Skip to main content

Simple Tactile Technologies Utilizing Human Tactile and Haptic Characteristics

  • Chapter
  • First Online:
Pervasive Haptics

Abstract

Human tactile and haptic characteristics promote the development of tactile devices that are simple and effective. In addition, issues and ideas for tactile devices can be found from present needs and conditions of manufacturing and medical fields. This chapter presents tactile technologies that are based on human tactile and haptic characteristics. First, wearable and hand-held tactile sensors, tactile enhancing devices without an electronic element, and tactile sensing with a human finger are introduced. They were developed for surface irregularity inspections and texture evaluations. Then, a palpation system with sensory feedback for laparoscopic surgery is introduced. Finally, tactile design based on tactile illusion is introduced. It can combine a hard material and soft feel. These tactile technologies utilize the human haptic ability and structural enhancing mechanism, and human tactile perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lederman, S.J., Klatzky, R.L.: The hand as a perceptual system. In: Connolly, K.J. (ed.) The Psychobiology of the Hand, pp. 16–35. Cambridge University Press (1998)

    Google Scholar 

  2. Smith, A.M., Gosselin, G., Houde, B.: Deployment of fingertip forces in tactile exploration. Exp. Brain Res. 147, 209–218 (2002)

    Article  Google Scholar 

  3. Drewing, K., Lezkan, A., Ludwig, S.: Texture discrimination in active touch: effects of the extension of the exploration and their exploitation. In: Proceedings of the IEEE World Haptics Conference 2011, pp. 215–220 (2011)

    Google Scholar 

  4. Kaim, L., Drewing, K.: Exploratory strategies in haptic softness discrimination are tuned to achieve high levels of task performance. IEEE Trans. Haptics 4(4), 242–252 (2011)

    Article  Google Scholar 

  5. Tanaka, Y., Bergmann Tiest, W.M., Kappers, A.M.L., Sano A.: Contact force and scanning velocity during active roughness perception. PLOS ONE 9(3), e93363 (2014)

    Article  Google Scholar 

  6. Kikuuwe, R., Sano, A., Mochiyama, H., Takesue, N., Fujimoto, H.: A tactile sensor capable of mechanical adaptation and its use as a surface deflection detector. In: Proceedings of the 3rd IEEE Conference on Sensors, pp. 256–259 (2004)

    Google Scholar 

  7. Tanaka, Y., Sato, H., Fujimoto, H.: Development of a finger-mounted tactile sensor for surface irregularity detection. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 690–696 (2008)

    Google Scholar 

  8. Maeno, T., Kobayashi, K., Yamazaki, N.: Relationship between the structure of human finger tissue and the location of tactile receptors. JSME Int. J. Ser. C 41, 94–100 (1998)

    Article  Google Scholar 

  9. Scheibert, J., Leurent, S., Prevost, A., Debregeas, G.: The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323, 1503–1506 (2009)

    Article  Google Scholar 

  10. Cauna, N.: Nature and functions of the papillary ridges of the digital skin. Anat. Rec. 119, 449–468 (1954)

    Article  Google Scholar 

  11. Tanaka, Y., Ito, T., Hashimoto, M., Fukasawa, M., Usuda, N., Sano, A.: Collagen fibers induce expansion of receptive field of Pacinian corpuscles. Adv. Robot. (2015). doi:10.1080/01691864.2014.1003194

    Google Scholar 

  12. Sano, T., Kikuuwe, R., Tanaka, Y., Fujimoto, H.: Enhancing tactile sensor’s capability using elastic medium. In: Proceedings of the 24th Annual Conference of the RSJ, 1C22 (2006)

    Google Scholar 

  13. Tanaka, Y., Kinoshita, D., Fujimoto, H.: Tiny protrusion detecting sensor with force sensing resistor film. In: Proceedings of the 25th Annual Conference of the RSJ, 3O16 (2007)

    Google Scholar 

  14. Kikuuwe, R., Sano, A., Mochiyama, H., Takesue, N., Fujimoto, H.: Enhancing haptic detection of surface undulation. ACM Trans. Appl. Percept. 2(11), 46–67 (2005)

    Article  Google Scholar 

  15. Hayward, V., Cruz-Hern’andez, J.M.: Tactile display device using distributed lateral skin stretch. In: Proceedings of 8th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 1309–1314 (2000)

    Google Scholar 

  16. Tanaka, Y., Sano, A., Ito, M., Fujimoto, H.: A novel tactile device considering nail function for changing capability of tactile perception. In: Proceedings of EuroHaptics 2008, pp. 543–548 (2008)

    Google Scholar 

  17. Jeong, H., Higashimori, M., Kaneko, M.: Improvement of touch sensitivity by pressing. In: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2409–2414 (2008)

    Google Scholar 

  18. Tanaka, Y., Sano, A., Fujimoto, H.: Effect of tactile nail chip for tactile sensitivity. In: Proceedings of 1st International Conference on Applied Bionics and Biomechanics (2010)

    Google Scholar 

  19. Moll, I., Moll, R.: Merkel cells in ontogenisis human nails. Arch. Dermatol. Res. 285, 366–371 (1993)

    Article  Google Scholar 

  20. Tanaka, Y., Horita, Y., Sano, A., Fujimoto, H.: Tactile sensing utilizing human tactile perception. In: Proceedings of the IEEE World Haptics Conference 2011, pp. 621–626 (2011)

