Skip to main content

Glyco-Predisposing Factor of Diabetes

  • Chapter
  • First Online:
Sugar Chains

Abstract

Appropriate insulin secretion is an essential process in glucose homeostasis and is initiated by glucose sensing with glucose transporter-2 (GLUT2) in pancreatic β-cells. The disappearance of GLUT2 from the β-cell surface is one of the early markers of the onset of type 2 diabetes, though the molecular mechanism has not been well understood. Recent advance in glycophysiology revealed that specific GLUT2 glycosylation by GnT-IVa is required for the production of carbohydrate epitopes bound to galectin-9 on the β-cell surface. The engagement of galectin-9 with GLUT2 regulates remodeling of GLUT2 clusters among cell surface membrane sub-domains, to control glucose transport activities, and prevents endocytosis to increase cell surface residency of GLUT2 that contributes to sustaining the glucose sensor function of β-cells. The pathway to diet- and obesity-associated diabetes has recently been revealed, in which a high-fat diet leading to diabetes recapitulated the free fatty acid-induced oxidative stress in human and mouse pancreatic β-cells that induced nuclear exclusion of transcription factors regulating GnT-IVa and, subsequently, attenuated GnT-IVa-dependent GLUT2 glycosylation. In β-cells, overexpression of GnT-IVa prevents GLUT2 glycosylation and high-fat diet-induced β-cell dysfunction that ameliorates the onset of type 2 diabetes. These findings indicate that GnT-IV-mediated redistribution of cell surface GLUT2 is a fundamental process to regulate insulin secretion responses to blood glucose levels, a paradigm that can be practically applied to better understand the pathogenesis of type 2 diabetes and provide a clue for the development of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asano T, Katagiri H, Takata K, Lin JL, Ishihara H, Inukai K, Tsukuda K, Kikuchi M, Hirano H, Yazaki Y (1991) The role of N-glycosylation of GLUT1 for glucose transport activity. J Biol Chem 266:24632–24636

    CAS  PubMed  Google Scholar 

  • Asano T, Takata K, Katagiri H, Ishihara H, Inukai K, Anai M, Hirano H, Yazaki Y, Oka Y (1993) The role of N-glycosylation in the targeting and stability of GLUT1 glucose transporter. FEBS Lett 324:258–261

    Article  CAS  PubMed  Google Scholar 

  • Baldwin SA, Lienhard GE (1981) Glucose transport across plasma membranes: facilitated diffusion systems. Trends Biochem Sci 6:208–211

    Article  CAS  Google Scholar 

  • Barnes K, Ingram JC, Bennett MD, Stewart GW, Baldwin SA (2004) Methyl-beta-cyclodextrin stimulates glucose uptake in Clone 9 cells: a possible role for lipid rafts. Biochem J 378:343–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerf ME (2006) Transcription factors regulating beta-cell function. Eur J Endocrinol 155:671–679

    Article  CAS  PubMed  Google Scholar 

  • Del Guerra S, Lupi R, Marselli L (2005) Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes 54:727–735

    Article  PubMed  Google Scholar 

  • Garner OB, Baum LG (2008) Galectin-glycan lattices regulate cell-surface glycoprotein organization and signaling. Biochem Soc Trans 36:1472–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould GW, Holman GD (1993) The glucose transporter family: structure, function and tissue-specific expression. Biochem J 295:329–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillam MT, Hümmler E, Schaerer E, Yeh JI, Birnbaum MJ, Beermann F, Schmidt A, Dériaz N, Thorens B (1997) Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat Genet 17:327–330

    Article  CAS  PubMed  Google Scholar 

  • Guillam MT, Dupraz P, Thorens B (2000) Glucose uptake, utilization, and signaling in GLUT2-null islets. Diabetes 49:1485–1491

    Article  CAS  PubMed  Google Scholar 

  • Gunton JE, Kulkarni RN, Yim S, Okada T, Hawthorne WJ, Tseng YH, Roberson RS, Ricordi C, O'Connell PJ, Gonzalez FJ, Kahn CR (2005) Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122:337–349

    Article  CAS  PubMed  Google Scholar 

  • Johnson JH, Ogawa A, Chen L, Orci L, Newgard CB, Alam T, Unger RH (1990) Underexpression of beta cell high Km glucose transporters in noninsulin-dependent diabetes. Science 250:546–549

    Article  CAS  PubMed  Google Scholar 

  • Joost HG, Bell GI, Best JD, Birnbaum MJ, Charron MJ, Chen YT, Doege H, James DE, Lodish HF, Moley KH, Moley JF, Mueckler M, Rogers S, Schürmann A, Seino S, Thorens B (2002) Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab 282:E974–E976

    Article  CAS  PubMed  Google Scholar 

  • Lapatsina L, Brand J, Poole K, Daumke O, Lewin GR (2012) Stomatin-domain proteins. Eur J Cell Biol 91:240–245

