Skip to main content

Membrane Lipid Transporters in Drosophila melanogaster

  • Chapter
Bioactive Lipid Mediators

Abstract

Membrane lipid transport within and across the membrane is mediated by lipid transport machineries known as flippase, floppase, and scramblase. Flippase translocates lipids from the exocytoplasmic to the cytoplasmic leaflet of cellular membranes, floppase mediates the translocation of lipids in the opposite direction, and scramblase facilitates bidirectional translocation of lipids. These specialized lipid transport machineries are now demonstrated to have crucial roles in a variety of biological processes, including lipid metabolism, immune response, apoptosis, and neural function, in many mammalian species. The Drosophila melanogaster genome contains orthologues to about 70 % of all human disease-associated genes, and thus both traditional genetic approaches and more recent genome-wide screening techniques in Drosophila have been powerful tools for the study of lipid-related processes. There are, however, many open questions about the structure and function of lipids and their transport machineries in Drosophila. In this review, we summarize the functions of flippase, floppase, and scramblase from several species, and discuss the roles of these lipid transporters in D. melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bier E (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 6:9–23

    Article  CAS  PubMed  Google Scholar 

  2. Xu Y, Condell M, Plesken H, Edelman-Novemsky I, Ma J, Ren M, Schlame M (2006) A Drosophila model of Barth syndrome. Proc Natl Acad Sci U S A 103:11584–11588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Takeuchi K, Nakano Y, Kato U, Kaneda M, Aizu M, Awano W, Yonemura S, Kiyonaka S, Mori Y, Yamamoto D, Umeda M (2009) Changes in temperature preferences and energy homeostasis in dystroglycan mutants. Science 323:1740–1743

    Article  CAS  PubMed  Google Scholar 

  4. Dar AC, Das TK, Shokat KM, Cagan RL (2012) Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486:80–84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Lenz S, Karsten P, Schulz JB, Voigt A (2013) Drosophila as a screening tool to study human neurodegenerative diseases. J Neurochem 127:453–460

    Article  CAS  PubMed  Google Scholar 

  6. Pavlidis P, Ramaswami M, Tanouye MA (1994) The Drosophila easily shocked gene: a mutation in a phospholipid synthetic pathway causes seizure, neuronal failure, and paralysis. Cell 79:23–33

    Article  CAS  PubMed  Google Scholar 

  7. Pospisilik JA, Schramek D, Schnidar H, Cronin SJ, Nehme NT, Zhang X, Knauf C, Cani PD, Aumayr K, Todoric J, Bayer M, Haschemi A, Puviindran V, Tar K, Orthofer M, Neely GG, Dietzl G, Manoukian A, Funovics M, Prager G, Wagner O, Ferrandon D, Aberger F, Hui CC, Esterbauer H, Penninger JM (2010) Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140:148–160

    Article  CAS  PubMed  Google Scholar 

  8. Carvalho M, Sampaio JL, Palm W, Brankatschk M, Eaton S, Shevchenko A (2012) Effects of diet and development on the Drosophila lipidome. Mol Syst Biol 8:600

    Article  PubMed Central  PubMed  Google Scholar 

  9. Guan XL, Cestra G, Shui G, Kuhrs A, Schittenhelm RB, Hafen E, van der Goot FG, Robinett CC, Gatti M, Gonzalez-Gaitan M, Wenk MR (2013) Biochemical membrane lipidomics during Drosophila development. Dev Cell 24:98–111

    Article  CAS  PubMed  Google Scholar 

  10. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed Central  PubMed  Google Scholar 

  11. Holthuis JC, Menon AK (2014) Lipid landscapes and pipelines in membrane homeostasis. Nature 510:48–57

    Article  CAS  PubMed  Google Scholar 

  12. Zachowski A (1993) Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J 294(pt 1):1–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Coleman JA, Quazi F, Molday RS (2013) Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport. Biochim Biophys Acta 1831:555–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kunzelmann K, Nilius B, Owsianik G, Schreiber R, Ousingsawat J, Sirianant L, Wanitchakool P, Bevers EM, Heemskerk JW (2014) Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramblase? Pflugers Arch 466:407–414

