Skip to main content

Polyamine Homeostasis in Plants: The Role(s) of Evolutionarily Conserved Upstream ORFs

  • Chapter
  • First Online:
Polyamines

Abstract

Cellular polyamine (PA) concentrations are strictly controlled by complex regulatory processes that occur during the synthesis, catabolism, and transport of this compound. These processes include translational repression mediated by upstream open reading frames (uORFs) found in the mRNAs of genes involved in PA metabolism. First, we discuss the roles of dual uORFs in the S-adenosylmethionine decarboxylase gene. Second, we summarize the role of the fourth uORF in a basic helix-loop-helix transcription factor gene, SAC51, in thermospermine action in terms of its effect on xylem vessel differentiation and stem growth. Third, we discuss the sequence-conserved uORFs found in polyamine oxidase (PAO) transcripts encoding peroxisome-localized PAOs. It is currently unclear whether these uORFs cause the repression of PAO translation. Finally, because uORF-mediated repression of arginine decarboxylase (ADC) translation was reported in carnation, we critically assess the role of uORF in ADC translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Butcher NJ, Broadhurst GM, Minchin RF (2007) Polyamine-dependent regulation of spermidine-spermine N-1-acetyltransferase mRNA translation. J Biol Chem 282:28530–28539

    Article  CAS  PubMed  Google Scholar 

  • Calvo SE, Pagliarini DJ, Mootha VK (2009) Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci USA 106:7507–7512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang KS, Lee SH, Hwang SB et al (2000) Characterization and translational regulation of the arginine decarboxylase gene in carnation (Dianthus caryophyllus L.). Plant J 24:45–56

    Article  CAS  PubMed  Google Scholar 

  • Clay NK, Nelson T (2005) Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport. Plant Physiol 138:67–777

    Article  Google Scholar 

  • Fincato P, Moschou PN, Spedaletti V et al (2011) Functional diversity inside the Arabidopsis polyamine oxidase gene family. J Exp Bot 62:1155–1168

    Article  CAS  PubMed  Google Scholar 

  • Franceschetti M, Hanfrey C, Scaramagli S et al (2001) Characterization of monocot and dicot plant S-adenosyl-l-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames. Biochem J 353:403–409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gallie DR (1993) Post-transcriptional regulation of gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 44:77–105

    Article  CAS  Google Scholar 

  • Guerrero-González ML, Rodríguez-Kessler M, Jiménez-Bremont JF (2014) uORF, a regulatory mechanism of the Arabidopsis polyamine oxidase 2. Mol Biol Rep 41:2427–2443

    Article  PubMed  Google Scholar 

  • Hanfrey C, Franceschetti M, Mayer MJ, Illingworth C, Michael AJ (2002) Abrogation of upstream open reading frame-mediated translational control of a plant S-adenosylmethionine decarboxylase results in polyamine disruption and growth perturbations. J Biol Chem 277:44131–44139

    Article  CAS  PubMed  Google Scholar 

  • Hanfrey C, Franceschetti M, Mayer MJ, Illingworth C, Elliot K, Collier M, Thompson B, Perry B, Michael AJ (2003) Translational regulation of the plant S-adenosylmethionine decarboxylase. Biochem Soc Trans 31:424–427

    Article  CAS  PubMed  Google Scholar 

  • Hanfrey C, Elliot KA, Franceschetti M, Mayer MJ, Illingworth C, Michael AJ (2005) A dual upstream open reading frame-based autoregulatory circuit controlling polyamine-responsive translation. J Biol Chem 280:39229–39237

    Article  CAS  PubMed  Google Scholar 

  • Hanzawa Y, Takahashi T, Michael AJ et al (2000) ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J 19:4248–4256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayden CA, Jorgensen RA (2007) Identification of novel conserved peptide uORF homology groups in Arabidopsis and rice reveals ancient eukaryotic origin of select groups and preferential association with transcription factor-encoding genes. BMC Biol 5:32

    Article  PubMed Central  PubMed  Google Scholar 

  • Illingworth C, Michael AJ (2012) Plant ornithine decarboxylase is not post-transcriptionally feedback regulated by polyamines but can interact with a cytosolic ribosomal protein S15 polypeptide. Amino Acids 45:519–527

    Article  Google Scholar 

  • Imai A, Hanzawa Y, Komura M et al (2006) The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development (Camb) 133:3575–3585

    Article  CAS  Google Scholar 

  • Ivanov IP, Atkins JF, Michael AJ (2010) A profusion of upstream open reading frame mechanisms in polyamine-responsive translational regulation. Nucleic Acids Res 38:353–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jorgensen RA, Dorantes-Acosta AE (2012) Conserved peptide upstream open reading frames are associated with regulatory genes in angiosperms. Front Plant Sci 3:191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kakehi JI, Kuwashiro Y, Niitsu M, Takahashi T (2008) Thermospermine is required for stem elongation in Arabidopsis thaliana. Plant Cell Physiol 49:1342–1349