    Article  CAS  PubMed  Google Scholar 

  • McCarthy MI (2003) Growing evidence for diabetes susceptibility genes from genome scan data. Curr Diab Rep 3:159–167

    Article  PubMed  Google Scholar 

  • Minowa MT, Oguri S, Yoshida A, Hara T, Iwamatsu A, Ikenaga H, Takeuchi M (1998) cDNA cloning and expression of bovine UDP-N-acetylglucosamine: a1,3-D-mannoside b1,4-N-acetylglucosaminyltransferase IV. J Biol Chem 273:11556–11562

    Article  CAS  PubMed  Google Scholar 

  • Ohtsubo K, Takamatsu S, Minowa MT, Yoshida A, Takeuchi M, Marth JD (2005) Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 123:1307–1321

    Article  CAS  PubMed  Google Scholar 

  • Ohtsubo K, Chen MZ, Olefsky JM, Marth JD (2011) Pathway to diabetes through attenuation of pancreatic beta cell glycosylation and glucose transport. Nat Med 17:1067–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtsubo K, Takamatsu S, Gao C, Korekane H, Kurosawa TM, Taniguchi N (2013) N-Glycosylation modulates the membrane sub-domain distribution and activity of glucose transporter 2 in pancreatic beta cells. Biochem Biophys Res Commun 434:346–351

    Article  CAS  PubMed  Google Scholar 

  • Orci L, Ravazzola M, Baetens D, Inman L, Amherdt M, Peterson RG, Newgard CB, Johnson JH, Unger RH (1990) Evidence that down-regulation of beta-cell glucose transporters in non-insulin-dependent diabetes may be the cause of diabetic hyperglycemia. Proc Natl Acad Sci U S A 87:9953–9957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reimer MK, Ahrén B (2002) Altered β cell distribution of pdx-1 and GLUT-2 after a short-term challenge with a high-fat diet in C57BL/6J mice. Diabetes 51:S138–S143

    Article  CAS  PubMed  Google Scholar 

  • Rungaldier S, Oberwagner W, Salzer U, Csaszar E, Prohaska R (2013) Stomatin interacts with GLUT1/SLC2A1, band 3/SLC4A1, and aquaporin-1 in human erythrocyte membrane domains. Biochem Biophys Acta 1828:956–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato M, Nishi N, Shoji H, Seki M, Hashidate T, Hirabayashi J, Kasai Ki K, Hata Y, Suzuki S, Hirashima M, Nakamura T (2002) Functional analysis of the carbohydrate recognition domains and a linker peptide of galectin-9 as to eosinophil chemoattractant activity. Glycobiology 12:191–197

    Article  CAS  PubMed  Google Scholar 

  • Thorens B, Weir GC, Leahy JL, Bonner-Weir S (1990) Reduced expression of the liver/beta-cell glucose transporter isoform in glucose-insensitive pancreatic beta cells of diabetic rats. Proc Natl Acad Sci U S A 87:6492–6496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unger RH (1991) Diabetic hyperglycemia: link to impaired glucose transport in pancreatic beta cells. Science 251:1200–1205

    Article  CAS  PubMed  Google Scholar 

  • Valera A, Solanes G, Fernández-Alvarez J, Pujol A, Ferrer J, Asins G, Gomis R, Bosch F (1994) Expression of GLUT-2 antisense RNA in beta cells of transgenic mice leads to diabetes. J Biol Chem 269:28543–28546

    CAS  PubMed  Google Scholar 

  • van Tilburg JH, Sandkuijl LA, Strengman E, van Someren H, Rigters-Aris CA, Pearson PL, van Haeften TW, Wijmenga C (2003) A genome-wide scan in type 2 diabetes mellitus provides independent replication of a susceptibility locus on 18p11 and suggests the existence of novel Loci on 2q12 and 19q13. J Clin Endocrinol Metab 88:2223–2230

    Article  PubMed  Google Scholar 

  • Widdas WF (1988) Old and new concepts of the membrane transport for glucose in cells. Biochim Biophys Acta 947:385–404

    Article  CAS  PubMed  Google Scholar 

  • Winzell MS, Ahrén B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(suppl 3):S215–S219

    Article  PubMed  Google Scholar 

  • Yoshida A, Minowa MT, Takamatsu S, Hara T, Oguri A, Ikenaga H, Takeuchi M (1999) Tissue specific expression and chromosomal mapping of a human UDP-N-acetylglucosamine: a1,3-D-mannoside b1,4-N-acetylglucosaminyltransferase. Glycobiology 9:303–310

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Ohtsubo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ohtsubo, K. (2015). Glyco-Predisposing Factor of Diabetes. In: Suzuki, T., Ohtsubo, K., Taniguchi, N. (eds) Sugar Chains. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55381-6_13

Download citation

Publish with us

Policies and ethics