    Article  CAS  PubMed  Google Scholar 

  15. Bevers EM, Williamson PL (2010) Phospholipid scramblase: an update. FEBS Lett 584:2724–2730

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–838

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki J, Denning DP, Imanishi E, Horvitz HR, Nagata S (2013) Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341:403–406

    Article  CAS  PubMed  Google Scholar 

  18. Zachowski A, Henry JP, Devaux PF (1989) Control of transmembrane lipid asymmetry in chromaffin granules by an ATP-dependent protein. Nature 340:75–76

    Article  CAS  PubMed  Google Scholar 

  19. Tang X, Halleck MS, Schlegel RA, Williamson P (1996) A subfamily of P-type ATPases with aminophospholipid transporting activity. Science 272:1495–1497

    Article  CAS  PubMed  Google Scholar 

  20. Tanaka K, Fujimura-Kamada K, Yamamoto T (2011) Functions of phospholipid flippases. J Biochem 149:131–143

    Article  CAS  PubMed  Google Scholar 

  21. Baldridge RD, Graham TR (2012) Identification of residues defining phospholipid flippase substrate specificity of type IV P-type ATPases. Proc Natl Acad Sci U S A 109:E290–E298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Baldridge RD, Graham TR (2013) Two-gate mechanism for phospholipid selection and transport by type IV P-type ATPases. Proc Natl Acad Sci U S A 110:E358–E367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kato U, Emoto K, Fredriksson C, Nakamura H, Ohta A, Kobayashi T, Murakami-Murofushi K, Kobayashi T, Umeda M (2002) A novel membrane protein, Ros3p, is required for phospholipid translocation across the plasma membrane in Saccharomyces cerevisiae. J Biol Chem 277:37855–37862

    Article  CAS  PubMed  Google Scholar 

  24. Kato U, Inadome H, Yamamoto M, Emoto K, Kobayashi T, Umeda M (2013) Role for phospholipid flippase complex of ATP8A1 and CDC50A proteins in cell migration. J Biol Chem 288:4922–4934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Muthusamy BP, Natarajan P, Zhou X, Graham TR (2009) Linking phospholipid flippases to vesicle-mediated protein transport. Biochim Biophys Acta 1791:612–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sebastian TT, Baldridge RD, Xu P, Graham TR (2012) Phospholipid flippases: building asymmetric membranes and transport vesicles. Biochim Biophys Acta 1821:1068–1077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Xu P, Baldridge RD, Chi RJ, Burd CG, Graham TR (2013) Phosphatidylserine flipping enhances membrane curvature and negative charge required for vesicular transport. J Cell Biol 202:875–886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lopez-Marques RL, Theorin L, Palmgren MG, Pomorski TG (2014) P4-ATPases: lipid flippases in cell membranes. Pflugers Arch 466:1227–1240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Paterson JK, Renkema K, Burden L, Halleck MS, Schlegel RA, Williamson P, Daleke DL (2006) Lipid-specific activation of the murine P4-ATPase Atp8a1 (ATPase II). Biochemistry 45:5367–5376

    Article  CAS  PubMed  Google Scholar 

  30. Coleman JA, Molday RS (2011) Critical role of the beta-subunit CDC50A in the stable expression, assembly, subcellular localization, and lipid transport activity of the P4-ATPase ATP8A2. J Biol Chem 286:17205–17216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Coleman JA, Kwok MC, Molday RS (2009) Localization, purification, and functional reconstitution of the P4-ATPase Atp8a2, a phosphatidylserine flippase in photoreceptor disc membranes. J Biol Chem 284:32670–32679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Coleman JA, Vestergaard AL, Molday RS, Vilsen B, Andersen JP (2012) Critical role of a transmembrane lysine in aminophospholipid transport by mammalian photoreceptor P4-ATPase ATP8A2. Proc Natl Acad Sci U S A 109:1449–1454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. St. Pierre SE, Ponting L, Stefancsik R, McQuilton P, FlyBase C (2014) FlyBase 102: advanced approaches to interrogating FlyBase. Nucleic Acids Res 420:D780–D788