    Google Scholar 

  21. Tanaka, Y., Horita, Y., Sano, A.: Finger-mounted skin vibration sensor for active touch. In: Isokoski, P., Springare, J. (eds.) Haptics: Perception, Devices, Mobility, and Communication. Lecture Notes in Computer Science, vol. 7283, pp. 169–174. Springer, Berlin/Heidelberg (2012)

    Chapter  Google Scholar 

  22. Mascaro, S.A., Asada, H.H.: Photoplethysmograph fingernail sensors for measuring finger forces without haptic obstruction. IEEE Trans. Robot. Autom. 17(5), 698–708 (2001)

    Article  Google Scholar 

  23. Nakatani, M., Shiojima, K., Kinoshita, S., Kawasoe, T., Koketsu, K., Wada, J.: Wearable contact force sensor system based on fingerpad deformation. In: Proceedings of the IEEE World Haptics Conference 2011, pp. 323–328 (2011)

    Google Scholar 

  24. Bensmaia, S., Hollins, M.: Pacinian representations of fine surface texture. Attent. Percept. Psychophys. 67(5), 842–854 (2005)

    Article  Google Scholar 

  25. Delhaye, B., Hayward, V., Lefevre, P., Thonnard, J.L.: Texture-induced vibrations in the forearm during tactile exploration. Front. Behav. Neurosci. 6(37), (2012)

    Google Scholar 

  26. Makino, Y., Murao, T., Maeno, T.: Life log system based on tactile sound. In: Proceedings of EuroHaptics 2010, Part I. Lecture Notes in Computer Science, vol. 6191, pp. 292–297 (2010)

    Article  Google Scholar 

  27. Kaneko, M, Kawahara, T.: Co-axis type non-contact impedance sensor. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 709–714 (2004)

    Google Scholar 

  28. Zbyszewski, D., Althoefer, K., Seneviratne, L., Bhaumik, A.: Tactile sensing using a novel air cushion sensor–a feasibility study. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 41–46 (2008)

    Google Scholar 

  29. Takaki, T., Omasa, Y., Ishii, I., Kawahara, T., Okajima, M.: Force visualization mechanism using a moire fringe applied to endoscopic surgical instruments. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3648–3653 (2010)

    Google Scholar 

  30. Peirs, J., Clijnen, J., Reynaerts, D., Brussel, H.V., Herijgers, P., Corteville, B., Boone, S.: A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sens. Actuators A: Phys. 115(2–3), 447–455 (2004)

    Article  Google Scholar 

  31. Nagano, Y., Sano, A., Sakaguchi, M., Fujimoto, H.: Development of force sensor for extra-fine and long objects: application in endovascular coil embolization. Trans. Soc. Instrum. Control Eng. 44(3), 278–284 (2008)

    Article  Google Scholar 

  32. Tanaka, Y., Yu, Q., Doumoto, K., Sano, A., Hayashi, Y., Fujii, M., Kajita, Y., Mizuno, M., Wakabayashi, T., Fujimoto, H.: Development of a real-time tactile sensing system for brain tumor diagnosis. Int. J. Comput. Assist. Radiol. Surg. 5(4), 359–367 (2010)

    Article  Google Scholar 

  33. Maeno, T., Kawai, T., Kobayashi, K.: Friction estimation by pressing an elastic finger-shaped sensor against a surface. IEEE Trans. Robot. Autom. 20(2), 222–228 (2004)

    Article  Google Scholar 

  34. Tanaka, Y., Nagai, T., Sakaguchi, M., Fujiwara, M., Sano, A.: Tactile sensing system including bidirectionally and enhancement of haptic perception by tactile feedback to distant part. In: Proceedings of the IEEE World Haptics Conference 2013, pp. 145–150 (2013)

    Google Scholar 

  35. Tanaka, Y., Fukuda, T., Fujiwara, M., Sano, A.: Tactile sensor using acoustic reflection for lump detection in laparoscopic surgery. Int. J. Comput. Assist. Radiol. Surg. 10(2), 183–193 (2015)

    Article  Google Scholar 

  36. Tanaka, Y., Aragaki, S., Fukuda, T., Fujiwara, M., Sano, A.: A study on tactile display for haptic sensing system with sensory feedback for laparoscopic surgery. In: Proceedings of the 25th International Symposium on Micro-NanoMechatronics and Human Science (2014)

    Google Scholar 

  37. Lederman, S.J., Jones, L.A.: Tactile and haptic illusions. IEEE Trans. Haptics 4(4), 273–294 (2011)

    Article  Google Scholar 

  38. Nakatani, M., Howe, R.D., Tachi, S.: Surface texture can bias tactile form perception. Exp. Brain Res. 208(1), 151–156 (2011)

    Article  Google Scholar 

  39. Vogels, I.M.L.C., Kappers, A.M.L., Koenderink, J.J.: Haptic after-effect of curved surfaces. Perception 25, 109–119 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Tanaka, Y., Sano, A. (2016). Simple Tactile Technologies Utilizing Human Tactile and Haptic Characteristics. In: Kajimoto, H., Saga, S., Konyo, M. (eds) Pervasive Haptics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55772-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55772-2_15

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55771-5

  • Online ISBN: 978-4-431-55772-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics