Skip to main content
Log in

Plant ornithine decarboxylase is not post-transcriptionally feedback regulated by polyamines but can interact with a cytosolic ribosomal protein S15 polypeptide

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The formation of putrescine by ornithine decarboxylase (ODC) is a key regulatory step in polyamine biosynthesis in metazoa and fungi. Excess polyamines post-transcriptionally induce the synthesis of a unique non-competitive protein inhibitor of ODC, termed antizyme. Binding of antizyme to an ODC monomer subunit results in enzymatic inhibition, rapid ubiquitin-independent degradation of ODC by the 26S proteasome and recycling of antizyme. Plants possess an additional route for synthesizing putrescine via arginine decarboxylase (ADC). No homologue of ODC antizyme has been detected in plant genomes but several biochemical studies have reported plant ODC antizyme proteins of 9 and 16 kDa. Here we show that plant cells grown in liquid culture do not exhibit any substantial post-transcriptional, polyamine-responsive feedback regulation of ODC or ADC. However, using the yeast two hybrid system, a plant ODC-binding polypeptide was detected: the C-terminal 84-87 amino acids of cytosolic ribosomal protein (rp) S15. The Arabidopsis rpS15 polypeptide interacted specifically with plant ODC but not with human or Saccharomyces cerevisiae ODCs. Co-expression of either the full length or C-terminal rpS15 polypeptides with a plant ODC in yeast did not reduce ODC enzymatic activity. Only the full length mRNA encoding rpS15 was detected in Arabidopsis cells, suggesting that the C-terminal rpS15 polypeptide is encoded by a low abundance mRNA or the polypeptide is not physiologically relevant in plants. These results confirm the primacy of S-adenosylmethionine decarboxylase as the key regulatory enzyme in plant polyamine biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ODC:

Ornithine decarboxylase

BY-2:

Bright Yellow-2 tobacco cells

rpS15:

Cytosolic ribosomal protein S15

References

  • Almrud JJ, Oliveira MA, Kern AD, Grishin NV, Phillips MA, Hackert ML (2000) Crystal structure of human ornithine decarboxylase at 2.1 A resolution: structural insights to antizyme binding. J Mol Biol 295:7–16

    Article  PubMed  CAS  Google Scholar 

  • Bortolotti C, Cordeiro A, Alcazar R, Borrell A, Culianez-Macia FA, Tiburcio AF, Altabella T (2004) Localization of arginine decarboxylase in tobacco plants. Physiol Plant 120:84–92

    Article  PubMed  CAS  Google Scholar 

  • Deboer KD, Dalton HL, Edward FJ, Hamill JD (2011) RNAi-mediated down-regulation of ornithine decarboxylase (ODC) leads to reduced nicotine and increased anatabine levels in transgenic Nicotiana tabacum L. Phytochemistry 72:344–355

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Lee J, Michael AJ, Tomchick DR, Goldsmith EJ, Phillips MA (2010) Evolution of substrate specificity within a diverse family of beta/alpha-barrel-fold basic amino acid decarboxylases: X-ray structure determination of enzymes with specificity for l-arginine and carboxynorspermidine. J Biol Chem 285:25708–25719

    Article  PubMed  CAS  Google Scholar 

  • Elbe R (1992) A simple and efficient procedure for transformation of yeast. BioTechniques 13:18–20

    Google Scholar 

  • Fuell C, Elliott KA, Hanfrey CC, Franceschetti M, Michael AJ (2010) Polyamine biosynthetic diversity in plants and algae. Plant Physiol Biochem 48:513–520

    Article  PubMed  CAS  Google Scholar 

  • Hanfrey C, Sommer S, Mayer MJ, Burtin D, Michael AJ (2001) Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27:551–560

    Article  PubMed  CAS  Google Scholar 

  • Hanfrey C, Franceschetti M, Mayer MJ, Illingworth C, Michael AJ (2002) Abrogation of upstream open reading frame-mediated translational control of a plant S-adenosylmethionine decarboxylase results in polyamine disruption and growth perturbations. J Biol Chem 277:44131–44139

    Article  PubMed  CAS  Google Scholar 

  • Hanfrey C, Elliott KA, Franceschetti M, Mayer MJ, Illingworth C, Michael AJ (2005) A dual upstream open reading frame-based autoregulatory circuit controlling polyamine-responsive translation. J Biol Chem 280:39229–39237

    Article  PubMed  CAS  Google Scholar 

  • Heller JS, Fong WF, Canellakis ES (1976) Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci USA 73:1858–1862

    Article  PubMed  CAS  Google Scholar 

  • Hiatt AC, McIndoo J, Malmberg RL (1986) Regulation of polyamine biosynthesis in tobacco. Effects of inhibitors and exogenous polyamines on arginine decarboxylase, ornithine decarboxylase, and S-adenosylmethionine decarboxylase. J Biol Chem 261:1293–1298

    PubMed  CAS  Google Scholar 

  • Illingworth C, Michael AJ (1998) Interactions of the human, plant and yeast ornithine decarboxylase subunits and human antizyme. Biochem Soc Trans 26:601–606

    PubMed  CAS  Google Scholar 

  • Imanishi S, Hashizume K, Nakakita M, Kojima H, Matsubayashi Y, Hashimoto T, Sakagami Y, Yamada Y, Nakamura K (1998) Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol Biol 38:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    PubMed  CAS  Google Scholar 

  • Ivanov IP, Gesteland RF, Atkins JF (1998) Does antizyme exist in Escherichia coli? Mol Microbiol 29:1521–1522

    Article  PubMed  CAS  Google Scholar 

  • Ivanov IP, Atkins JF, Michael AJ (2010) A profusion of upstream open reading frame mechanisms in polyamine-responsive translational regulation. Nucleic Acids Res 38:353–359

    Article  PubMed  CAS  Google Scholar 

  • Jackson LK, Goldsmith EJ, Phillips MA (2003) X-ray structure determination of Trypanosoma brucei ornithine decarboxylase bound to d-ornithine and to G418: insights into substrate binding and ODC conformational flexibility. J Biol Chem 278:22037–22043

    Article  PubMed  CAS  Google Scholar 

  • James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    PubMed  CAS  Google Scholar 

  • Kashiwagi K, Igarashi K (1987) Nonspecific inhibition of Escherichia coli ornithine decarboxylase by various ribosomal proteins: detection of a new ribosomal protein possessing strong antizyme activity. Biochim Biophys Acta 911:180–190

    Article  PubMed  CAS  Google Scholar 

  • Koromilas AE, Kyriakidis DA (1987) Reversal of antizyme-induced inhibition of ornithine decarboxylase by cations in barley seedlings. Plant Growth Regul 6:267–275

    Article  CAS  Google Scholar 

  • Li X, Coffino P (1992) Regulated degradation of ornithine decarboxylase requires interaction with the polyamine-inducible protein antizyme. Mol Cell Biol 12:3556–3562

    PubMed  CAS  Google Scholar 

  • Li X, Coffino P (1993) Degradation of ornithine decarboxylase: exposure of the C-terminal target by a polyamine-inducible inhibitory protein. Mol Cell Biol 13:2377–2383

    PubMed  CAS  Google Scholar 

  • Li X, Coffino P (1994) Distinct domains of antizyme required for binding and proteolysis of ornithine decarboxylase. Mol Cell Biol 14:87–92

    Article  PubMed  CAS  Google Scholar 

  • Matsufuji S, Miyazaki Y, Kanamoto R, Kameji T, Murakami Y, Baby TG, Fujita K, Ohno T, Hayashi S (1990) Analyses of ornithine decarboxylase antizyme mRNA with a cDNA cloned from rat liver. J Biochem 108:365–371

    PubMed  CAS  Google Scholar 

  • Matsufuji S, Matsufuji T, Miyazaki Y, Murakami Y, Atkins JF, Gesteland RF, Hayashi S (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80:51–60

    Article  PubMed  CAS  Google Scholar 

  • Mayer MJ, Michael AJ (2003) Polyamine homeostasis in transgenic plants overexpressing ornithine decarboxylase includes ornithine limitation. J Biochem 134:765–772

    Article  PubMed  CAS  Google Scholar 

  • Momany C, Ernst S, Ghosh R, Chang NL, Hackert ML (1995) Crystallographic structure of a PLP-dependent ornithine decarboxylase from Lactobacillus 30a to 3.0 A resolution. J Mol Biol 252:643–655

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A (1992) Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360:597–599

    Article  PubMed  CAS  Google Scholar 

  • Nolke G, Schneider B, Fischer R, Schillberg S (2005) Immunomodulation of polyamine biosynthesis in tobacco plants has a significant impact on polyamine levels and generates a dwarf phenotype. Plant Biotechnol J 3:237–247

    Article  PubMed  Google Scholar 

  • Panagiotidis CA, Kyriakidis DA (1985) Purification of a non-histone protein with properties of antizyme to ornithine decarboxylase from germinated barley seedlings. Plant Growth Regul 3:247–255

    Article  CAS  Google Scholar 

  • Pegg AE (2006) Regulation of ornithine decarboxylase. J Biol Chem 281:14529–14532

    Article  PubMed  CAS  Google Scholar 

  • Rom E, Kahana C (1994) Polyamines regulate the expression of ornithine decarboxylase antizyme in vitro by inducing ribosomal frame-shifting. Proc Natl Acad Sci USA 91:3959–3963

    Article  PubMed  CAS  Google Scholar 

  • Sangwan V, Lenvik TR, Gantt JS (1993) The Arabidopsis thaliana ribosomal protein S15 (rig) gene. Biochim Biophys Acta 1216:221–226

    PubMed  CAS  Google Scholar 

  • Tobias KE, Kahana C (1993) Intersubunit location of the active site of mammalian ornithine decarboxylase as determined by hybridization of site-directed mutants. Biochemistry 32:5842–5847

    Article  PubMed  CAS  Google Scholar 

  • Xiong H, Stanley BA, Tekwani BL, Pegg AE (1997) Processing of mammalian and plant S-adenosylmethionine decarboxylase proenzymes. J Biol Chem 272:28342–28348

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Takatsuka Y, Matsufuji S, Murakami Y, Kamio Y (2006) Characterization of a counterpart to Mammalian ornithine decarboxylase antizyme in prokaryotes. J Biol Chem 281:3995–4001

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Takatsuka Y, Kamio Y (2008) Two segments in bacterial antizyme P22 are essential for binding and enhance degradation of lysine/ornithine decarboxylase in Selenomonas ruminantium. J Bacteriol 190:442–446

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Pickart CM, Coffino P (2003) Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J 22:1488–1496

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A. J. Michael is supported by UT Southwestern Medical Center. We would like to express our thanks to Susanne Sommer for analysis of the tobacco BY-2 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Michael.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Illingworth, C., Michael, A.J. Plant ornithine decarboxylase is not post-transcriptionally feedback regulated by polyamines but can interact with a cytosolic ribosomal protein S15 polypeptide. Amino Acids 42, 519–527 (2012). https://doi.org/10.1007/s00726-011-1029-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1029-5

Keywords

Navigation