    Article  Google Scholar 

  34. Ha TS, Xia R, Zhang H, Jin X, Smith DP (2014) Lipid flippase modulates olfactory receptor expression and odorant sensitivity in Drosophila. Proc Natl Acad Sci U S A 111:7831–7836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Liu YC, Pearce MW, Honda T, Johnson TK, Charlu S, Sharma KR, Imad M, Burke RE, Zinsmaier KE, Ray A, Dahanukar A, de Bruyne M, Warr CG (2014) The Drosophila melanogaster phospholipid flippase dATP8B is required for odorant receptor function. PLoS Genet 10, e1004209

    Article  PubMed Central  PubMed  Google Scholar 

  36. Ma Z, Liu Z, Huang X (2010) OSBP- and FAN-mediated sterol requirement for spermatogenesis in Drosophila. Development 137:3775–3784

    Article  CAS  PubMed  Google Scholar 

  37. Ma Z, Liu Z, Huang X (2012) Membrane phospholipid asymmetry counters the adverse effects of sterol overloading in the Golgi membrane of Drosophila. Genetics 190:1299–1308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Elliott DA, Brand AH (2008) The GAL4 system: a versatile system for the expression of genes. Methods Mol Biol 420:79–95

    Article  CAS  PubMed  Google Scholar 

  39. Bischof J, Basler K (2008) Recombinases and their use in gene activation, gene inactivation, and transgenesis. Methods Mol Biol 420:175–195

    Article  CAS  PubMed  Google Scholar 

  40. Nagao K, Kimura Y, Mastuo M, Ueda K (2010) Lipid outward translocation by ABC proteins. FEBS Lett 584:2717–2723

    Article  CAS  PubMed  Google Scholar 

  41. Hyde SC, Emsley P, Hartshorn MJ, Mimmack MM, Gileadi U, Pearce SR, Gallagher MP, Gill DR, Hubbard RE, Higgins CF (1990) Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346:362–365

    Article  CAS  PubMed  Google Scholar 

  42. Zhang DW, Graf GA, Gerard RD, Cohen JC, Hobbs HH (2006) Functional asymmetry of nucleotide-binding domains in ABCG5 and ABCG8. J Biol Chem 281:4507–4516

    Article  CAS  PubMed  Google Scholar 

  43. Urbatsch IL, Beaudet L, Carrier I, Gros P (1998) Mutations in either nucleotide-binding site of P-glycoprotein (Mdr3) prevent vanadate trapping of nucleotide at both sites. Biochemistry 37:4592–4602

    Article  CAS  PubMed  Google Scholar 

  44. Tombline G, Bartholomew LA, Urbatsch IL, Senior AE (2004) Combined mutation of catalytic glutamate residues in the two nucleotide binding domains of P-glycoprotein generates a conformation that binds ATP and ADP tightly. J Biol Chem 279:31212–31220

    Article  CAS  PubMed  Google Scholar 

  45. Hrycyna CA, Ramachandra M, Germann UA, Cheng PW, Pastan I, Gottesman MM (1999) Both ATP sites of human P-glycoprotein are essential but not symmetric. Biochemistry 38:13887–13899

    Article  CAS  PubMed  Google Scholar 

  46. Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11:1156–1166

    Article  CAS  PubMed  Google Scholar 

  47. Dermauw W, Van Leeuwen T (2014) The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. Insect Biochem Mol Biol 45:89–110

    Article  CAS  PubMed  Google Scholar 

  48. Ewart GD, Howells AJ (1998) ABC transporters involved in transport of eye pigment precursors in Drosophila melanogaster. Methods Enzymol 292:213–224

    Article  CAS  PubMed  Google Scholar 

  49. Kuwana H, Shimizu-Nishikawa K, Iwahana H, Yamamoto D (1996) Molecular cloning and characterization of the ABC transporter expressed in Trachea (ATET) gene from Drosophila melanogaster. Biochim Biophys Acta 1309:47–52