    Article  CAS  PubMed  Google Scholar 

  • Kamada-Nobusada T, Hayashi M, Fukazawa M et al (2008) A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol 49:1272–1282

    Article  CAS  PubMed  Google Scholar 

  • Knott JM, Römer P, Sumper M (2007) Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 581:3081–3086

    Article  CAS  PubMed  Google Scholar 

  • Kusano T, Berberich T, Tateda C et al (2008) Polyamines: essential factors for growth and survival. Planta (Berl) 228:367–381

    Article  CAS  Google Scholar 

  • Moschou PN, Sanmartin M, Andriopoulou AH et al (2008) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muñiz L, Minguet EG, Singh SK et al (2008) ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development (Camb) 135:2572–2582

    Article  Google Scholar 

  • Naka Y, Watanabe K, Sagor GHM et al (2010) Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiol Biochem 48:527–533

    Article  CAS  PubMed  Google Scholar 

  • Ono Y, Kim DW, Watanabe K et al (2012) Constitutively and highly expressed Oryza sativa polyamine oxidases localize in peroxisomes and catalyzed polyamine back conversion. Amino Acids 42:867–876

    Article  CAS  PubMed  Google Scholar 

  • Parry L, Balana Fouce R, Pegg AE (1995) Post-transcriptional regulation of the content of spermidine/spermine N 1-acetyltransferase by N 1 N 12-bis(ethyl)spermine. Biochem J 305:451–458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peremarti A, Bassie L, Zhu C et al (2010) Molecular characterization of the Arginine decarboxylase gene family in rice. Transgenic Res 19:785–797

    Article  CAS  PubMed  Google Scholar 

  • Perez-Leal O, Merali S (2012) Regulation of polyamine metabolism by translational control. Amino Acids 42:611–617

    Article  CAS  PubMed  Google Scholar 

  • Perez-Leal O, Barrero CA, Clarkson AB et al (2012) Polyamine-regulated translation of spermidine/spermine-N 1-acetyltransferase. Mol Cell Biol 32:1453–1467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rook F, Gerrits N, Kortstee A et al (1998) Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J 15:253–263

    Article  CAS  PubMed  Google Scholar 

  • Ruan H, Shantz LM, Pegg AE, Morris DR (1996) The upstream open reading frame of the mRNA encoding S-adenosylmethionine decarboxylase is a polyamine-responsive translational control element. J Biol Chem 271:29576–29582

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi T, Okada T, Azuma T et al (2006) Posttranscriptional regulation by the upstream open reading frame of the phophoetanolamine n-methyltransferase gene. Biosci Biotechnol Biochem 70:2330–2334

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Cong R, Sagor GHM et al (2010) Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana. Plant Cell Rep 29:955–965

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Takahashi A, Naito S et al (2012) Baiucas: a novel BLAST-based algorithm for the identification of upstream open reading frames with conserved amino acid sequences and its application to the Arabidopsis thaliana genome. Bioinformatics 28:2231–2241

    Article  CAS  PubMed  Google Scholar 

  • Takano A, Kakehi JI, Takahashi T (2012) Thermospermine is not a minor polyamine in the plant kingdom. Plant Cell Physiol 53:606–616

    Article  CAS  PubMed  Google Scholar 

  • Thalor SK, Berberich T, Lee SS et al (2012) Deregulation of sucrose-controlled translation of a bZIP-type transcription factor results in sucrose accumulation in leaves. PLoS One 7:e33111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trung-Nghia P, Bassie L, Safwat G et al (2003) Reduction in the endogenous arginine decarboxylase transcript levels in rice leads to depletion of the putrescine and spermidine pools with no concomitant changes in the expression of downstream genes in the polyamine biosynthetic pathway. Planta (Berl) 218:125–134

    Article  Google Scholar 

  • Vaughn JN, Ellingson SR, Mignone F et al (2012) Known and novel post-transcriptional regulatory sequences are conserved across plant families. RNA 18:368–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vera-Sirera F, Minguet EG, Singh SK et al (2010) Role of polyamines in plant vascular development. Plant Physiol Biochem 48:534–539

    Article  CAS  PubMed  Google Scholar 

  • Wiese A, Elzinga N, Wobbes B et al (2004) A conserved upstream open reading frame mediates sucrose-induced repression of translation. Plant Cell 16:1717–1729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshimoto K, Noutoshi Y, Hayashi K et al (2012) A chemical biology approach reveals an opposite action between thermospermine and auxin in xylem development in Arabidopsis thaliana. Plant Cell Physiol 53:635–645

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonobu Kusano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Thalor, S.K., Berberich, T., Kusano, T. (2015). Polyamine Homeostasis in Plants: The Role(s) of Evolutionarily Conserved Upstream ORFs. In: Kusano, T., Suzuki, H. (eds) Polyamines. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55212-3_9

Download citation

Publish with us

Policies and ethics