Skip to main content
Log in

Fabrication of Ag nanodot array over large area for surface-enhanced Raman scattering using hybrid nanoimprint mold made from AAO template

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We demonstrated the fabrication of dense hexagonal arrays of Ag nanodots over a large area using a novel nanoimprint-based fabrication technique for surface-enhanced Raman spectroscopy. Flexible imprint molds with sub-10 nm features were duplicated from AAO templates using a novel hybrid mold technique. This method solves the nonflatness-induced defect issue in the conventional thermal nanoimprint technique, and allows high-quality duplications of nanometer features from rigid nonflat templates. Moreover, with the help of the excellent tunability of the size of nanoholes on AAO templates, we were able to tune the size of Ag nanodots, and consequently to tailor the resonance frequency of the Ag nanodot arrays. Finally, surface-enhanced Raman scattering of Rhodamine-123 on Ag nanodot arrays was measured, and large signal enhancement was observed on the 70 nm Ag nanodots. We numerically simulated the optical properties of those Ag nanodot arrays, and excellent agreement was found with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.R. Jensen, M.L. Duval, K.L. Kelly, A.A. Lazarides, G.C. Schatz, R.P. Van Duyne, J. Phys. Chem. B 103(45), 9846 (1999)

    Article  Google Scholar 

  2. T.R. Jensen, M.D. Malinsky, C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 104(45), 10549 (2000)

    Article  Google Scholar 

  3. D.A. Genov, A.K. Sarychev, V.M. Shalaev, A. Wei, Nano Lett. 4(1), 153 (2004)

    Article  ADS  Google Scholar 

  4. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424(6950), 824 (2003)

    Article  ADS  Google Scholar 

  5. H. Wang, C.S. Levin, N.J. Halas, J. Am. Chem. Soc. 127(43), 14992 (2005)

    Article  Google Scholar 

  6. B. Cui, L. Clime, K. Li, T. Veres, Nanotechnology 19(14), 145302 (2008)

  7. W. Wu, M. Hu, F.S. Ou, Z.Y. Li, R.S. Williams, Nanotechnology 21(25), 255502 (2010)

  8. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26(2), 163 (1974)

    Article  ADS  Google Scholar 

  9. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R. Dasari, M.S. Feld, Phys. Rev. Lett. 78(9), 1667 (1997)

    Article  ADS  Google Scholar 

  10. R. Alvarez-Puebla, B. Cui, J.P. Bravo-Vasquez, T. Veres, H. Fenniri, J. Phys. Chem. C 111(18), 6720 (2007)

    Article  Google Scholar 

  11. M. Kahl, E. Voges, S. Kostrewa, C. Viets, W. Hill, Sens. Actuators B Chem. 51(1–3), 285 (1998)

    Article  Google Scholar 

  12. W.M. Zhou, J. Zhang, X.L. Li, Y.B. Liu, G.Q. Min, Z.T. Song, J.P. Zhang, Appl. Surf. Sci. 255(18), 8019 (2009)

    Article  ADS  Google Scholar 

  13. M. Park, C. Harrison, P.M. Chaikin, R.A. Register, D.H. Adamson, Science 276(5317), 1401 (1997)

    Article  Google Scholar 

  14. S.Y. Chou, P.R. Krauss, P.J. Renstrom, J. Vac. Sci. Technol. B 14(6), 4129 (1996)

    Article  Google Scholar 

  15. C.M. Sotomayor Torres, S. Zankovych, J. Seekamp, A.P. Kam, C.C. Cedeno, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M.V. Maximov, B. Heidari, Mater. Sci. Eng. C 23(1), 23 (2003)

    Article  Google Scholar 

  16. L.J. Guo, Adv. Mater. 19(4), 495 (2007)

    Article  Google Scholar 

  17. J.S. Lee, G.H. Gu, H. Kim, K.S. Jeong, J. Bae, J.S. Suh, Chem. Mat. 13(7), 2387 (2001)

    Article  ADS  Google Scholar 

  18. X.Z. Chen, Q. Li, X. Chen, X. Guo, H.X. Ge, Y. Liu, Q.D. Shen, Adv. Funct. Mater. 23(24), 3124 (2013)

    Article  Google Scholar 

  19. C.H. Liu, J.A. Zapien, Y. Yao, X.M. Meng, C.S. Lee, S.S. Fan, Y. Lifshitz, S.T. Lee, Adv. Mater. 15(10), 838 (2003)

    Article  Google Scholar 

  20. Z.W. Li, Y.N. Gu, L. Wang, H.X. Ge, W. Wu, Q.F. Xia, C.S. Yuan, Y. Chen, B. Cui, R.S. Williams, Nano Lett. 9(6), 2306 (2009)

    Article  ADS  Google Scholar 

  21. H. Masuda, K. Fukuda, Science 268(5216), 1466 (1995)

    Article  ADS  Google Scholar 

  22. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9(7), 671 (2012)

    Article  Google Scholar 

  23. T. Yajima, Y.Y. Yu, M. Futamata, Phys. Chem. Chem. Phys. 13(27), 12454 (2011)

    Article  Google Scholar 

  24. W.H. Zhang, H. Fischer, T. Schmid, R. Zenobi, O.J.F. Martin, J. Phys. Chem. C 113(33), 14672 (2009)

    Article  Google Scholar 

  25. K.S. Yee, IEEE Trans. Antennas Propag. 14(3), 302 (1966)

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (Grant No. 91023014, Grant No. 11374152), the National Basic Research Program of China (973 Program) (Grant No. 2013cb632702), the Priority Academic Program Development of Jiangsu Higher Education Institutions and RFDP, and the New Century Excellent Talent Project of the Ministry of Education of China (Grant No. NCET-10-0455).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changsheng Yuan or Weihua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Fu, X., Zhang, Q. et al. Fabrication of Ag nanodot array over large area for surface-enhanced Raman scattering using hybrid nanoimprint mold made from AAO template. Appl. Phys. A 117, 909–915 (2014). https://doi.org/10.1007/s00339-014-8454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8454-8

Keywords

Navigation