    Article  CAS  PubMed  Google Scholar 

  50. Hock T, Cottrill T, Keegan J, Garza D (2000) The E23 early gene of Drosophila encodes an ecdysone-inducible ATP-binding cassette transporter capable of repressing ecdysone-mediated gene activation. Proc Natl Acad Sci U S A 97:9519–9524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Kennedy MA, Venkateswaran A, Tarr PT, Xenarios I, Kudoh J, Shimizu N, Edwards PA (2001) Characterization of the human ABCG1 gene: liver X receptor activates an internal promoter that produces a novel transcript encoding an alternative form of the protein. J Biol Chem 276:39438–39447

    Article  CAS  PubMed  Google Scholar 

  52. Engel T, Lorkowski S, Lueken A, Rust S, Schluter B, Berger G, Cullen P, Assmann G (2001) The human ABCG4 gene is regulated by oxysterols and retinoids in monocyte-derived macrophages. Biochem Biophys Res Commun 288:483–488

    Article  CAS  PubMed  Google Scholar 

  53. Koelle MR, Talbot WS, Segraves WA, Bender MT, Cherbas P, Hogness DS (1991) The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67:59–77

    Article  CAS  PubMed  Google Scholar 

  54. Ueda K, Cardarelli C, Gottesman MM, Pastan I (1987) Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci U S A 84:3004–3008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Morita SY, Kobayashi A, Takanezawa Y, Kioka N, Handa T, Arai H, Matsuo M, Ueda K (2007) Bile salt-dependent efflux of cellular phospholipids mediated by ATP binding cassette protein B4. Hepatology 46:188–199

    Article  CAS  PubMed  Google Scholar 

  56. Mayer F, Mayer N, Chinn L, Pinsonneault RL, Kroetz D, Bainton RJ (2009) Evolutionary conservation of vertebrate blood-brain barrier chemoprotective mechanisms in Drosophila. J Neurosci 29:3538–3550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Ricardo S, Lehmann R (2009) An ABC transporter controls export of a Drosophila germ cell attractant. Science 323:943–946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Zhou Q, Zhao J, Stout JG, Luhm RA, Wiedmer T, Sims PJ (1997) Molecular cloning of human plasma membrane phospholipid scramblase. A protein mediating transbilayer movement of plasma membrane phospholipids. J Biol Chem 272:18240–18244

    Article  CAS  PubMed  Google Scholar 

  59. Zhou Q, Zhao J, Wiedmer T, Sims PJ (2002) Normal hemostasis but defective hematopoietic response to growth factors in mice deficient in phospholipid scramblase 1. Blood 99:4030–4038

    Article  CAS  PubMed  Google Scholar 

  60. Suzuki J, Fujii T, Imao T, Ishihara K, Kuba H, Nagata S (2013) Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J Biol Chem 288:13305–13316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Acharya U, Edwards MB, Jorquera RA, Silva H, Nagashima K, Labarca P, Acharya JK (2006) Drosophila melanogaster scramblases modulate synaptic transmission. J Cell Biol 173:69–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Wong XM, Younger S, Peters CJ, Jan YN, Jan LY (2013) Subdued, a TMEM16 family Ca2+-activated Cl channel in Drosophila melanogaster with an unexpected role in host defense. eLife 2, e00862

    Article  PubMed Central  PubMed  Google Scholar 

  63. Kramer J, Hawley RS (2003) The spindle-associated transmembrane protein Axs identifies a membranous structure ensheathing the meiotic spindle. Nat Cell Biol 5:261–263

    Article  CAS  PubMed  Google Scholar 

  64. Mizuta K, Tsutsumi S, Inoue H, Sakamoto Y, Miyatake K, Miyawaki K, Noji S, Kamata N, Itakura M (2007) Molecular characterization of GDD1/TMEM16E, the gene product responsible for autosomal dominant gnathodiaphyseal dysplasia. Biochem Biophys Res Commun 357:126–132

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Umeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Nagao, K., Juni, N., Umeda, M. (2015). Membrane Lipid Transporters in Drosophila melanogaster . In: Yokomizo, T., Murakami, M. (eds) Bioactive Lipid Mediators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55669-5_12

Download citation

Publish with us

Policies and ethics