Skip to main content
Log in

Deployment of fingertip forces in tactile exploration

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract.

The purpose of this study was to examine how contact forces normal to the skin surface and shear forces tangential to the skin surface are deployed during tactile exploration of a smooth surface in search of a tactile target. Six naive subjects participated in two experiments. In the first experiment, the subjects were asked to explore a series of unseen smooth plastic surfaces by using the index finger to search for either a raised or recessed target. The raised targets were squares with a height of 280 µm above the background surface and that varied in side lengths from 0.2 mm to 8.0 mm. A second series of smooth plastic surfaces consisted of small recessed squares (side lengths: 2.0, 3.0, 4.0 and 8.0 mm) that were etched to a depth of 620 µm. Although made of an identical material, the plastic substrate had a lower coefficient of friction against the skin because only the recessed square had been subjected to the electrolytic etching process. The surfaces were mounted on a six-axes force and torque sensor connected to a laboratory computer. From the three axes of linear force, the computer was able to calculate the instantaneous position of the index finger and the instantaneous tangential force throughout the exploratory period. When exploring for the raised squares, the subjects maintained a relatively constant, average normal force of about 0.49 N with an average exploration speed of 8.6 cm/s. In contrast, all subjects used a significantly higher average normal force (0.64 N) and slightly slower mean exploration speed (7.67 cm/s) when searching for the small recessed squares. This appeared to be an attempt to maximize the amount of skin penetrating the recessed squares to improve the probability of target detection. In a second experiment, subjects were requested to search for an identical set of raised squares but with the fingertip having been coated with sucrose to impede the scanning movement by increasing the friction. Overall, the subjects maintained the same constant normal force that they used on the uncoated surface. However, they increased the tangential force significantly. The similarity of the search strategy employed by all subjects supports the hypothesis that shear forces on the skin provide a significant stimulus to mechanoreceptors in the skin during tactile exploration. Taken together, these data suggest that, in active tactile exploration with the fingertip, the tangential finger speed, the normal contact force, and the tangential shear force are adjusted optimally depending on the surface friction and whether the target is a raised asperity or a recessed indentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A.M., Gosselin, G. & Houde, B. Deployment of fingertip forces in tactile exploration. Exp Brain Res 147, 209–218 (2002). https://doi.org/10.1007/s00221-002-1240-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-002-1240-4

Navigation