–142

    Article  CAS  Google Scholar 

  479. Fan R, Vermesh O, Srivastava A, Yen BK, Qin L, Ahmad H, Kwong GA, Liu CC, Gould J, Hood L, Heath JR (2008) Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat Biotechnol 26:1373–1378

    Article  CAS  Google Scholar 

  480. Wang J, Ahmad H, Ma C, Shi Q, Vermesh O, Vermesh U, Heath J (2010) A self-powered, one-step chip for rapid, quantitative and multiplexed detection of proteins from pinpricks of whole blood. Lab Chip 10:3157–3162

    Article  CAS  Google Scholar 

  481. Heidel JD, Davis ME (2011) Clinical developments in nanotechnology for cancer therapy. Pharm Res 28:187–199

    Article  CAS  Google Scholar 

  482. Nguyen KT (2011) Targeted nanoparticles for cancer therapy: promises and challenges. J Nanomedic Nanotechnol 2:1–2

    Article  CAS  Google Scholar 

  483. Melancon MP, Zhou M, Li C (2011) Cancer theranostics with nearinfrared light-activatable multimodal nanoparticles. Acc Chem Res 44:947–956

    Article  CAS  Google Scholar 

  484. Lammers T, Hennink WE, Storm G (2008) Tumour-targeted nanomedicines: principles and practice. Br J Cancer 99:392–397

    Article  CAS  Google Scholar 

  485. Lammers T, Subr V, Ulbrich K, Hennink WE, Storm G, Kiessling F (2010) Polymeric nanomedicines for image-guided drug delivery and tumor-targeted combination therapy. Nano Today 5:197–212

    Article  CAS  Google Scholar 

  486. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discovery 2:347–360

    Article  CAS  Google Scholar 

  487. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discovery 4:145–160

    Article  CAS  Google Scholar 

  488. Hofheinz RD, Gnad-Vogt SU, Beyer U, Hochhaus A (2005) Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 16:691–707

    Article  CAS  Google Scholar 

  489. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    Article  CAS  Google Scholar 

  490. Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750–763

    Article  CAS  Google Scholar 

  491. Sweeney EC, Tonevitsky AG, Temiakov DE, Agapov II, Saward S, Palmer RA (1997) Preliminary crystallographic characterization of ricin agglutinin. Proteins 28:586–589

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignác Capek .

Glossary

Biomarker, or biological marker

generally refers to a measurable indicator of some biological state or condition. The term is also occasionally used to refer to a substance the presence of which indicates the existence of a living organism.

Fluorophore (or fluorochrome, similarly to a chromophore)

is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with several π bonds.

Immunodeficiency (or immune deficiency)

is a state in which the immune system’s ability to fight infectious disease and cancer is compromised or entirely absent.

Monoclonal antibodies (mAb or moAb)

are antibodies that are made by identical immune cells that are all clones of a unique parent cell. Monoclonal antibodies can have monovalent affinity, in that they bind to the same epitope (the part of an antigen that is recognized by the antibody).

Non-Hodgkin lymphoma (sometimes called NHL, or just lymphoma)

is a cancer that starts in cells called lymphocytes, which are part of the body’s immune system.

Photothermal therapy (PTT)

refers to efforts to use electromagnetic radiation (most often in infrared wavelengths) for the treatment of various medical conditions, including cancer. This approach is an extension of photodynamic therapy, in which a photosensitizer is excited with specific band light. This activation brings the sensitizer to an excited state, where it then releases vibrational energy (heat), which is what kills the targeted cells.

Premalignant (precancerous) lesions

are morphologically atypical tissue which appears abnormal under microscopic examination, in which cancer is more likely to occur than in its apparently normal counterpart.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Capek, I. (2017). Nanofield. In: Noble Metal Nanoparticles. Nanostructure Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56556-7_1

Download citation

Publish with us

Policies and ethics